Functional Attributes of Myco-Synthesized Silver Nanoparticles from Endophytic Fungi: A New Implication in Biomedical Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UHK VT2019-2012
The Ministry of Health of the Czech Republic
PROGRES Q40
The Charles University in Prague, Czech Republic
PubMed
34071886
PubMed Central
PMC8228282
DOI
10.3390/biology10060473
PII: biology10060473
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial activity, endophytic fungi, silver nanoparticles,
- Publikační typ
- časopisecké články MeSH
To develop a benign nanomaterial from biogenic sources, we have attempted to formulate and fabricate silver nanoparticles synthesized from the culture filtrate of an endophytic fungus Penicillium oxalicum strain LA-1 (PoAgNPs). The synthesized PoAgNPs were exclusively characterized through UV-vis absorption spectroscopy, Fourier Transform Infra-Red spectroscopy (FT-IR), X-ray powder diffraction (XRD), and Transmission Electron Microscopy (TEM) with energy dispersive X-ray spectroscopy (EDX). The synthesized nanoparticles showed strong absorbance around 430 nm with surface plasmon resonance (SPR) and exhibited a face-centered cubic crystalline nature in XRD analysis. Proteins presented in the culture filtrate acted as reducing, capping, and stabilization agents to form PoAgNPs. TEM analysis revealed the generation of polydispersed spherical PoAgNPs with an average size of 52.26 nm. The PoAgNPs showed excellent antibacterial activity against bacterial pathogens. The PoAgNPs induced a dose-dependent cytotoxic activity against human adenocarcinoma breast cancer cell lines (MDA-MB-231), and apoptotic morphological changes were observed by dual staining. Additionally, PoAgNPs demonstrated better larvicidal activity against the larvae of Culex quinquefasciatus. Moreover, the hemolytic test indicated that the as-synthesized PoAgNPs are a safe and biocompatible nanomaterial with versatile bio-applications.
Department of Biotechnology Bharathidasan University Tiruchirappalli 620024 India
Plant Pathology Research Institute Agricultural Research Center Giza 12619 Egypt
School of Materials and Energy Southwest University Chongqing 621010 China
Zobrazit více v PubMed
Meera R. Nanostructures and their applications. Recent Res. Sci. Technol. 2012;4:14–19.
Sekhon B. Nanotechnology in agri-food production: An overview. Nanotechnol. Sci. Appl. 2014;7:31–53. doi: 10.2147/NSA.S39406. PubMed DOI PMC
Ejad R.M., Karimi S., Iravani S., Varma R.S. Plant-derived nanostructures: Types and applications. Green Chem. 2016;18:20–52.
Marassi V., Di Cristo L., Smith S., Ortelli S., Blosi M., Costa A.L., Reschiglian P., Volkov Y., Prina-Mello A. Silver nanoparticles as a medical device in healthcare settings: A five-step approach for candidate screening of coating agents. R. Soc. Open Sci. 2018;5:171113. doi: 10.1098/rsos.171113. PubMed DOI PMC
Ferlay J., Colombet M., Soerjomataram I., Mathers C., Parkin D.M., Pineros M., Znaor A., Bray F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer. 2019;144:1941–1953. doi: 10.1002/ijc.31937. PubMed DOI
Curigliano G., Criscitiello C. Successes and limitations of targeted cancer therapy in breast cancer. Prog. Tumor Res. 2014;41:15–35. PubMed
Kumari P., Ghosh B., Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 2016;24:179–191. doi: 10.3109/1061186X.2015.1051049. PubMed DOI
Mayo Clinic Chemotherapy for Breast Cancer—Mayo Clinic. [(accessed on 11 May 2019)];2018 Available online: https://www.mayoclinic.org/tests-procedures/chemotherapy-for-breast-cancer/about/pac-20384931.
