Bacteriophages as a Strategy to Protect Potato Tubers against Dickeya dianthicola and Pectobacterium carotovorum Soft Rot
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910028
Ministry of Agriculture of the Czech Republic
PubMed
36557622
PubMed Central
PMC9785987
DOI
10.3390/microorganisms10122369
PII: microorganisms10122369
Knihovny.cz E-zdroje
- Klíčová slova
- Dickeya dianthicola, Pectobacterium carotovorum, phage control, potato tubers, soft rot,
- Publikační typ
- časopisecké články MeSH
The protective effect of bacteriophage suspensions (Ds3CZ + Ds20CZ and PcCB7V + PcCB251) on phytopathogenic bacteria causing soft rot of potato tubers, namely Dickeya dianthicola (D50, D200) and Pectobacterium carotovorum (P87, P224), was observed in ex vivo and in vitro experiments. Ex vivo tests were performed (with air access) on potato slices, on cylindrical cuts from the center of the tubers, and directly in whole potato tubers. In vitro experiments were carried out in a liquid medium using RTS-8 bioreactors, where bacterial growth was monitored as optical density. In particular, the inhibitory effects of phages were confirmed in experiments on potato slices, where suppression of rot development was evident at first glance. Phage treatment against selected bacteria positively affected potato hardness. Hardness of samples treated with bacteria only was statistically significantly reduced (p < 0.05 for D50 and p < 0.001 for D200 and P87). Ex vivo experiments confirmed significant inhibition of P87 symptom development, partial inhibition of D200 and D50 in phage-treated tubers, and no effect was observed for P224. The inhibitory effect of phages against bacteria was not observed in the in vitro experiment.
Zobrazit více v PubMed
Czajkowski R., Pérombelon M.C.M., van Veen J.A., van der Wolf J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011;60:999–1013. doi: 10.1111/j.1365-3059.2011.02470.x. DOI
Charkowski A.O. The Changing Face of Bacterial Soft-Rot Diseases. Annu. Rev. Phytopathol. 2018;56:269–288. doi: 10.1146/annurev-phyto-080417-045906. PubMed DOI
Holtappels D., Fortuna K., Lavigne R., Wagemans J. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr. Opin. Biotechnol. 2021;68:60–71. doi: 10.1016/j.copbio.2020.08.016. PubMed DOI
USAID-Inma . Potato Production: Planting through Harvest. Volume 100 USAID-Inma; Washington, DC, USA: 2011.
de Werra P., Debonneville C., Kellenberger I., Dupuis B. Pathogenicity and Relative Abundance of Dickeya and Pectobacterium Species in Switzerland: An Epidemiological Dichotomy. Microorganisms. 2021;9:2270. doi: 10.3390/microorganisms9112270. PubMed DOI PMC
Charkowski A., Blanco C., Condemine G., Expert D., Franza T., Hayes C., Hugouvieux-Cotte-Pattat N., Lopez Solanilla E., Low D., Moleleki L., et al. The role of secretion systems and small molecules in soft-rot Enterobacteriaceae pathogenicity. Annu. Rev. Phytopathol. 2012;50:425–449. doi: 10.1146/annurev-phyto-081211-173013. PubMed DOI
Miroshnikov K.A., Evseev P.V., Lukianova A.A., Ignatov A.N. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms. 2021;9:1819. doi: 10.3390/microorganisms9091819. PubMed DOI PMC
Dupuis B., Nkuriyingoma P., Van Gijsegem F. Economic impact of Pectobacterium and Dickeya species on potato crops: A review and case study. In: Van Gijsegem F., Toth I., Van der Wolf J., editors. Plant Diseases Caused by Dickeya and Pectobacterium Species. 1st ed. Springer; Cham, Switzerland: 2021. p. 291.
