Stilbene Glycosides in Pinus cembra L. Bark: Isolation, Characterization, and Assessment of Antioxidant Potential and Antitumor Activity on HeLa Cells
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40431024
PubMed Central
PMC12115102
DOI
10.3390/plants14101459
PII: plants14101459
Knihovny.cz E-zdroje
- Klíčová slova
- HeLa cells, Pinus cembra L., antioxidant activity, antitumor activity, bark extract, pinostilbenoside, resveratroloside,
- Publikační typ
- časopisecké články MeSH
Stilbenes are plant secondary metabolites with remarkable antidiabetic, anti-inflammatory, antimicrobial, antioxidant, antitumor, and neuroprotective properties. As these compounds are valuable constituents in healthcare products and promising drug candidates, exploring new sources of stilbenes is essential for therapeutic advancement. The present study reports the isolation of two stilbene glycosides, resveratroloside and pinostilbenoside, from Pinus cembra L. bark. Their antioxidant activity and cytotoxic effects against HeLa cells were evaluated in comparison to the raw bark extract. The structures of resveratroloside and pinostilbenoside were confirmed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) data analyses. Antioxidant activity was assessed by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and reducing power assays. Cell viability, apoptosis, cell proliferation, and cell cycle assays were used to evaluate the cytotoxic potential against HeLa cells. Resveratroloside and pinostilbenoside exhibited lower activity as free radical scavengers and reducing agents. However, they showed greater efficacy in reducing viability and suppressing proliferation in human cervical carcinoma HeLa cells. Given the promising findings of our study, the therapeutic potential of resveratroloside and pinostilbenoside should be further investigated.
Faculty of Chemistry Alexandru Ioan Cuza University of Iasi 11 Carol 1 Boulevard 700506 Iasi Romania
Medical Investigations Praxis SRL 35 Moara de Vant Street 700376 Iasi Romania
Zobrazit více v PubMed
Pecyna P., Wargula J., Murias M., Kucinska M. More Than Resveratrol: New Insights into Stilbene-Based Compounds. Biomolecules. 2020;10:1111. doi: 10.3390/biom10081111. PubMed DOI PMC
Teka T., Zhang L., Ge X., Li Y., Han L., Yan X. Stilbenes: Source plants, chemistry, biosynthesis, pharmacology, application and problems related to their clinical Application-A comprehensive review. Phytochemistry. 2022;197:113128. doi: 10.1016/j.phytochem.2022.113128. PubMed DOI
Mendonça E.L.S.S., Xavier J.A., Fragoso M.B.T., Silva M.O., Escodro P.B., Oliveira A.C.M., Tucci P., Saso L., Goulart M.O.F. E-Stilbenes: General Chemical and Biological Aspects, Potential Pharmacological Activity Based on the Nrf2 Pathway. Pharmaceuticals. 2024;17:232. doi: 10.3390/ph17020232. PubMed DOI PMC
Farkhondeh T., Folgado S.L., Pourbagher-Shahri A.M., Ashrafizadeh M., Samarghandian S. The therapeutic effect of resveratrol: Focusing on the Nrf2 signaling pathway. Biomed. Pharmacother. 2020;127:110234. doi: 10.1016/j.biopha.2020.110234. PubMed DOI
Alavi M., Farkhondeh T., Aschner M., Samarghandian S. Resveratrol mediates its anti-cancer effects by Nrf2 signaling pathway activation. Cancer Cell. Int. 2021;21:579. doi: 10.1186/s12935-021-02280-5. PubMed DOI PMC