Tang X., Cai S., Zhang R., Liu P., Chen H., Zheng Y., Sun L. Paclitaxel-loaded nanoparticles of star-shaped cholic ac-id-core PLA-TPGS copolymer for breast cancer treatment. Nanoscale Res. Lett. 2013;8:420. doi: 10.1186/1556-276X-8-420. PubMed DOI PMC
Sonawnae A., Jena P., Mohanty S., Mallick R., Jacob B. Toxicity and antibacterial assessment of chitosan-coated silver nanoparticles on human pathogens and macrophage cells. Int. J. Nanomed. 2012;7:1805–1818. doi: 10.2147/IJN.S28077. PubMed DOI PMC
Zhang L., Gu F.X., Chan J.M., Wang A.Z., Langer R.S., Farokhzad O.C. Nanoparticles in medicine: Therapeutic applications and developments. Clin. Pharmacol. Ther. 2008;83:761–769. doi: 10.1038/sj.clpt.6100400. PubMed DOI
Khan I., Saeed K., Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019;12:908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI
Iravani S., Korbekandi H., Mirmohammadi S., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2015;9:385–406. PubMed PMC
El-Nour K.M.A., Eftaiha A., Al-Warthan A., Ammar R.A. Synthesis and applications of silver nanoparticles. Arab. J. Chem. 2010;3:135–140. doi: 10.1016/j.arabjc.2010.04.008. DOI
Li X., Xu H., Chen Z.-S., Chen G. Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J. Nanomater. 2011;2011:270974. doi: 10.1155/2011/270974. DOI
Durán N., Marcato P.D., Alves O.L., De Souza G.I.H., Esposito E. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnol. 2005;3:8. doi: 10.1186/1477-3155-3-8. PubMed DOI PMC
Moghaddam A.B., Namvar F., Moniri M., Tahir P.M., Azizi S., Mohamad R. Nanoparticles Biosynthesized by Fungi and Yeast: A Review of Their Preparation, Properties, and Medical Applications. Molecules. 2015;20:16540–16565. doi: 10.3390/molecules200916540. PubMed DOI PMC
Strobel G., Daisy B., Castillo U., Harper J. Natural Products from Endophytic Microorganisms. J. Nat. Prod. 2004;67:257–268. doi: 10.1021/np030397v. PubMed DOI
Aly A.H., Debbab A., Kjer J., Proksch P. Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products. Fungal Divers. 2010;41:1–16. doi: 10.1007/s13225-010-0034-4. DOI
Prabukumar S., Sathishkumar G., Rajkuberan C., Gobinath C., Asad S., Hodhod M.S., Fuad A., Sivaramakrishnan S. Isolation of limonoid compound (Hamisonine) from endophytic fungi Penicillium oxalicum LA-1 (KX622790) of Limonia acidissima L. for its larvicidal efficacy against LF vector, Culex quinquefasciatus (Diptera: Culicidae) Environ. Sci. Pollut. Res. 2018;24:21272–21282. PubMed
Rajkuberan C., Sudha K., Sathishkumar G., Sivaramakrishnan S. Antibacterial and cytotoxic potential of silver nanopar-ticles synthesized using latex of Calotropis gigantea L. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;136:924–930. doi: 10.1016/j.saa.2014.09.115. PubMed DOI
Dong Y., Yang Y., Wei Y., Gao Y., Jiang W., Wang G., Wang D. Facile synthetic nano-curcumin encapsulated Bio-fabricated nanoparticles induces ROS-mediated apoptosis and migration blocking of human lung cancer cells. Process. Biochem. 2020;95:91–98. doi: 10.1016/j.procbio.2020.05.011. DOI
Priyadarshini S., Sonsudin F., Mainal A., Yahya R., Gopinath V., Vadivelu J., Alarjani K.M., Al Farraj D.A., Yehia H.M. Phytosynthesis of biohybrid nano-silver anchors enhanced size dependent photocatalytic, antibacterial, anticancer properties and cytocompatibility. Process. Biochem. 2021;101:59–71. doi: 10.1016/j.procbio.2020.11.008. DOI