Motyka-Pomagruk A., Zoledowska S., Sledz W., Lojkowska E. The occurrence of bacteria from different species of Pectobacteriaceae on seed potato plantations in Poland. Eur. J. Plant Pathol. 2020;159:309–325. doi: 10.1007/s10658-020-02163-x. DOI
Tsitsigiannis D.I., Antoniou P.P., Tjamos S.E., Paplomatas E.J. Major Diseases of Tomato, Pepper and Eggplant in Greenhouses. Eur. J. Plant Sci. Biotechnol. 2008;2:106–124.
Gould W.A. Potato Production, Processing and Technology. Woodhead Publishing; Sawston, UK: 1999.
Barras F., van Gijsegem F., Chatterjee A.K. Extracellular Enzymes and Pathogenesis of Soft-Rot Erwinia. Annu. Rev. Phytopathol. 1994;32:201–234. doi: 10.1146/annurev.py.32.090194.001221. DOI
Kim H.S., Ma B., Perna N.T., Charkowski A.O. Phylogeny and virulence of naturally occurring type III secretion system-deficient Pectobacterium strains. Appl. Environ. Microbiol. 2009;75:4539–4549. doi: 10.1128/AEM.01336-08. PubMed DOI PMC
Campos H., Ortiz O. The Potato Crop: Its Agricultural, Nutritional and Social Contribution to Humankind. Springer Nature; Berlin, Germany: 2020.
Ozturk M. Bakteriyel yumuşak çürüklük hastalığına neden olan Pectobacterium polaris’in konukçu aralığının belirlenmesi. Mustafa Kemal Üniversitesi Tarım Bilim. Derg. 2022;27:234–240. doi: 10.37908/mkutbd.1064147. DOI
Charkowski A.O. Biology and control of Pectobacterium in potato. Am. J. Potato Res. 2015;92:223–229. doi: 10.1007/s12230-015-9447-7. DOI
Jones J.B., Jackson L.E., Balogh B., Obradovic A., Iriarte F.B., Momol M.T. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 2007;45:245–262. doi: 10.1146/annurev.phyto.45.062806.094411. PubMed DOI
Hajian-Maleki H., Baghaee-Ravari S., Moghaddam M. Efficiency of essential oils against Pectobacterium carotovorum subsp. carotovorum causing potato soft rot and their possible application as coatings in storage. Postharvest Biol. Technol. 2019;156:110928. doi: 10.1016/j.postharvbio.2019.06.002. DOI
Turek C., Stintzing F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013;12:40–53. doi: 10.1111/1541-4337.12006. DOI
Chang Y., Harmon P.F., Treadwell D.D., Carrillo D., Sarkhosh A., Brecht J.K. Biocontrol Potential of Essential Oils in Organic Horticulture Systems: From Farm to Fork. Front. Nutr. 2021;8:805138. doi: 10.3389/fnut.2021.805138. PubMed DOI PMC
Correa A.N.R., Ferreira C.D. Essential oil for the control of fungi, bacteria, yeasts and viruses in food: An overview. Crit. Rev. Food Sci. Nutr. 2022:1–15. doi: 10.1080/10408398.2022.2062588. PubMed DOI
Mackay J.M., Shipton P.J. Heat treatment of seed tubers for control of potato blackleg (Erwinia carotovora subsp. atroseptica) and other diseases. Plant Pathol. 1983;32:385–393. doi: 10.1111/j.1365-3059.1983.tb02852.x. DOI
Choudhary K.K., Dhar D.W. Microbes in Soil and Their Agricultural Prospects. Nova Publishers; Hauppauge, NY, USA: 2015.