Zhang L.X., Li C.X., Kakar M.U., Khan M.S., Wu P.F., Amir R.M., Dai D.F., Naveed M., Li Q.Y., Saeed M., et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed. Pharmacother. 2021;143:112164. doi: 10.1016/j.biopha.2021.112164. PubMed DOI
Berman A.Y., Motechin R.A., Wiesenfeld M.Y., Holz M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017;1:35. doi: 10.1038/s41698-017-0038-6. PubMed DOI PMC
Valletta A., Iozia L.M., Leonelli F. Impact of Environmental Factors on Stilbene Biosynthesis. Plants. 2021;10:90. doi: 10.3390/plants10010090. PubMed DOI PMC
Liu P., Tang W., Xiang K., Li G. Pterostilbene in the treatment of inflammatory and oncological diseases. Front. Pharmacol. 2024;14:1323377. doi: 10.3389/fphar.2023.1323377. PubMed DOI PMC
Al-Jaber H.I., Shakya A.K., Al-Qudah M.A., Barhoumi L.M., Abu-Sal H.E., Hasan H.S., Al-Bataineh N., Abu-Orabi S., Mubarak M.S. Piceatannol, a comprehensive review of health perspectives and pharmacological aspects. Arab. J. Chem. 2024;17:105939. doi: 10.1016/j.arabjc.2024.105939. DOI
Bakrim S., Machate H., Benali T., Sahib N., Jaouadi I., Omari N.E., Aboulaghras S., Bangar S.P., Lorenzo J.M., Zengin G., et al. Natural Sources and Pharmacological Properties of Pinosylvin. Plants. 2022;11:1541. doi: 10.3390/plants11121541. PubMed DOI PMC
Kowalczyk T., Piekarski J., Merecz-Sadowska A., Muskała M., Sitarek P. Investigation of the molecular mechanisms underlying the anti-inflammatory and antitumour effects of isorhapontigenin: Insights from in vitro and in vivo studies. Biomed. Pharmacother. 2024;180:117479. doi: 10.1016/j.biopha.2024.117479. PubMed DOI
Avula B., Joshi V.C., Wang Y.H., Khan I.A. Simultaneous identification and quantification of anthraquinones, polydatin, and resveratrol in Polygonum multiflorum, various Polygonum species, and dietary supplements by liquid chromatography and microscopic study of Polygonum species. J. AOAC Int. 2007;90:1532–1538. doi: 10.1093/jaoac/90.6.1532. PubMed DOI
Suprun A.R., Dubrovina A.S., Grigorchuk V.P., Kiselev K.V. Stilbene Content and Expression of Stilbene Synthase Genes in Korean Pine Pinus koraiensis Siebold & Zucc. Forests. 2023;14:1239. doi: 10.3390/f14061239. DOI
Gabaston J., Richard T., Biais B., Waffo-Teguo P., Pedrot E., Jourdes M., Corio-Costet M.F., Mérillon J.M. Stilbenes from common spruce (Picea abies) bark as natural antifungal agent against downy mildew (Plasmopara viticola) Ind. Crops Prod. 2017;103:267–273. doi: 10.1016/j.indcrop.2017.04.009. DOI
Jyske T., Brännström H., Halmemies E., Laakso T., Kilpeläinen P., Hyvönen J., Kärkkäinen K., Saranpää P. Stilbenoids of Norway spruce bark: Does the variability caused by raw-material processing offset the biological variability. Biomass Convers. Biorefin. 2024;14:5085–5099. doi: 10.1007/s13399-022-02624-9. DOI
Francezon N., Meda N.-S.-B.R., Stevanovic T. Optimization of Bioactive Polyphenols Extraction from Picea mariana Bark. Molecules. 2017;22:2118. doi: 10.3390/molecules22122118. PubMed DOI PMC
Kwon D.J., Young-Soo B. Stilbenoids of Korean Pine (Pinus koraiensis) Inner Bark. Mokchae Konghak. 2009;37:474–479.
