Field Use of Protective Bacteriophages against Pectinolytic Bacteria of Potato
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910028
Ministry of Agriculture
PubMed
36985194
PubMed Central
PMC10056506
DOI
10.3390/microorganisms11030620
PII: microorganisms11030620
Knihovny.cz E-zdroje
- Klíčová slova
- Enterobacteriaceae, Limestonevirus, Solanum tuberosum, biological control,
- Publikační typ
- časopisecké články MeSH
The pectinolytic Dickeya solani bacterium is an important pathogen found in potatoes. We conducted laboratory and field experiments mimicking severe and mild Dickeya spp. infection and investigated the application of a mixture of two lytic bacteriophages before and after bacterial infection to protect the plants. Application of the phage solution to tuber disks and wounded tubers did not completely eliminate the infection but reduced the development of soft rot symptoms by 59.5-91.4%, depending on the phage concentration. In the field trial, plants treated with bacteriophages after severe Dickeya infection had 5-33% greater leaf cover and 4-16% greater tuber yield compared to untreated plants. When simulating a mild infection, leaf cover was 11-42% greater, and tuber yield was 25-31% greater compared to untreated plants. We conclude that the phage mixture has the potential to protect potatoes ecologically from D. solani.
Zobrazit více v PubMed
Van der Wolf J.M., Nijhuis E.H., Kowalewska M.J., Saddler G.S., Parkinson N., Elphinstone J.G., Pritchard L., Toth I.K., Lojkowska E., Potrykus M., et al. Dickeya solani sp. nov. a pectinolytic plant-pathogenic bacterium isolated from potato (Solanumtuberosum) Int. J. Syst. Evol. Microbiol. 2014;64:768–774. doi: 10.1099/ijs.0.052944-0. PubMed DOI
Mansfield J., Genin S., Magori S., Citovsky V., Sriariyanum M., Ronald P., Dow M., Verdier V., Beer S.V., Machado M.A., et al. Top 10 plant pathogenic bacteria in molecular plant pathology: Top 10 plant pathogenic bacteria. Mol. Plant Pathol. 2012;13:614–629. doi: 10.1111/j.1364-3703.2012.00804.x. PubMed DOI PMC
Toth I.K., van der Wolf J.M., Saddler G., Lojkowska E., Hélias V., Pirhonen M., Tsror Lahkim L., Elphinstone J.G. Dickeya species: An emerging problem for potato production in Europe: Dickeya spp. on potato in Europe. Plant Pathol. 2011;60:385–399. doi: 10.1111/j.1365-3059.2011.02427.x. DOI
Tsror L., Erlich O., Lebiush S., Hazanovsky M., Zig U., Slawiak M., Grabe G., van der Wolf J.M., van de Haar J.J. Assessment of recent outbreaks of Dickeya sp. (syn. Erwinia chrysanthemi) slow wilt in potato crops in Israel. Eur. J. Plant. Pathol. 2009;123:311–320. doi: 10.1007/s10658-008-9368-0. DOI
Laurila J., Hannukkala A., Nykyri J., Pasanen M., Hélias V., Garlant L., Pirhonen M. Symptoms and yield reduction caused by Dickeya spp. strains isolated from potato and river water in Finland. Eur. J. Plant Pathol. 2010;126:249–262. doi: 10.1007/s10658-009-9537-9. DOI
Beňo F., Horsáková I., Kmoch M., Petrzik K., Krátká G., Ševčík R. Bacteriophages as a strategy to protect potato tubers against Dickeya dianthicola and Pectobacterium carotovorum soft rot. Microorganisms. 2022;10:2369. doi: 10.3390/microorganisms10122369. PubMed DOI PMC
Vreugdenhil D., Bradshaw J., editors. Potato Biology and Biotechnology: Advances and Perspectives. 1st ed. Elsevier; Oxford, UK: San Diego, CA, USA: 2007.