Egido J.E., Costa A.R., Aparicio-Maldonado C., Haas P.J., Brouns S.J.J. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol. Rev. 2022;46 doi: 10.1093/femsre/fuab048. PubMed DOI PMC
Rostol J.T., Marraffini L. (Ph)ighting Phages: How Bacteria Resist Their Parasites. Cell Host Microbe. 2019;25:184–194. doi: 10.1016/j.chom.2019.01.009. PubMed DOI PMC
Buttimer C., McAuliffe O., Ross R.P., Hill C., O’Mahony J., Coffey A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017;8:34. doi: 10.3389/fmicb.2017.00034. PubMed DOI PMC
Czajkowski R., Smolarska A., Ozymko Z. The viability of lytic bacteriophage PhiD5 in potato-associated environments and its effect on Dickeya solani in potato (Solanum tuberosum L.) plants. PLoS ONE. 2017;12:e0183200. doi: 10.1371/journal.pone.0183200. PubMed DOI PMC
Adriaenssens E.M., Van Vaerenbergh J., Vandenheuvel D., Dunon V., Ceyssens P.J., De Proft M., Kropinski A.M., Noben J.P., Maes M., Lavigne R. T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by ‘Dickeya solani’. PLoS ONE. 2012;7:e33227. doi: 10.1371/journal.pone.0033227. PubMed DOI PMC
Czajkowski R. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview. FEMS Microbiol. Lett. 2016;363:fnv230. doi: 10.1093/femsle/fnv230. PubMed DOI
Petrzik K., Vacek J., Brazdova S., Sevcik R., Koloniuk I. Diversity of limestone bacteriophages infecting Dickeya solani isolated in the Czech Republic. Arch. Virol. 2021;166:1171–1175. doi: 10.1007/s00705-020-04926-7. PubMed DOI
Petrzik K., Kmoch M., Brazdova S., Sevcik R. Complete genome sequences of novel Berlinvirus and novel Certrevirus lytic for Pectobacterium sp. causing soft rot and black leg disease of potato. Virus Genes. 2021;57:302–305. doi: 10.1007/s11262-021-01838-9. PubMed DOI
Shevell S.K. The Science of Color. 2nd ed. Elsevier Inprint; Amsterdam, The Netherlands: 2003.
Muturi P., Yu J., Maina A.N., Kariuki S., Mwaura F.B., Wei H. Bacteriophages Isolated in China for the Control of Pectobacterium carotovorum Causing Potato Soft Rot in Kenya. Virol. Sin. 2019;34:287–294. doi: 10.1007/s12250-019-00091-7. PubMed DOI PMC
Czajkowski R., Ozymko Z., Lojkowska E. Isolation and characterization of novel soilborne lytic bacteriophages infectingDickeyaspp. biovar 3 (‘D. solani’) Plant Pathol. 2014;63:758–772. doi: 10.1111/ppa.12157. DOI
Hassan E.O. Effect of different bacteriophage isolates on managing potato soft rot caused by Pectobacterium carotovorum subsp. carotovorum. Int. J. Sci. Eng. Res. 2017;8:719–730.
Bugaeva E.N., Voronina M.V., Vasiliev D.M., Lukianova A.A., Landyshev N.N., Ignatov A.N., Miroshnikov K.A. Use of a Specific Phage Cocktail for Soft Rot Control on Ware Potatoes: A Case Study. Viruses. 2021;13:1095. doi: 10.3390/v13061095. PubMed DOI PMC
Zaczek-Moczydlowska M.A., Young G.K., Trudgett J., Plahe C., Fleming C.C., Campbell K., R O.H. Phage cocktail containing Podoviridae and Myoviridae bacteriophages inhibits the growth of Pectobacterium spp. under in vitro and in vivo conditions. PLoS ONE. 2020;15:e0230842. doi: 10.1371/journal.pone.0230842. PubMed DOI PMC
Bartnik P., Lewtak K., Fiolka M., Czaplewska P., Narajczyk M., Czajkowski R. Resistance of Dickeya solani strain IPO 2222 to lytic bacteriophage PhiD5 results in fitness tradeoffs for the bacterium during infection. Sci. Rep. 2022;12:10725. doi: 10.1038/s41598-022-14956-7. PubMed DOI PMC
Soleimani-Delfan A., Etemadifar Z., Emtiazi G., Bouzari M. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages. Braz. J. Microbiol. 2015;46:791–797. doi: 10.1590/S1517-838246320140498. PubMed DOI PMC