Celimene C., Micales J., Ferge L., Young R. Efficacy of Pinosylvins against White-Rot and Brown-Rot Fungi. Holzforschung. 1999;53:491–497. doi: 10.1515/HF.1999.081. DOI
Willför S.M., Ahotupa M.O., Hemming J.E., Reunanen M.H., Eklund P.C., Sjöholm R.E., Eckerman C.S., Pohjamo S.P., Holmbom B.R. Antioxidant activity of knotwood extractives and phenolic compounds of selected tree species. J. Agric. Food Chem. 2003;51:7600–7606. doi: 10.1021/jf030445h. PubMed DOI
Alperth F., Schneebauer A., Kunert O., Bucar F. Phytochemical Analysis of Pinus cembra Heartwood—UHPLC-DAD-ESI-MSn with Focus on Flavonoids, Stilbenes, Bibenzyls and Improved HPLC Separation. Plants. 2023;12:3388. doi: 10.3390/plants12193388. PubMed DOI PMC
Jayatilake G.S., Jayasuriya H., Lee E.S., Koonchanok N.M., Geahlen R.L., Ashendel C.L., McLaughlin J.L., Chang C.J. Kinase inhibitors from Polygonum cuspidatum. J. Nat. Prod. 1993;56:1805–1810. doi: 10.1021/np50100a021. PubMed DOI
Vastano B.C., Chen Y., Zhu N., Ho C.T., Zhou Z., Rosen R.T. Isolation and identification of stilbenes in two varieties of Polygonum cuspidatum. J. Agric. Food Chem. 2000;48:253–256. doi: 10.1021/jf9909196. PubMed DOI
Makong Y.S., Mouthé Happi G., Djouaka Bavoua J.L., Wansi J.D., Nahar L., Kamdem Waffo A.F., Martin C., Sewald N., Sarker S.D. Cytotoxic Stilbenes and Canthinone Alkaloids from Brucea antidysenterica (Simaroubaceae) Molecules. 2019;24:4412. doi: 10.3390/molecules24234412. PubMed DOI PMC
Segun P.A., Ogbole O.O., Ismail F.M.D., Nahar L., Evans A.R., Ajaiyeoba E.O., Sarker S.D. Resveratrol derivatives from Commiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines. Phytother. Res. 2019;33:159–166. doi: 10.1002/ptr.6209. PubMed DOI
Apetrei C.L., Tuchilus C., Aprotosoaie A.C., Oprea A., Malterud K.E., Miron A. Chemical, Antioxidant and Antimicrobial Investigations of Pinus cembra L. Bark and Needles. Molecules. 2011;16:7773–7788. doi: 10.3390/molecules16097773. PubMed DOI PMC
Packer L., Rimbach G., Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, Pycnogenol. Free Radic. Biol. Med. 1999;27:704–724. doi: 10.1016/S0891-5849(99)00090-8. PubMed DOI
Bhardwaj K., Silva A.S., Atanassova M., Sharma R., Nepovimova E., Musilek K., Sharma R., Alghuthaymi M.A., Dhanjal D.S., Nicoletti M., et al. Conifers Phytochemicals: A Valuable Forest with Therapeutic Potential. Molecules. 2021;26:3005. doi: 10.3390/molecules26103005. PubMed DOI PMC
Ramos P.A.B., Pereira C., Gomes A.P., Neto R.T., Almeida A., Santos S.A.O., Silva A.M.S., Silvestre A.J.D. Chemical Characterisation, Antioxidant and Antibacterial Activities of Pinus pinaster Ait. and Pinus pinea L. Bark Polar Extracts: Prospecting Forestry By-Products as Renewable Sources of Bioactive Compounds. Appl. Sci. 2022;12:784. doi: 10.3390/app12020784. DOI
Lim W.X.J., Gammon C.S., von Hurst P., Chepulis L., Page R.A. The Inhibitory Effects of New Zealand Pine Bark (Enzogenol®) on α-Amylase, α-Glucosidase, and Dipeptidyl Peptidase-4 (DPP-4) Enzymes. Nutrients. 2022;14:1596. doi: 10.3390/nu14081596. PubMed DOI PMC
Benković E.T., Grohar T., Žigon D., Švajger U., Janeš D., Kreft S., Štrukelj B. Chemical composition of the silver fir (Abies alba) bark extract Abigenol® and its antioxidant activity. Ind. Crops Prod. 2014;52:23–28. doi: 10.1016/j.indcrop.2013.10.005. DOI