Wiegand I., Hilpert K., Hancock R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concen-tration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008;3:163–175. doi: 10.1038/nprot.2007.521. PubMed DOI
Manikandan R., Anjali R., Beulaja M., Prabhu N.M., Koodalingam A., Saiprasad G., Chitra P., Arumugam M. Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelli-formis. Process Biochem. 2019;79:135–141. doi: 10.1016/j.procbio.2019.01.013. DOI
Rajkuberan C., Prabukumar S., Muthukumar K., Sathishkumar G., Sivaramakrishnan S. Carica papaya (Papaya) latex: A new paradigm to combat against dengue and filariasis vectors Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae) 3 Biotech. 2018;8:83. PubMed PMC
Porras-Alfaro A., Bayman P. Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annu. Rev. Phytopathol. 2011;49:291–315. doi: 10.1146/annurev-phyto-080508-081831. PubMed DOI
Kiran G.S., Priyadharsini S., Sajayan A., Ravindran A., Selvin J. An antibiotic agent pyrrolo[1,2-a]pyrazine-1,4-dione,hexahydro isolated from a marine bacteria Bacillus tequilensis MSI45 effectively controls multi-drug resistant Staphylococcus aureus. RSC Adv. 2018;8:17837–17846. doi: 10.1039/C8RA00820E. PubMed DOI PMC
Sheoran N., Nadakkakath A.V., Munjal V., Kundu A., Subaharan K., Venugopal V., Rajamma S., Eapen S.J., Kumar A. Genetic analysis of plant endophytic Pseudomonas putida BP25 and chemo-profiling of its antimicrobial volatile organic compounds. Microbiol. Res. 2015;173:66–78. doi: 10.1016/j.micres.2015.02.001. PubMed DOI
Singh D., Rathod V., Ninganagouda S., Herimath J., Kulkarni P. Optimization and Characterization of Silver Nanoparticle by Endophytic Fungi Penicillium sp. Isolated from Curcuma longa (Turmeric) and Application Studies against MDR E. coli and S. aureus. Bioinorg. Chem. Appl. 2014;2014:408021. doi: 10.1155/2014/408021. PubMed DOI PMC
Amendola V., Bakr O.M., Stellacci F. A Study of the Surface Plasmon Resonance of Silver Nanoparticles by the Discrete Dipole Approximation Method: Effect of Shape, Size, Structure, and Assembly. Plasmonics. 2010;5:85–97. doi: 10.1007/s11468-009-9120-4. DOI
Netala V.R., Kotakadi V.S., Bobbu P., Gaddam S.A., Tartte V. Endophytic fungal isolate mediated biosynthesis of silver nanoparticles and their free radical scavenging activity and anti-microbial studies. 3 Biotech. 2016;6:132. doi: 10.1007/s13205-016-0433-7. PubMed DOI PMC
Qian Y., Yu H., He D., Yang H., Wang W., Wan X., Wang L. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst. Eng. 2013;36:1613–1619. doi: 10.1007/s00449-013-0937-z. PubMed DOI
Jain S., Mehata M.S. Medicinal Plant Leaf Extract and Pure Flavonoid Mediated Green Synthesis of Silver Nanoparticles and their Enhanced Antibacterial Property. Sci. Rep. 2017;7:15867. doi: 10.1038/s41598-017-15724-8. PubMed DOI PMC
Litvin V.A., Minaev B.F. Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;108:115–122. doi: 10.1016/j.saa.2013.01.049. PubMed DOI
Jaidev L.R., Narasimha G. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B Biointerfaces. 2010;81:430–433. doi: 10.1016/j.colsurfb.2010.07.033. PubMed DOI
El-Rafie M., Shaheen T., Mohamed A., Hebeish A. Bio-synthesis and applications of silver nanoparticles onto cotton fabrics. Carbohydr. Polym. 2012;90:915–920. doi: 10.1016/j.carbpol.2012.06.020. PubMed DOI
Syed A., Saraswati S., Kundu G.C., Ahmad A. Biological synthesis of silver nanoparticles using the fungus Humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2013;114:144–147. doi: 10.1016/j.saa.2013.05.030. PubMed DOI