Degefu Y., Potrykus M., Golanowska M., Virtanen E., Lojkowska E. A new clade of Dickeya spp. plays a major role in potato blackleg outbreaks in north Finland: A new clade of Dickeya on potato in Finland. Ann. Appl. Biol. 2013;162:231–241. doi: 10.1111/aab.12020. DOI
Van der Wolf J., Krijger M., Mendes O., Kurm V., Gros J. Natural infections of potato plants grown from minitubers with blackleg-causing soft rot Pectobacteriaceae. Microorganisms. 2022;10:2504. doi: 10.3390/microorganisms10122504. PubMed DOI PMC
Moussa H.B., Claire B., Rochelle-Newall E., Fiorini S., Pédron J., Barny M.-A. The diversity and abundance of soft rot pectobacteriaceae along the Durance River stream in the southeast of France revealed by multiple seasonal surveys. Phytopathology. 2022;112:1676–1685. doi: 10.1094/PHYTO-12-21-0515-R. PubMed DOI
Hugouvieux-Cotte-Pattat N., Brochier-Armanet C., Flandrois J.-P., Reverchon S. Dickeya poaceiphila sp. nov., a plant-pathogenic bacterium isolated from sugar cane (Saccharum officinarum) Int. J. Syst. Evol. Microbiol. 2020;70:4508–4514. doi: 10.1099/ijsem.0.004306. PubMed DOI
Adriaenssens E.M., van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P.-J., De Proft M., Kropinski A.M., Noben J.P., Maes M., Lavigne R. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. PLoS ONE. 2012;7:e33227. doi: 10.1371/journal.pone.0033227. PubMed DOI PMC
Czajkowski R., Ozymko Z., Zwirowski S., Lojkowska E. Complete genome sequence of a broad-host-range lytic Dickeya spp. bacteriophage ΦD5. Arch. Virol. 2014;159:3153–3155. doi: 10.1007/s00705-014-2170-8. PubMed DOI PMC
Ma X., Lofton L., Bamberg J., Swingle B. Identification of resistance to Dickeya dianthicola soft rot in Solanum microdontum. Am. J. Potato Res. 2022;9:58–68. doi: 10.1007/s12230-021-09859-8. DOI
Joshi J.R., Brown K., Charkowski A.O., Heuberger A.L. Protease inhibitors from Solanum chacoense inhibit Pectobacterium virulence by reducing bacterial protease activity and motility. Mol. Plant Microbe. In. 2022;35:825–834. doi: 10.1094/MPMI-04-22-0072-R. PubMed DOI
Austin S., Lojkowska E., Ehlenfeldt M.K., Kelman A., Helgeson J.P. Fertile interspecific somatic hybrids of Solanum: A novel source of resistance to Erwinia soft rot. Phytopathology. 1988;78:1216–1220. doi: 10.1094/Phyto-78-1216. DOI
Lebecka R., Śliwka J., Grupa-Urbańska A., Szajko K., Marzcewski W. QTLs for potato tuber resistance to Dickeya solani are located on chromosomes II and IV. Plant Pathol. 2021;70:1745–1756. doi: 10.1111/ppa.13407. DOI
Krzyzanowska D.M., Maciag T., Siwinska J., Krychowiak M., Jafra S., Czajkowski R. Compatible mixture of bacterial antagonists developed to protect potato tubers from soft rot caused by Pectobacterium spp. and Dickeya spp. Plant Dis. 2019;103:1374–1382. doi: 10.1094/PDIS-10-18-1866-RE. PubMed DOI
Jones J.B., Vallad G.E., Iriarte F.B., Obradović A., Wernsing M.H., Jackson L.E., Balogh B., Hong J.C., Momol M.T. Considerations for using bacteriophages for plant disease control. Bacteriophage. 2012;2:e23857. doi: 10.4161/bact.23857. PubMed DOI PMC
Buttimer C., McAuliffe O., Ross R.P., Hill C., O’Mahony J., Coffey A. Bacteriophages and bacterial plant diseases. Front. Microbiol. 2017;8:34. doi: 10.3389/fmicb.2017.00034. PubMed DOI PMC
Naureen Z., Dautaj A., Anpilogov K., Camilleri G., Dhuli K., Tanzi B., Maltese P.E., Cristofoli F., De Antoni L., Beccari T., et al. Bacteriophages presence in nature and their role in the natural selection of bacterial populations. Acta Biomed. 2020;91:e2020024. doi: 10.23750/abm.v91i13-S.10819. PubMed DOI PMC
Czajkowski R., Ozymko Z., Lojkowska E. Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. biovar 3 (‘D. Solani’) Plant Pathol. 2014;63:758–772. doi: 10.1111/ppa.12157. DOI
Czajkowski R., Ozymko Z., de Jager V., Siwinska J., Smolarska A., Ossowicki A., Narajczyk M., Lojkowska E. Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages ΦPD10.3 and ΦPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS ONE. 2015;10:e0119812. doi: 10.1371/journal.pone.0119812. PubMed DOI PMC
Czajkowski R., Smolarska A., Ozymko Z. The viability of lytic bacteriophage ΦD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants. PLoS ONE. 2017;12:e0183200. doi: 10.1371/journal.pone.0183200. PubMed DOI PMC
Carstens A., Djurhuus A., Kot W., Jacobs-Sera D., Hatfull G., Hansen L. Unlocking the potential of 46 new bacteriophages for biocontrol of Dickeya solani. Viruses. 2018;10:621. doi: 10.3390/v10110621. PubMed DOI PMC
Petrzik K., Vacek J., Brázdová S., Ševčík R., Koloniuk I. Diversity of limestone bacteriophages infecting Dickeya solani isolated in the Czech Republic. Arch. Virol. 2021;166:1171–1175. doi: 10.1007/s00705-020-04926-7. PubMed DOI
Edgar R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–1797. doi: 10.1093/nar/gkh340. PubMed DOI PMC
Katoh K., Misawa K., Kuma K., Miyata T. MAFFT: A novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acid Res. 2002;130:3059–3066. doi: 10.1093/nar/gkf436. PubMed DOI PMC
Martin D.P., Varsani A., Roumagnac P., Botha G., Maslamoney S., Schwab T., Kelz Z., Kumar V., Murrell B. RDP5: A computer program for analyzing recombination in, and removing signals of recombination from, nucleotide sequence datasets. Virus Evol. 2021;7:veaa087. doi: 10.1093/ve/veaa087. PubMed DOI PMC
Day A., Ahn J., Fang X., Salmond G.P.C. Environmental bacteriophages of the emerging enterobacterial phytopathogen, Dickeya solani, show genomic conservation and capacity for horizontal gene transfer between their bacterial hosts. Front. Microbiol. 2017;8:1654. doi: 10.3389/fmicb.2017.01654. PubMed DOI PMC
Jones J.B., Jackson L.E., Balogh B., Obradovic A., Iriarte F.B., Momol M.T. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 2007;45:245–262. doi: 10.1146/annurev.phyto.45.062806.094411. PubMed DOI