Wieser G., Manning W.J., Tausz M., Bytnerowicz A. Evidence for potential impacts of ozone on Pinus cembra L. at mountain sites in Europe: An overview. Environ. Pollut. 2006;139:53–58. doi: 10.1016/j.envpol.2005.04.037. PubMed DOI
Ferreira-Santos P., Genisheva Z., Botelho C., Santos J., Ramos C., Teixeira J.A., Rocha C.M.R. Unravelling the Biological Potential of Pinus pinaster bark extracts. Antioxidants. 2020;9:334. doi: 10.3390/antiox9040334. PubMed DOI PMC
Cretu E., Miron S.D., Miron A. Bioactivity screening of Pinus brutia bark extracts: Superoxide dismutase-like and nitric oxide scavenging effects. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2013;117:551–557. PubMed
Cretu E., Salminen J.-P., Karonen M., Miron A., Charalambous C., Constantinou A.I., Aprotosoaie A.C. In vitro antioxidant activity and phenolic content of Cedrus brevifolia bark. Nat. Prod. Commun. 2014;9:481–482. doi: 10.1177/1934578X1400900412. PubMed DOI
Jiang Y., Han W., Shen T., Wang M.-H. Antioxidant activity and protection from DNA damage by water extract from pine (Pinus densiflora) bark. Prev. Nutr. Food Sci. 2012;17:116–121. doi: 10.3746/pnf.2012.17.2.116. PubMed DOI PMC
Cretu E., Karonen M., Salminen J.-P., Mircea C., Trifan A., Charalambous C., Constantinou A.I., Miron A. In vitro study on the antioxidant activity of a polyphenol-rich extract from Pinus brutia bark and its fractions. J. Med. Food. 2013;16:984–991. doi: 10.1089/jmf.2013.0050. PubMed DOI PMC
Kiss A., Baksa V., Bege M., Tálas L., Borbás A., Bereczki I., Bánfalvi G., Szemán-Nagy G. MTT test and time-lapse microscopy to evaluate the antitumor potential of nucleoside analogues. Anticancer Res. 2021;41:137–149. doi: 10.21873/anticanres.14759. PubMed DOI
Ma H., Lai F., Xie H., Wang J., Wang H. Involvement of the Bcl-2 family members in Pinus massoniana bark extract induced apoptosis in HeLa cells. Phytother. Res. 2008;22:1472–1476. doi: 10.1002/ptr.2496. PubMed DOI
Parveen S., Varalakshmi K.N. Accumulation of cells in sub-G1 phase and apoptosis induction by a bioactive fraction from the seaweed Gelidiella acerosa. Biosc. Biotech. Res. Comm. 2020;13:1184–1190. doi: 10.21786/bbrc/13.3/30. DOI
Wu D.-C., Li S., Yang D.-Q., Cui Y.-Y. Effects of Pinus massoniana bark extract on the adhesion and migration capabilities of HeLa cells. Fitoterapia. 2011;82:1202–1205. doi: 10.1016/j.fitote.2011.08.008. PubMed DOI
Li Y.-Y., Feng J., Zhang X.-L., Li M.-Q., Cui Y.-Y. Effects of Pinus massoniana bark extract on the invasion capability of HeLa cells. J. Funct. Foods. 2016;24:520–526. doi: 10.1016/j.jff.2016.04.030. DOI
Mihailescu Amalinei R.L., Trifan A., Cioanca O., Miron S.D., Mihai C.T., Rotinberg P., Miron A. Polyphenol-rich extract from Pinus sylvestris L. bark—Chemical and antitumor studies. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2014;118:551–557. PubMed
Achmad A.B., Proboningrat A., Ansori A.N.M., Fadholly A., Rochmi S.E., Samsudin R.R., Hidayatik N., Hendarti G.A., Jayanti S. Stem bark ethanolic extract of Pinus merkusii induces caspase-9 mediated apoptosis in HeLa cells. Open Vet. J. 2024;14:2628–2633. doi: 10.5455/OVJ.2024.v14.i10.12. PubMed DOI PMC
Li K., Li Q., Zhang T., Han Z., Li J., Liu Z., Zheng F. Procyanidins from Pinus koraiensis bark inhibits HeLa cell growth by inducing apoptosis and reducing surviving protein expression. Afr. J. Biotechnol. 2011;10:7766–7771. doi: 10.5897/AJB11.194. DOI
