-
Je něco špatně v tomto záznamu ?
Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms
G. Steinbach, R. Kaňa,
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2002-02-01 do 2022-12-31
Nursing & Allied Health Database (ProQuest)
od 2002-02-01 do 2022-12-31
Health & Medicine (ProQuest)
od 2002-02-01 do 2022-12-31
- MeSH
- konfokální mikroskopie přístrojové vybavení metody MeSH
- laboratorní automatizace přístrojové vybavení metody MeSH
- osvětlení MeSH
- software MeSH
- Synechocystis chemie ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17000295
- 003
- CZ-PrNML
- 005
- 20170118115630.0
- 007
- ta
- 008
- 170103s2016 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1017/S1431927616000556 $2 doi
- 024 7_
- $a 10.1017/S1431927616000556 $2 doi
- 035 __
- $a (PubMed)27050040
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Steinbach, Gábor $u Institute of Microbiology,Academy of Sciences,Centrum Algatech,Novohradska 237 - Opatovicky mlýn,CZ 379 01 Třeboň,Czech Republic.
- 245 10
- $a Automated Microscopy: Macro Language Controlling a Confocal Microscope and its External Illumination: Adaptation for Photosynthetic Organisms / $c G. Steinbach, R. Kaňa,
- 520 9_
- $a Photosynthesis research employs several biophysical methods, including the detection of fluorescence. Even though fluorescence is a key method to detect photosynthetic efficiency, it has not been applied/adapted to single-cell confocal microscopy measurements to examine photosynthetic microorganisms. Experiments with photosynthetic cells may require automation to perform a large number of measurements with different parameters, especially concerning light conditions. However, commercial microscopes support custom protocols (through Time Controller offered by Olympus or Experiment Designer offered by Zeiss) that are often unable to provide special set-ups and connection to external devices (e.g., for irradiation). Our new system combining an Arduino microcontroller with the Cell⊕Finder software was developed for controlling Olympus FV1000 and FV1200 confocal microscopes and the attached hardware modules. Our software/hardware solution offers (1) a text file-based macro language to control the imaging functions of the microscope; (2) programmable control of several external hardware devices (light sources, thermal controllers, actuators) during imaging via the Arduino microcontroller; (3) the Cell⊕Finder software with ergonomic user environment, a fast selection method for the biologically important cells and precise positioning feature that reduces unwanted bleaching of the cells by the scanning laser. Cell⊕Finder can be downloaded from http://www.alga.cz/cellfinder. The system was applied to study changes in fluorescence intensity in Synechocystis sp. PCC6803 cells under long-term illumination. Thus, we were able to describe the kinetics of phycobilisome decoupling. Microscopy data showed that phycobilisome decoupling appears slowly after long-term (>1 h) exposure to high light.
- 650 _2
- $a laboratorní automatizace $x přístrojové vybavení $x metody $7 D057205
- 650 _2
- $a osvětlení $7 D008029
- 650 _2
- $a konfokální mikroskopie $x přístrojové vybavení $x metody $7 D018613
- 650 _2
- $a software $7 D012984
- 650 _2
- $a Synechocystis $x chemie $x ultrastruktura $7 D046939
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kaňa, Radek $u Institute of Microbiology,Academy of Sciences,Centrum Algatech,Novohradska 237 - Opatovicky mlýn,CZ 379 01 Třeboň,Czech Republic.
- 773 0_
- $w MED00005775 $t Microscopy and microanalysis the official journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada $x 1435-8115 $g Roč. 22, č. 2 (2016), s. 258-63
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/27050040 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170103 $b ABA008
- 991 __
- $a 20170118115737 $b ABA008
- 999 __
- $a ok $b bmc $g 1179435 $s 960862
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2016 $b 22 $c 2 $d 258-63 $i 1435-8115 $m Microscopy and microanalysis $n Microsc Microanal $x MED00005775
- LZP __
- $a Pubmed-20170103