Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34834733
PubMed Central
PMC8624474
DOI
10.3390/plants10112370
PII: plants10112370
Knihovny.cz E-zdroje
- Klíčová slova
- E. coli, Polianthes tuberosa, biosynthesis, cytotoxicity, flower, gold, nanoparticles,
- Publikační typ
- časopisecké články MeSH
The developments of green-based metallic nanoparticles (gold) are gaining tremendous interest, having potential applications in health care and diagnosis. Therefore, in the present study, Polianthes tuberosa flower filtered extract was used as a reducing and stabilizing agent to synthesize gold nanoparticles (PtubAuNPs). The PtubAuNPs were extensively characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, and X-ray diffraction. The antibacterial activity of PtubAuNPs was determined by the agar well diffusion method; the PtubAuNPs performed extreme antagonistic activity against the tested pathogens. Furthermore, the cytotoxicity of the PtubAuNPs was evaluated in MCF 7 cells by MTT assay. The PtubAuNPs induced toxicity in MCF 7 cells with the least concentration of 100 µg/mL in a dose-dependent method by inducing apoptosis. Overall, the study manifested that PtubAuNPs are a potent nanomaterial that can be employed as an antimicrobial and anticancer agent.
Biology Department Science and Humanities College Shaqra University Alquwayiyah 19245 Saudi Arabia
Department of Biotechnology Bharathidasan University Tiruchirappalli 620024 India
Department of Biotechnology Karpagam Academy of Higher Education Coimbatore 641021 India
Zobrazit více v PubMed
Azharuddin M., Zhu G.H., Das D., Ozgur E., Uzun L., Turner A.P., Patra H.K. A repertoire of biomedical applications of noble metal nanoparticles. Chem. Commun. 2019;55:6964–6996. doi: 10.1039/C9CC01741K. PubMed DOI
Patil S., Chandrasekaran R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020;18:1–23. doi: 10.1186/s43141-020-00081-3. PubMed DOI PMC
Kim B.H., Hackett M.J., Park J., Hyeon T. Synthesis, characterization, and application of ultrasmall nanoparticles. Chem. Mater. 2014;26:59–71. doi: 10.1021/cm402225z. DOI
Behera A., Mohapatra S.S., Verma D.K. Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences. Apple Academic Press; Cambridge, MA, USA: 2019. Nanomaterials: Fundamental Principle and Applications. DOI
Hu X., Zhang Y., Ding T., Liu J., Zhao H. Multifunctional Gold Nanoparticles: A Novel Nanomaterial for Various Medical Applications and Biological Activities. Front. Bioeng. Biotechnol. 2020;8:990. doi: 10.3389/fbioe.2020.00990. PubMed DOI PMC
Ahmed S., Ikram S. Biosynthesis of gold nanoparticles: A green approach. J. Photochem. Photobiol. B Biol. 2016;161:141–153. doi: 10.1016/j.jphotobiol.2016.04.034. PubMed DOI
Dwivedy A.K., Upadhyay N., Asawa S., Kumar M., Prakash B., Dubey N.K. Nanomaterials in Plants, Algae and Microorganisms. Academic Press; Cambridge, MA, USA: 2019. Therapeutic Potential of Plant-Based Metal Nanoparticles: Present Status and Future Perspectives; pp. 169–196.
Seetharaman P., Chandrasekaran R., Gnanasekar S., Mani I., Sivaperumal S. Biogenic gold nanoparticles synthesized using Crescentia cujete L. and evaluation of their different biological activities. Biocatal. Agric. Biotechnol. 2017;11:75–82. doi: 10.1016/j.bcab.2017.06.004. DOI
Zhang J., Mou L., Jiang X. Surface chemistry of gold nanoparticles for health-related applications. Chem. Sci. 2020;11:923–936. doi: 10.1039/C9SC06497D. PubMed DOI PMC
Graczyk A., Pawlowska R., Jedrzejczyk D., Chworos A. Gold nanoparticles in conjunction with nucleic acids as a modern molecular system for cellular delivery. Molecules. 2020;25:204. doi: 10.3390/molecules25010204. PubMed DOI PMC
Vines J.B., Yoon J.H., Ryu N.E., Lim D.J., Park H. Gold nanoparticles for photothermal cancer therapy. Front. Chem. 2019;7:167. doi: 10.3389/fchem.2019.00167. PubMed DOI PMC