Gromova A.S., Tyukavkina N.A., Lutskii V.I., Kalabin G.A., Kushnarev D.F. Hydroxystilbenes of the inner bark of Pinus sibirica. Chem. Nat. Compd. 1975;11:715–719. doi: 10.1007/BF00568450. DOI
Dar B.A., Lone S.H., Shah W.A., Bhat K.A. LC-MS guided isolation of bioactive principles from Iris hookeriana and bioevaluation of isolates for antimicrobial and antioxidant activities. Drug Res. 2016;66:427–431. doi: 10.1055/s-0042-108337. PubMed DOI
Uesugi D., Hamada H., Shimoda K., Kubota N., Ozaki S., Nagatani N. Synthesis, oxygen radical absorbance capacity, and tyrosinase inhibitory activity of glycosides of resveratrol, pterostilbene, and pinostilbene. Biosci. Biotechnol. Biochem. 2017;81:226–230. doi: 10.1080/09168451.2016.1240606. PubMed DOI
Al-Mamary M.A., Moussa Z. Antioxidant Activity: The Presence and Impact of Hydroxyl Groups in Small Molecules of Natural and Synthetic Origin. In: Waisundara V.Y., editor. Antioxidants—Benefits, Sources, Mechanisms of Action. IntechOpen; London, UK: 2021. DOI
Liu Z., Li Y., She G., Zheng X., Shao L., Wang P., Pang M., Xie S., Sun Y. Resveratrol induces cervical cancer HeLa cell apoptosis through the activation and nuclear translocation promotion of FOXO3a. Pharmazie. 2020;75:250–254. doi: 10.1691/ph.2020.0386. PubMed DOI
Li L., Qiu R.-L., Lin Y., Cai Y., Bian Y., Fan Y., Gao X.-J. Resveratrol suppresses human cervical carcinoma cell proliferation and elevates apoptosis via the mitochondrial and p53 signaling pathways. Oncol. Lett. 2018;15:9845–9851. doi: 10.3892/ol.2018.8571. PubMed DOI PMC
Nadile M., Retsidou M.I., Gioti K., Beloukas A., Tsiani E. Resveratrol against Cervical Cancer: Evidence from In Vitro and In Vivo Studies. Nutrients. 2022;14:5273. doi: 10.3390/nu14245273. PubMed DOI PMC
Ngo T.H., Lee Y.-J., Choi H., Song K.-S., Lee K.J., Nam J.-W. Evaluating the anticancer potential of Polygonum multiflorum-root derived stilbenes against H2452 malignant pleural mesothelioma cells. Fitoterapia. 2024;177:106135. doi: 10.1016/j.fitote.2024.106135. PubMed DOI
Carneiro B.A., El-Deiry W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020;17:395–417. doi: 10.1038/s41571-020-0341-y. PubMed DOI PMC
Wang X., Hua P., He C., Chen M. Non-apoptotic cell death-based cancer therapy: Molecular mechanism, pharmacological modulators, and nanomedicine. Acta Pharm. Sin. B. 2022;12:3567–3593. doi: 10.1016/j.apsb.2022.03.020. PubMed DOI PMC
Scifo C., Cardile V., Russo A., Consoli R., Vancheri C., Capasso F., Vanella A., Renis M. Resveratrol and Propolis as Necrosis or Apoptosis Inducers in Human Prostate Carcinoma Cells. Oncol. Res. 2004;14:415–426. doi: 10.3727/0965040041791437. PubMed DOI
Jang J.Y., Im E., Kim N.D. Mechanism of Resveratrol-Induced Programmed Cell Death and New Drug Discovery against Cancer: A Review. Int. J. Mol. Sci. 2022;23:13689. doi: 10.3390/ijms232213689. PubMed DOI PMC
Wawszczyk J., Jesse K., Smolik S., Kapral M. Mechanism of Pterostilbene-Induced Cell Death in HT-29 Colon Cancer Cells. Molecules. 2022;27:369. doi: 10.3390/molecules27020369. PubMed DOI PMC
Horsman M.R., Murata R., Breidahl T., Nielsen F.U., Maxwell R.J., Stødkiled-Jørgensen H., Overgaard J. Combretastatins Novel Vascular Targeting Drugs for Improving Anticancer Therapy. In: Maragoudakis M.E., editor. Angiogenesis. Advances in Experimental Medicine and Biology. Volume 476. Springer; Boston, MA, USA: 2000. pp. 311–323. PubMed DOI
