Visible beyond Violet: How Butterflies Manage Ultraviolet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35323542
PubMed Central
PMC8955501
DOI
10.3390/insects13030242
PII: insects13030242
Knihovny.cz E-zdroje
- Klíčová slova
- UV, communication, lepidoptera, mating, reproduction,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Ultraviolet (UV) means 'beyond violet' (from Latin 'ultra', meaning 'beyond'), whereby violet is the colour with the highest frequencies in the 'visible' light spectrum. By 'visible' we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied's revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)-a feature often neglected in intra- and interspecific communication studies-mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.
Zobrazit více v PubMed
Silberglied R.E., Taylor J., Orley R. Ultraviolet reflection and its behavioral role in the courtship of the sulphur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae) Behav. Ecol. Sociobiol. 1978;3:203–243. doi: 10.1007/BF00296311. DOI
Lutz F.E. “Invisible” colors of flowers and butterflies. Nat. Hist. 1933;33:565–567.
Crane J. Spectral reflectance characteristics of butterflies (Lepidoptera) from Trinidad, BWI. Zoologica. 1954;39:85–115.
Meyer-Rochow V.B., Järvilehto M. Ultraviolet Colours in Pieris napi from Northern and Southern Finland: Arctic Females Are the Brightest! Naturwissenschaften. 1997;84:165–168. doi: 10.1007/s001140050373. DOI
Meyer-Rochow V.B. Flugelfarben, wie sie die Falter sehen—A study of UV-and other colour patterns in Lepidoptera. Annot. Zool. Jpn. 1983;56:85–99.
Lyytinen A., Lindström L., Mappes J. Ultraviolet reflection and predation risk in diurnal and nocturnal Lepidoptera. Behav. Ecol. 2004;15:982–987. doi: 10.1093/beheco/arh102. DOI
Bowden W.B., Watt S.R. Chemical phenotypes of pteridine colour forms in Pieris butterflies. Nature. 1966;210:304–306.
Silberglied R.E., Taylor O.R. Ultraviolet differences between the sulphur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism. Nature. 1973;241:406–408. doi: 10.1038/241406a0. PubMed DOI
Nekrutenko Y.P. ’Gynandromorphic Effect‘ and the Optical Nature of Hidden Wing-pattern in Gonepteryx rhamni L. (Lepidoptera, Pieridae) Nature. 1965;205:417. doi: 10.1038/205417a0. DOI
Allyn A.C., Downey J.C. Observations on male U-V reflectance and scale ultrastructure in Phoebis (Pieridae) Bull. Allyn Mus. 1977;42:1–20.
Kemp D.J. Heightened phenotypic variation and age-based fading of ultraviolet butterfly wing coloration. Evol. Ecol. Res. 2006;8:515–527.
Kemp D.J., Macedonia J.M. Structural ultraviolet ornamentation in the butterfly Hypolimnas bolina L. (Nymphalidae): Visual, morphological and ecological properties. Aust. J. Zool. 2006;54:235–244. doi: 10.1071/ZO06005. DOI
Dushkina N., Erten S., Lakhtakia A. Coloration and Structure of the Wings of Chorinea sylphina Bates. J. Lepid. Soc. 2017;71:1–11.
Imafuku M., Hirose Y., Takeuchi T. Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): Ultraviolet reflection by males. Zool. Sci. 2002;19:175–183. doi: 10.2108/zsj.19.175. PubMed DOI
Imafuku M. Variation in UV light reflected from the wings of Favonius and Quercusia butterflies. Entomol. Sci. 2008;11:75–80. doi: 10.1111/j.1479-8298.2007.00247.x. DOI
Huxley J. The basis of structural colour variation in two species of Papilio. J. Entomol. Ser. A Gen. Entomol. 1975;50:9–22. doi: 10.1111/j.1365-3032.1975.tb00087.x. DOI
Eguchi E., Meyer-Rochow V.B. Ultraviolet photography of forty-three species of Lepidoptera representing ten families. Annot. Zool. Jpn. 1983;56:10–18.