Lee J.H., Cho H.Y., Choi H.K., Lee J.Y., Choi J.W. Application of gold nanoparticle to plasmonic biosensors. Int. J. Mol. Sci. 2018;19:2021. doi: 10.3390/ijms19072021. PubMed DOI PMC
Huss E., Bar Yosef K., Zaccai M. Humans’ Relationship to Flowers as an Example of the Multiple Components of Embodied Aesthetics. Behav. Sci. 2018;8:32. doi: 10.3390/bs8030032. PubMed DOI PMC
Kumar H., Bhardwaj K., Kuča K., Kalia A., Nepovimova E., Verma R., Kumar D. Flower-based green synthesis of metallic nanoparticles: Applications beyond fragrance. Nanomaterials. 2020;10:766. doi: 10.3390/nano10040766. PubMed DOI PMC
Maiti S., Moon U.R., Bera P., Samanta T., Mitra A. The in vitro antioxidant capacities of Polianthes tuberosa L. flower extracts. Acta Physiol. Plant. 2014;36:2597–2605. doi: 10.1007/s11738-014-1630-9. DOI
Chandrasekaran R., Yadav S.A., Sivaperumal S. Phytosynthesis and characterization of copper oxide nanoparticles using the aqueous extract of Beta vulgaris L and evaluation of their antibacterial and anticancer activities. J. Clust. Sci. 2020;31:221–230. doi: 10.1007/s10876-019-01640-6. DOI
Seetharaman P.K., Chandrasekaran R., Periakaruppan R., Gnanasekar S., Sivaperumal S., Abd-Elsalam K.A., Valis M., Kuca K. Functional Attributes of Myco-Synthesized Silver Nanoparticles from Endophytic Fungi: A New Implication in Biomedical Applications. Biology. 2021;10:473. doi: 10.3390/biology10060473. PubMed DOI PMC
Zhang D., Ma X.L., Gu Y., Huang H., Zhang G.W. Green synthesis of metallic nanoparticles and their potential applications to treat cancer. Front. Chem. 2020;8:799. doi: 10.3389/fchem.2020.00799. PubMed DOI PMC
Venkatachalam M., Govindaraju K., Sadiq A.M., Tamilselvan S., Kumar V.G., Singaravelu G. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;116:331–338. doi: 10.1016/j.saa.2013.07.038. PubMed DOI
Andeani J.K., Kazemi H., Mohsenzadeh S., Safavi A. Biosynthesis of gold nanoparticles using dried flowers extract of Achillea wilhelmsii plant. Dig. J. Nanomater. Biostruct. 2011;6:1011–1017.
Ghosh S., Patil S., Ahire M., Kitture R., Gurav D.D., Jabgunde A.M., Kale S., Pardesi K., Shinde V., Bellare J., et al. Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential. J. Nanobiotechnol. 2012;10:17. doi: 10.1186/1477-3155-10-17. PubMed DOI PMC
Das R.K., Gogoi N., Bora U. Green synthesis of gold nanoparticles using Nyctanthes arbortristis flower extract. Bioprocess Biosyst. Eng. 2011;34:615–619. doi: 10.1007/s00449-010-0510-y. PubMed DOI
Mata R., Bhaskaran A., Sadras S.R. Green-synthesized gold nanoparticles from Plumeria alba flower extract to augment catalytic degradation of organic dyes and inhibit bacterial growth. Particuology. 2016;24:78–86. doi: 10.1016/j.partic.2014.12.014. DOI
Lee Y.J., Song K., Cha S.H., Cho S., Kim Y.S., Park Y. Sesquiterpenoids from Tussilago farfara flower bud extract for the eco-friendly synthesis of silver and gold nanoparticles possessing antibacterial and anticancer activities. Nanomaterials. 2019;9:819. doi: 10.3390/nano9060819. PubMed DOI PMC
Nayan V., Onteru S.K., Singh D. Mangifera indica flower extract mediated biogenic green gold nanoparticles: Efficient nanocatalyst for reduction of 4-nitrophenol. Environ. Prog. Sustain. Energy. 2018;37:283–294. doi: 10.1002/ep.12669. DOI
Zangeneh M.M., Zangeneh A. Novel green synthesis of Hibiscus sabdariffa flower extract conjugated gold nanoparticles with excellent anti-acute myeloid leukemia effect in comparison to daunorubicin in a leukemic rodent model. Appl. Organomet. Chem. 2020;34:e5271. doi: 10.1002/aoc.5271. DOI
Nagaraj B., Divya T.K., Krishnamurthy N.B., Dinesh R., Negrila C.C., Predoi D. Phytosynthesis of gold nanoparticles using Caesalpinia pulcherrima (peacock flower) flower extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostruct. (DJNB) 2012;7:899–905.
