Diversity of limestone bacteriophages infecting Dickeya solani isolated in the Czech Republic

. 2021 Apr ; 166 (4) : 1171-1175. [epub] 20210209

Jazyk angličtina Země Rakousko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33559747

Grantová podpora
QK1910028 Ministry of Agriculture of the Czech Republic
RVO60077344 Akademie Věd České Republiky

Odkazy

PubMed 33559747
DOI 10.1007/s00705-020-04926-7
PII: 10.1007/s00705-020-04926-7
Knihovny.cz E-zdroje

Seven novel tailed lytic viruses (Ds3CZ, Ds5CZ, Ds9CZ, Ds16CZ, Ds20CZ, Ds23CZ, Ds25CZ) infecting the bacterium Dickeya solani were isolated in the Czech Republic. Genomes of these viruses are dsDNA, 149,364 to 155,285 bp in length, and the genome arrangement is very similar to that of the type virus Dickeya virus LIMEstone 1. All but the Ds25CZ virus should be regarded as strains of a single species. Most of the sequence differences are due to the presence or absence of homing endonuclease (HE) genes, with 23 HEs found in Ds3CZ, Ds5CZ, and Ds20CZ, 22 in Ds9CZ, 19 in Ds16CZ, 18 in Ds25CZ, and 15 in Ds23CZ.

Zobrazit více v PubMed

Tsror L, Lebiush S, Erlich O, Ben-Daniel B, van der Wolf J (2010) First report of latent infection of Cyperus rotundus caused by a biovar 3 Dickeya sp. (Syn. Erwinia chrysanthemi) in Israel. New Dis Rep 22:14. https://doi.org/10.5197/j.2044-0588.2010.022.014 DOI

CABI Invasive species compendium (2019) https://www.cabi.org/isc/datasheet/120278#todistribution

Khayi S, Blin P, Pédron J, Chong T, Chan K, Moumni M, Hélias V, Gijsegem F, Faure D (2015) Population genomics reveals additive and replacing horizontal gene transfers in the emerging pathogen Dickeya solani. BMC Genom 16:788. https://doi.org/10.1186/s12864-015-1997-z DOI

Parkinson N, Pritchard L, Bryant R, Toth I, Elphinstone J (2015) Epidemiology of Dickeya dianthicola and Dickeya solani in ornamental hosts and potato studied using variable number tandem repeat analysis. Eur J Plant Pathol 141:63–70. https://doi.org/10.1007/s10658-014-0523-5 DOI

Czajkowski R, de Boer WJ, van Veen JA, van der Wolf JM (2012) Studies on the interaction between the biocontrol agent, Serratia plymuthica A30, and blackleg-causing Dickeya sp. (biovar 3) in potato (Solanum tuberosum). Plant Pathol 61:677–688. https://doi.org/10.1111/j.1365-3059.2011.02565.x DOI

Adriaenssens EM, van Vaerenbergh J, van den Heuvel D, Dunon V, Ceyssens PJ, de Proft M, Kropinski AM, Noben JP, Maes M, Lavigne R (2012) T4-related bacteriophage LIMEstone isolates for the control of soft rot on potato caused by 'Dickeya solani’. PLoS ONE 7:e33227. https://doi.org/10.1371/journal.pone.0033227 PubMed DOI PMC

Czajkowski R, Ozymko Z, Zwirowski S, Lojkowska E (2014) Complete genome sequence of a broad-host-range lytic Dickeya spp. bacteriophage phiD5. Arch Virol 159:3153–3155. https://doi.org/10.1007/s00705-014-2170-8 PubMed DOI PMC

Czajkowski R, Ozymko Z, Siwinska J, Ossowicki A, de Jager V, Narajczyk M, Lojkowska E (2015) The complete genome, structural proteome, comparative genomics and phylogenetic analysis of a broad host lytic bacteriophage varphiD3 infecting pectinolytic Dickeya spp. Stand Genomic Sci 10:68. https://doi.org/10.1186/s40793-015-0068-z PubMed DOI PMC

Czajkowski R, Ozymko Z, de Jager V, Siwinska J, Smolarska A, Ossowicki A, Narajczyk M, Lojkowska E (2015) Genomic, proteomic and morphological characterization of two novel broad host lytic bacteriophages PhiPD10.3 and PhiPD23.1 infecting pectinolytic Pectobacterium spp. and Dickeya spp. PLoS ONE 10:e0119812. https://doi.org/10.1371/journal.pone.0119812 PubMed DOI PMC

Kabanova AP, Shneider MM, Korzhenkov AA, Bugaeva EN, Miroshnikov KK, Zdorovenko EL, Kulikov EE, Toschakov SV, Ignatov AN, Knirel YA, Miroshnikov KA (2019) Host specificity of the Dickeya bacteriophage PP35 is directed by a tail spike interaction with bacterial O-antigen, enabling the infection of alternative non-pathogenic bacterial host. Front Microbiol 9:3288. https://doi.org/10.3389/fmicb.2018.03288 PubMed DOI PMC

Czajkowski R, Ozymko Z, Lojkowska E (2014) Isolation and characterization of novel soilborne lytic bacteriophages infecting Dickeya spp. Biovar 3 (“D. solani”). Plant Pathol 63:758–772. https://doi.org/10.1111/ppa.12157 DOI

Aziz RK, Bartels D, Best AA et al (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75 DOI

Kumar S, Stecher G, Tamura K (2016) Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054 PubMed DOI PMC

Edgell DR, Gibb EA, Belfort M (2010) Mobile DNA elements in T4 and related phages. Virol J 7:290. https://doi.org/10.1186/1743-422X-7-290 PubMed DOI PMC

Stoddard BL (2011) Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. Structure 19:7–15. https://doi.org/10.1016/j.str.2010.12.003 PubMed DOI PMC

Taylor GK, Stoddard BL (2012) Structural, functional and evolutionary relationships between homing endonucleases and proteins from their host organisms. Nucleic Acids Res 40:5189–5200. https://doi.org/10.1093/nar/gks226 PubMed DOI PMC

Kropinski AM, Anany H, Kuhn JH, Tolstoy I, Kutter E, Adriaenssens EM (2017) To create a new bacteriophage family, Ackermann viridae, containing two (2) new subfamilies including four (4) genera. ICTV Taxon Hist Limestonevirus. https://doi.org/10.13140/RG.2.2.29173.88800

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...