Singh T., Jyoti K., Patnaik A., Singh A., Chauhan R., Chandel S.S. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Raphanus sativus. J. Genet. Eng. Biotechnol. 2017;15:31–39. doi: 10.1016/j.jgeb.2017.04.005. PubMed DOI PMC
Masum M.I., Siddiqa M.M., Ali K.A., Zhang Y., Abdallah Y., Ibrahim E., Qiu W., Yan C., Li B. Biogenic Synthesis of Silver Nanoparticles Using Phyllanthus emblica Fruit Extract and Its Inhibitory Action Against the Pathogen Acidovorax oryzae Strain RS-2 of Rice Bacterial Brown Stripe. Front. Microbiol. 2019;10:820. doi: 10.3389/fmicb.2019.00820. PubMed DOI PMC
Ashokraja C., Sakar M., Balakumar S. A perspective on the hemolytic activity of chemical and green-synthesized silver and silver oxide nanoparticles. Mater. Res. Express. 2017;4:105406. doi: 10.1088/2053-1591/aa90f2. DOI
Tang S., Zheng J. Antibacterial Activity of Silver Nanoparticles: Structural Effects. Adv. Healthc. Mater. 2018;7:1701503. doi: 10.1002/adhm.201701503. PubMed DOI
Rai M.K., Deshmukh S.D., Ingle A.P., Gade A.K. Silver nanoparticles: The powerful nano weapon against multi-drug-resistant bacteria. J. Appl. Microbiol. 2012;112:841–852. doi: 10.1111/j.1365-2672.2012.05253.x. PubMed DOI
Ruden S., Hilpert K., Berditsch M., Wadhwani P., Ulrich A.S. Synergistic Interaction between Silver Nanoparticles and Membrane-Permeabilizing Antimicrobial Peptides. Antimicrob. Agents Chemother. 2009;53:3538–3540. doi: 10.1128/AAC.01106-08. PubMed DOI PMC
Gnanasekar S., Murugaraj J., Dhivyabharathi B., Krishnamoorthy V., Jha P.K., Seetharaman P., Sivaperumal S. Anti-bacterial and cytotoxicity effects of biogenic palladium nanoparticles synthesized using fruit extract of Couroupita guianensis Aubl. J. Appl. Biomed. 2018;16:59–65. doi: 10.1016/j.jab.2017.10.001. DOI
Benelli G., Caselli A., Canale A. Nanoparticles for mosquito control: Challenges and constraints. J. King Saud Univ. Sci. 2017;29:424–435. doi: 10.1016/j.jksus.2016.08.006. DOI
Golubeva O.Y., Shamova O.V., Orlov D.S., Pazina T.Y., Boldina A.S., Kokryakov V.N. Study of antimicrobial and he-molytic activities of silver nanoparticles prepared by chemical reduction. Glass Phys. Chem. 2010;36:628–634. doi: 10.1134/S1087659610050135. DOI
Gurunathan S., Jegadeesh R., Sri N.A.M., Priscilla A.J., Sabaratnam V. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: A potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 2013;8:4399–4413. PubMed PMC
Krishnaraj C., Muthukumaran P., Ramachandran R., Balakumaran M., Kalaichelvan P. Acalypha indica Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol. Rep. 2014;4:42–49. doi: 10.1016/j.btre.2014.08.002. PubMed DOI PMC
Patil S., Chandrasekaran R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020;18:67. doi: 10.1186/s43141-020-00081-3. PubMed DOI PMC
Prabakaran K., Ragavendran C., Natarajan D. Mycosynthesis of silver nanoparticles from Beauveria bassiana and its larvi-cidal, antibacterial, and cytotoxic effect on human cervical cancer (HeLa) cells. RSC Adv. 2016;6:44972–44986. doi: 10.1039/C6RA08593H. DOI
Chen L.Q., Fang L., Ling J., Ding C.Z., Kang B., Huang C.Z. Nanotoxicity of Silver Nanoparticles to Red Blood Cells: Size Dependent Adsorption, Uptake, and Hemolytic Activity. Chem. Res. Toxicol. 2015;28:501–509. doi: 10.1021/tx500479m. PubMed DOI
Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract