Cytotoxic Stilbenes and Canthinone Alkaloids from Brucea antidysenterica (Simaroubaceae)
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FP7-PEOPLE-2013-IIF, Grant Agreement No. 629482
European Commission
Research Group Linkage funding 2015/2018 to the Sewald/Wansi
Alexander von Humboldt-Stiftung
Project ENOCH (No. CZ.02.1.01/0.0/0.0/16_019/0000868)
Directorate-General for Development and Cooperation - EuropeAid
PubMed
31816856
PubMed Central
PMC6930556
DOI
10.3390/molecules24234412
PII: molecules24234412
Knihovny.cz E-resources
- Keywords
- Brucea antidysenterica, Simaroubaceae, bruceacanthinones A–B, bruceanoside A, cytotoxicity,
- MeSH
- Alkaloids chemistry pharmacology MeSH
- Brucea chemistry MeSH
- A549 Cells MeSH
- PC-3 Cells MeSH
- Antineoplastic Agents, Phytogenic chemistry pharmacology MeSH
- Drugs, Chinese Herbal chemistry pharmacology MeSH
- Humans MeSH
- MCF-7 Cells MeSH
- Molecular Structure MeSH
- Cell Proliferation drug effects MeSH
- Plant Extracts chemistry pharmacology MeSH
- Secondary Metabolism MeSH
- Stilbenes chemistry pharmacology MeSH
- Drug Synergism MeSH
- Cell Survival drug effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Alkaloids MeSH
- canthinone MeSH Browser
- Antineoplastic Agents, Phytogenic MeSH
- Drugs, Chinese Herbal MeSH
- Plant Extracts MeSH
- Stilbenes MeSH
A phytochemical study of the root and bark of Brucea antidysenterica J. F. Mill. (Simaroubaceae) afforded three new compounds, including a stilbene glycoside bruceanoside A (1), and two canthinone alkaloids bruceacanthinones A (3) and B (4), along with ten known secondary metabolites, rhaponticin (2), 1,11-dimethoxycanthin-6-one (5), canthin-6-one (6), 1-methoxycanthin-6-one (7), 2-methoxycanthin-6-one (8), 2-hydroxy-1,11-dimethoxycanthin-6-one (9), β-carboline-1-propionic acid (10), cleomiscosin C (11), cleomiscosin A (12), and hydnocarpin (13). The structures of all the compounds were determined using spectrometric and spectroscopic methods including 1D and 2D NMR, and HRSEIMS. The identities of the known compounds were further confirmed by comparison of their data with those reported in the literature. The root and bark methanolic extracts, the dichloromethane and ethyl acetate soluble fractions, and the isolated compounds (3-13), were assessed for their cytotoxicity against the cancer cell lines A-549, MCF-7, and PC-3. The results suggested that compounds in the extracts might possess a synergic action in their cytotoxicity.
See more in PubMed
Liu J.-H., Jin H.-Z., Zhang W.-D., Yan S.-K., Shen Y.-H. Chemical constituents of plants from the genus Brucea. Chem. Biodiver. 2009;6:57–70. doi: 10.1002/cbdv.200700409. PubMed DOI
Wright C.W., O’Neill M.J., Phillipson J.D., Warhurst D.C. Use of microdilution to assess in vitro antiamoebic activities of Brucea javanica fruits, Simarouba amara stem, and a number of quassinoids. Antimicrob. Agents Chemother. 1988;32:1725–1729. doi: 10.1128/AAC.32.11.1725. PubMed DOI PMC
Lau F.Y., Chui C.H., Gambari R., Kok S.H.L., Kan K.L., Cheng G.M.Y., Wong R.S.M., Teo I.T.N., Cheng C.H., Wan T.S.K., et al. Antiproliferative and apoptosis-inducing activity of Brucea javanica extract on human carcinoma cells. Int. J. Mol. Med. 2005;16:1157–1162. doi: 10.3892/ijmm.16.6.1157. PubMed DOI
Okano M., Fukamiya N., Aratani T., Juichi M., Lee K.H. Antitumor agents, 74. Bruceanol-A and -B, Two new antileukemic quassinoids from Brucea antidysenterica. J. Nat. Prod. 1985;48:972–975. doi: 10.1021/np50042a017. PubMed DOI
Fukamiya N., Okano M., Miyamoto M., Tagahara K., Lee K.H. Antitumor agents, 127. Bruceoside C, a new cytotoxic quassinoid glucoside, and related compounds from Brucea javanica. J. Nat. Prod. 1992;55:468–475. doi: 10.1021/np50082a011. PubMed DOI
Kitagawa I., Mahmud T., Simanjuntak P., Hori K., Uji T., Shibuya H. Indonesian medicinal plants. VIII. Chemical structures of three new triterpenoids, bruceajavanin A, dihydrobruceajavanin A, and bruceajavanin B, and a new alkaloidal glycoside, bruceacanthinoside, from the stems of Brucea javanica (Simaroubaceae) Chem. Pharm. Bull. 1994;42:1416–1421. doi: 10.1248/cpb.42.1416. PubMed DOI
O’Neill M.J., Bray D.H., Boardman P., Chan K.L., Phillipson J.D., Warhurst D.C., Peters W. Plants as sources of antimalarial drugs, Part 4: Activity of Brucea javanica fruits against chloroquine-resistant Plasmodium falciparum in vitro and against Plasmodium berghei in vivo. J. Nat. Prod. 1987;50:41–48. doi: 10.1021/np50049a007. PubMed DOI
Rahman S., Fukamiya N., Okano M., Tagahara K., Lee K.H. Anti-tuberculosis activity of quassinoids. Chem. Pharm. Bull. 1997;45:1527–1529. doi: 10.1248/cpb.45.1527. PubMed DOI
Watt J.M., Breyer-Brandwijk M.G. The Medicinal and Poisonous Plants of Southern and Eastern Africa. 2nd ed. E. and S. Livingstone; London, UK: 1962.
Grace O.M., Fowler D.G. In: Brucea Antidysenterica, Medicinal Plants/Plantes Medicinales. Mill J.F., editor. PROTA; Wageningen, The Netherlands: 2008.
Cuendet M., Pezzuto J.M. Antitumor activity of bruceantin. An old drug with new promise. J. Nat. Prod. 2004;67:269–272. PubMed
Dilnesa A., Mekonon A., Abebe A. Phytochemical screening and antioxidant activity investigations on the crude extracts of Brucea antidysenterica leaves. Int. J. Res. Dev. 2016;1:131–144.
Mekonnen Z., Amuamuta A., Abere Y. Wound healing effect of aqueous extracts of Brucea antidysenterica and Croton marcostachys from Northwest Ethiopia in albino mice. J. Afr. Pharmacol. Ther. 2019;8:14–19.
Kefe A., Giday M., Mamo H., Erko B. Antimalarial properties of crude extracts of seeds of Brucea antidysenterica and leaves of Ocimum lamiifolium. BMC Compl. Altern. Med. 2016;16:118–125. doi: 10.1186/s12906-016-1098-9. PubMed DOI PMC
Kupchan S.M., Britton R.W., Ziegler M.F., Sigel C.W. Bruceantin, a new potent antileukemic simaroubolide from Brucea antidysenterica. J. Org. Chem. 1973;38:178–179. doi: 10.1021/jo00941a049. PubMed DOI
Guo Z., Vangapandu S., Sindelar R.W., Walker L.A., Sindelar R.D. Biologically active quassinoids and their chemistry: potential leads for drug design. Curr. Med. Chem. 2005;12:173–190. doi: 10.2174/0929867053363351. PubMed DOI
Makong Y.S., Fotso G.W., Mouthe G.H., Lenta B., Rennert R., Sewald N., Arnold N., Wansi J.D., Ngadjui B.T. Bruceadysentoside A, a new pregnane glycoside and others secondary metabolites with cytotoxic activity from Brucea antidysenterica JF Mill. (Simaroubaceae) Nat. Prod. Res. 2019:1–7. doi: 10.1080/14786419.2019.1655024. PubMed DOI
Aburjai T.A. Anti-platelet stilbenes from aerial parts of Rheum palaestinum. Phytochemistry. 2000;55:407–410. doi: 10.1016/S0031-9422(00)00341-1. PubMed DOI
Narihiko F., Masayoshi O., Aratani T. Antitumor agents, 79. Cytotoxic antileukemic alkaloids from Brucea antidysenterica. J. Nat. Prod. 1986;49:428–434. PubMed
Ohmoto T., Tanaka R., Nikaido T. Studies on the constituents of Ailanthus altissima Swingle. The alkaloidal constituents. Chem. Pharm. Bull. 1976;24:1532–1536. doi: 10.1248/cpb.24.1532. DOI
Njar V.C., Alao T.O., Okogun J.I., Holland H.L. 2-Methoxycanthin-6-one: A new alkaloid from the stem wood of Quassia amara. Planta Med. 1993;59:259–261. doi: 10.1055/s-2006-959664. PubMed DOI
Harris A., Anderson L.A., Phillipson J.D., Brown R.T. Canthin-6-one alkaloids from Brucea antidysenterica root bark. Planta Med. 1985;51:151–153. doi: 10.1055/s-2007-969432. DOI
Yishan O., Katsuyoshi M., Kazuo K., Taichi O. Alkaloids and quassinoids of Brucea mollis var. tonkinensis. Phytochemistry. 1995;39:911–913.