Almalki S.G. The pathophysiology of the cell cycle in cancer and treatment strategies using various cell cycle checkpoint inhibitors. Pathol. Res. Pract. 2023;251:154854. doi: 10.1016/j.prp.2023.154854. PubMed DOI
Chalal M., Delmas D., Meunier P., Latruffe N., Vervandier-Fasseur D. Inhibition of Cancer Derived Cell Lines Proliferation by Synthesized Hydroxylated Stilbenes and New Ferrocenyl-Stilbene Analogs. Comparison with Resveratrol. Molecules. 2014;19:7850–7868. doi: 10.3390/molecules19067850. PubMed DOI PMC
Wang D., Guo H., Yang H., Wang D., Gao P., Wei W. Pterostilbene, an Active Constituent of Blueberries, Suppresses Proliferation Potential of Human Cholangiocarcinoma via Enhancing the Autophagic Flux. Front. Pharmacol. 2019;10:1238. doi: 10.3389/fphar.2019.01238. PubMed DOI PMC
Wawszczyk J., Jesse K., Kapral M. Pterostilbene-Mediated Inhibition of Cell Proliferation and Cell Death Induction in Amelanotic and Melanotic Melanoma. Int. J. Mol. Sci. 2023;24:1115. doi: 10.3390/ijms24021115. PubMed DOI PMC
Karami A., Fakhri S., Kooshki L., Khan H. Polydatin: Pharmacological Mechanisms, Therapeutic Targets, Biological Activities, and Health Benefits. Molecules. 2022;27:6474. doi: 10.3390/molecules27196474. PubMed DOI PMC
Healy E., Dempsey M., Lally C., Ryan M.P. Apoptosis and necrosis: Mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int. 1998;54:1955–1966. doi: 10.1046/j.1523-1755.1998.00202.x. PubMed DOI
Higuchi Y. Chromosomal DNA fragmentation in apoptosis and necrosis induced by oxidative stress. Biochem. Pharmacol. 2003;66:1527–1535. doi: 10.1016/S0006-2952(03)00508-2. PubMed DOI
Mizuta R., Araki S., Furukawa M., Furukawa Y., Ebara S., Shiokawa D., Hayashi K., Tanuma S., Kitamura D. DNase γ Is the Effector Endonuclease for Internucleosomal DNA Fragmentation in Necrosis. PLoS ONE. 2013;8:e80223. doi: 10.1371/journal.pone.0080223. PubMed DOI PMC
Joe A.K., Liu H., Suzui M., Vural M.E., Xiao D., Weinstein I.B. Resveratrol Induces Growth Inhibition, S-phase Arrest, Apoptosis, and Changes in Biomarker Expression in Several Human Cancer Cell Lines. Clin. Cancer Res. 2002;8:893–903. PubMed
Chen Y., Tseng S.H., Lai H.-S., Chen W.J. Resveratrol-induced cellular apoptosis and cell cycle arrest in neuroblastoma cells and antitumor effects on neuroblastoma in mice. Surgery. 2004;136:57–66. doi: 10.1016/j.surg.2004.01.017. PubMed DOI
Kuo P.L., Hsu Y.L. The grape and wine constituent piceatannol inhibits proliferation of human bladder cancer cells via blocking cell cycle progression and inducing Fas/membrane bound Fas-ligand mediated apoptotic pathway. Mol. Nutr. Food Res. 2008;52:408–418. doi: 10.1002/mnfr.200700252. PubMed DOI
Siedlecka-Kroplewska K., Jozwik A., Kaszubowska L., Kowalczyk A., Boguslawski W. Pterostilbene induces cell cycle arrest and apoptosis in MOLT4 human leukemia cells. Folia Histochem. Cytobiol. 2012;50:574–580. doi: 10.5603/FHC.2012.0080. PubMed DOI
Chang G., Xiao W., Xu Z., Yu D., Li B., Zhang Y., Sun X., Xie Y., Chang S., Gao L., et al. Pterostilbene Induces Cell Apoptosis and Cell Cycle Arrest in T-Cell Leukemia/Lymphoma by Suppressing the ERK1/2 Pathway. BioMed Res. Int. 2017;2017:9872073. doi: 10.1155/2017/9872073. PubMed DOI PMC