Geetha R., Ashokkumar T., Tamilselvan S., Govindaraju K., Sadiq M., Singaravelu G. Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nanotechnol. 2013;4:91–98. doi: 10.1007/s12645-013-0040-9. PubMed DOI PMC
Mapala K., Pattabi M. Mimosa pudica flower extract mediated green synthesis of gold nanoparticles. NanoWorld J. 2017;3:44–50. doi: 10.17756/nwj.2017-045. DOI
Vankar P.S., Bajpai D. Preparation of gold nanoparticles from Mirabilis jalapa flowers. Indian J. Biochem. Biophys. 2010;47:157–160. PubMed
Valsalam S., Agastian P., Esmail G.A., Ghilan AK M., Al-Dhabi N.A., Arasu M.V. Biosynthesis of silver and gold nanoparticles using Musa acuminata colla flower and its pharmaceutical activity against bacteria and anticancer efficacy. J. Photochem. Photobiol. B Biol. 2019;201:111670. doi: 10.1016/j.jphotobiol.2019.111670. PubMed DOI
Balamurugan M., Kaushik S., Saravanan S. Green synthesis of gold nanoparticles by using Peltophorum pterocarpum flower extracts. Nano Biomed. Eng. 2016;8:213–218. doi: 10.5101/nbe.v8i4.p213-218. DOI
Nagaraj B., Malakar B., Divya T.K., Krishnamurthy N., Liny P., Dinesh R., Iconaru S., Ciobanu C. Synthesis of plant mediated gold nanoparticles using flower extracts of Carthamus tinctorius L. (safflower) and evaluation of their biological activities. Dig. J. Nanomater. Biostruct. 2012;7:1289–1296.
Nagajyothi P.C., Lee S.E., An M., Lee K.D. Green synthesis of silver and gold nanoparticles using Lonicera japonica flower extract. Bull. Korean Chem. Soc. 2012;33:2609–2612. doi: 10.5012/bkcs.2012.33.8.2609. DOI
Attar A., Yapaoz M.A. Biomimetic synthesis, characterization and antibacterial efficacy of ZnO and Au nanoparticles using echinacea flower extract precursor. Mater. Res. Express. 2018;5:055403. doi: 10.1088/2053-1591/aac05f. DOI
Nasrollahzadeh M., Sajadi S.M. Preparation of Au nanoparticles by Anthemis xylopoda flowers aqueous extract and their application for alkyne/aldehyde/amine A 3-type coupling reactions. RSC Adv. 2015;5:46240–46246. doi: 10.1039/C5RA08927A. DOI
Liny P., Divya T.K., Malakar B., Nagaraj B., Krishnamurthy N.B., Dinesh R. Preparation of gold nanoparticles from Helianthus annuus (sun flower) flowers and evaluation of their antimicrobial activities. Int. J. Pharma Bio Sci. 2012;3:439–446.
Jha A.K., Prasad K. Rose (Rosa sp.) petals assisted green synthesis of gold nanoparticles. J. Bionanoscience. 2013;7:245–250. doi: 10.1166/jbns.2013.1139. DOI
Rajathi FA A., Arumugam R., Saravanan S., Anantharaman P. Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. J. Photochem. Photobiol. B Biol. 2014;135:75–80. doi: 10.1016/j.jphotobiol.2014.03.016. PubMed DOI
Coronado E.A., Encina E.R., Stefani F.D. Optical properties of metallic nanoparticles: Manipulating light, heat and forces at the nanoscale. Nanoscale. 2011;3:4042–4059. doi: 10.1039/c1nr10788g. PubMed DOI
Yang B., Qi F., Tan J., Yu T., Qu C. Study of green synthesis of ultrasmall gold nanoparticles using citrus sinensis peel. Appl. Sci. 2019;9:2423. doi: 10.3390/app9122423. DOI
Botteon C.E.A., Silva L.B., Ccana-Ccapatinta G.V., Silva T.S., Ambrosio S.R., Veneziani R.C.S., Bastos J.K., Marcato P.D. Biosynthesis and characterization of gold nanoparticles using Brazilian red propolis and evaluation of its antimicrobial and anticancer activities. Sci. Rep. 2021;11:1974. doi: 10.1038/s41598-021-81281-w. PubMed DOI PMC
Slavin Y.N., Asnis J., Häfeli U.O., Bach H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017;15:65. doi: 10.1186/s12951-017-0308-z. PubMed DOI PMC
Gu X., Xu Z., Gu L., Xu H., Han F., Chen B., Pan X. Preparation and antibacterial properties of gold nanoparticles: A review. Environ. Chem. Lett. 2021;19:167–187. doi: 10.1007/s10311-020-01071-0. DOI
Wang D. Vancomycin-hybrid bimetallic Au/Ag composite nanoparticles: Preparation of the nanoparticles and characterization of the antibacterial activity. New J. Chem. 2017;41:5276–5279.
Kajani A.A., Bordbar A.K., Esfahani SH Z., Razmjou A. Gold nanoparticles as potent anticancer agent: Green synthesis, characterization, and in vitro study. RSC Adv. 2016;6:63973–63983. doi: 10.1039/C6RA09050H. DOI
Liu R., Pei Q., Shou T., Zhang W., Hu J., Li W. Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. Int. J. Nanomed. 2019;14:4091. doi: 10.2147/IJN.S203222. PubMed DOI PMC