Ray A.B., Chattopadhyay K.S., Kumar S., Konno C., Kiso Y., Hikino H. Structures of cleomiscisins, coumarinolignoids of Cleome Viscosa seeds. Tetrahedron. 1985;41:209–214. doi: 10.1016/S0040-4020(01)83488-8. DOI
Lee K.-H., Hayashi N., Okano M., Nazaki H., Ju-Ichi M. Antitumor agents, 65. Brusatol and cleomiscosin-A, antileukemic principles from Brucea javanica. J. Nat. Prod. 1984;47:550–551. doi: 10.1021/np50033a030. PubMed DOI
Pan L., Chin Y.-W., Chai H.-B., Ninh T.N., Soejarto D.D., Kinghorn A.D. Bioactivity-guided isolation of cytotoxic constituents of Brucea javanica collected in Vietnam. Bioorg. Med. Chem. 2009;17:2219–2224. doi: 10.1016/j.bmc.2008.10.076. PubMed DOI PMC
Wanjala C.C.W., Majinda R.R.T. A new stilbene glycoside from Elephantorrhiza goetzei. Fitoterapia. 2001;72:649–655. doi: 10.1016/S0367-326X(01)00295-7. PubMed DOI
Fuendjiep V., Wandji J., Tillequin F., Mulholland D.A., Budzikiewicz H., Fomum Z.T., Nyemba A.M., Koch M. Chalconoid and stilbenoid glycosides from Guibourtia tessmanii. Phytochemistry. 2002;60:803–806. doi: 10.1016/S0031-9422(02)00108-5. PubMed DOI
Mahato S.B., Kundu A.P. 13C NMR spectra of pentacyclic triterpenoids-a compilation and some salient features. Phytochemistry. 1994;37:1517–1575. doi: 10.1016/S0031-9422(00)89569-2. DOI
O’Donnell G., Gibbons S. Antibacterial activity of two canthin-6-one alkaloids from Allium neapolitanum. Phytother. Res. 2007;21:653–657. doi: 10.1002/ptr.2136. PubMed DOI
López C., Pastrana M., Ríos A., Cogollo A., Pabón A. Huberine, a new canthin-6-one alkaloid from the bark of Picrolemma huberi. Molecules. 2018;23:934. doi: 10.3390/molecules23040934. PubMed DOI PMC
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Meth. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4. PubMed DOI
Basar N., Oridupa O.A., Ritchie K.J., Nahar L., Osman N.M., Stafford A., Kushiev H., Kan A., Sarker S.D. Comparative cytotoxicity of Glycyrrhiza glabra roots from different geographical origins against immortal human keratinocyte (HaCaT), lung adenocarcinoma (A549) and liver carcinoma (HepG2) cells. Phytother. Res. 2015;29:944–948. doi: 10.1002/ptr.5329. PubMed DOI
Tahsin T., Wansi J.D., Al-Groshi A., Evans A.R., Nahar L., Martin C., Sarker S.D. Cytotoxic properties of the stem bark of Citrus reticulata Blanco (Rutaceae) Phytother. Res. 2017;31:1215–1219. doi: 10.1002/ptr.5842. PubMed DOI
Popescu T., Lupu A.R., Raditoiu V., Purcar V., Teodorescu V.S. On the photocatalytic reduction of MTT tetrazolium salt on the surface of TiO2 nanoparticles: Formazan production kinetics and mechanism. J. Colloid Interface Sci. 2015;457:108–120. doi: 10.1016/j.jcis.2015.07.005. PubMed DOI