Kong Y., Chen G., Xu Z., Yang G., Li B., Wu X., Xiao W., Xie B., Hu L., Sun X., et al. Pterostilbene induces apoptosis and cell cycle arrest in diffuse large B-cell lymphoma cells. Sci. Rep. 2016;6:37417. doi: 10.1038/srep37417. PubMed DOI PMC
Pan M.H., Chang Y.H., Badmaev V., Nagabhushanam K., Ho C.T. Pterostilbene induces apoptosis and cell cycle arrest in human gastric carcinoma cells. J. Agric. Food Chem. 2007;55:7777–7785. doi: 10.1021/jf071520h. PubMed DOI
Fulda S. Resveratrol and derivatives for the prevention and treatment of cancer. Drug Discov. Today. 2010;15:757–765. doi: 10.1016/j.drudis.2010.07.005. PubMed DOI
Lepak A., Gutmann A., Kulmer S.T., Nidetzky B. Creating a water-soluble resveratrol-based antioxidant by site-selective enzymatic glucosylation. ChemBioChem. 2015;16:1870–1874. doi: 10.1002/cbic.201500284. PubMed DOI
Shimoda K., Kubota N., Uesugi D., Kobayashi Y., Hamada H., Hamada H. Glycosylation of Stilbene Compounds by Cultured Plant Cells. Molecules. 2020;25:1437. doi: 10.3390/molecules25061437. PubMed DOI PMC
Imtiyaz K., Shafi M., Fakhri K.U., Uroog L., Zeya B., Anwer S.T., Rizvi S.T.A. Polydatin: A natural compound with multifaceted anticancer properties. J. Tradit. Complement. Med. 2024. in press, corrected proof . DOI
Malterud K.E., Farbrot T.L., Huse A.E., Sund R.B. Antioxidant and radical scavenging effects of anthraquinones and anthrones. Pharmacology. 1993;47:77–85. doi: 10.1159/000139846. PubMed DOI
Li X., Wu X., Huang L. Correlation between antioxidant activities and phenolic contents of Radix Angelicae sinensis (Danggui) Molecules. 2009;14:5349–5361. doi: 10.3390/molecules14125349. PubMed DOI PMC
Singh N., Rajini P.S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004;85:611–616. doi: 10.1016/j.foodchem.2003.07.003. DOI
Doyle A., Griffiths J.B., editors. Cell and Tissue Culture: Laboratory Procedures in Biotechnology. John Wiley & Sons; Chichester, UK: 1998. pp. 219–290.
Shapiro H.M. Practical Flow Cytometry. 4th ed. John Wiley & Sons; Hoboken, NJ, USA: 2003. pp. 273–410.
Marin L., Minguela A., Torio A., Moya-Quiles M.R., Muro M., Montes-Ares O., Parrado A., Álvarez-López M.R., Garcia-Alonso A.M. Flow Cytometric Quantification of Apoptosis and Proliferation in Mixed Lymphocyte Culture. Cytom. Part A. 2003;51A:107–118. doi: 10.1002/cyto.a.10007. PubMed DOI
McCarthy D.A. Cell Preparation. In: Macey M.G., editor. Flow Cytometry: Principles and Applications. Humana Press Inc.; Totowa, NJ, USA: 2007. pp. 17–53. DOI
Zimmermann M., Meyer N. Annexin V/7-AAD staining in keratinocytes. In: Stoddart M.J., editor. Mammalian Cell Viability. Methods in Molecular Biology. Volume 740. Humana Press; Totowa, NJ, USA: 2011. pp. 57–63. PubMed DOI
Nechita A., Cotea V., Nechita C.B., Pincu R., Mihai C.T., Colibaba C.L. Study of cytostatic and cytototoxic activity of several polyphenolic extracts obtained from Vitis vinifera. Not. Bot. Horti Agrobot. 2012;40:216–221. doi: 10.15835/nbha4017534. DOI
Otto F. DAPI Staining of Fixed Cells for High-Resolution Flow Cytometry of Nuclear DNA. In: Darzynkiewicz Z., Crissman H., editors. Methods in Cell Biology. Volume 33. Academic Press; Oxford, UK: 1990. pp. 105–110. PubMed DOI
Terrén I., Orrantia A., Vitallé J., Zenarruzabeitia O., Borrego F. CFSE dilution to study human T and NK cell proliferation in vitro. In: Galluzzi L., Rudqvist N.-P., editors. Methods in Enzymology. Volume 631. Academic Press; Cambridge, MA, USA: 2020. pp. 239–255. PubMed DOI