Vukusic P., Sambles J.R. Photonic structures in biology. Nature. 2003;424:852. doi: 10.1038/nature01941. PubMed DOI
Wilts B.D., Pirih P., Stavenga D.G. Spectral reflectance properties of iridescent pierid butterfly wings. J. Comp. Physiol. A. 2011;197:693–702. doi: 10.1007/s00359-011-0632-y. PubMed DOI PMC
Ghiradella H. Advances in Insect Physiology. Volume 38. Elsevier; Amsterdam, The Netherlands: 2010. Insect cuticular surface modifications: Scales and other structural formations; pp. 135–180.
Ghiradella H., Aneshansley D., Eisner T., Silberglied R.E., Hinton H.E. Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales. Science. 1972;178:1214–1217. doi: 10.1126/science.178.4066.1214. PubMed DOI
Ren A., Day C.R., Hanly J.J., Counterman B.A., Morehouse N.I., Martin A. Convergent evolution of broadband reflectors underlies metallic coloration in butterflies. Front. Ecol. Evol. 2020:206. doi: 10.3389/fevo.2020.00206. DOI
Ghiradella H. Structure and development of iridescent butterfly scales: Lattices and laminae. J. Morphol. 1989;202:69–88. doi: 10.1002/jmor.1052020106. PubMed DOI
Stavenga D.G., Giraldo M.A., Leertouwer H.L. Butterfly wing colors: Glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane. J. Exp. Biol. 2010;213:1731–1739. doi: 10.1242/jeb.041434. PubMed DOI
Kemp D.J., Rutowski R.L. Advances in the Study of Behavior. Volume 43. Elsevier; Amsterdam, The Netherlands: 2011. The role of coloration in mate choice and sexual interactions in butterflies; pp. 55–92.
Wilts B.D., IJbema N., Stavenga D.G. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides) BMC Evol. Biol. 2014;14:160. doi: 10.1186/s12862-014-0160-9. PubMed DOI PMC
Kemp D.J., Rutowski R.L. Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution. 2007;61:168–183. doi: 10.1111/j.1558-5646.2007.00014.x. PubMed DOI
Stavenga D.G., Stowe S., Siebke K., Zeil J., Arikawa K. Butterfly wing colours: Scale beads make white pierid wings brighter. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004;271:1577–1584. doi: 10.1098/rspb.2004.2781. PubMed DOI PMC
Kumazawa K., Tanaka S., Negita K., Tabata H. Fluorescence from wing of Morpho sulkowskyi butterfly. Jpn. J. Appl. Phys. 1994;33:2119. doi: 10.1143/JJAP.33.2119. DOI
Wijnen B., Leertouwer H., Stavenga D. Colors and pterin pigmentation of pierid butterfly wings. J. Insect Physiol. 2007;53:1206–1217. doi: 10.1016/j.jinsphys.2007.06.016. PubMed DOI
Grether G.F., Hudon J., Endler J.A. Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata) Proc. Biol. Sci. 2001;268:1245–1253. doi: 10.1098/rspb.2001.1624. PubMed DOI PMC
Rutowski R.L., Macedonia J.M., Morehouse N., Taylor-Taft L. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. B Biol. Sci. 2005;272:2329–2335. doi: 10.1098/rspb.2005.3216. PubMed DOI PMC
Morehouse N.I., Vukusic P., Rutowski R. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc. Biol. Sci. 2007;274:359–366. doi: 10.1098/rspb.2006.3730. PubMed DOI PMC
Knuttel H., Fiedler K. Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. J. Exp. Biol. 2001;204:2447–2459. doi: 10.1242/jeb.204.14.2447. PubMed DOI
Griffith S.C., Parker T.H., Olson V.A. Melanin-versus carotenoid-based sexual signals: Is the difference really so black and red? Anim. Behav. 2006;71:749–763. doi: 10.1016/j.anbehav.2005.07.016. DOI
Glover B.J., Whitney H.M. Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Ann. Bot. 2010;105:505–511. doi: 10.1093/aob/mcq007. PubMed DOI PMC
Yoshioka S., Kinoshita S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. Biol. Sci. 2004;271:581–587. doi: 10.1098/rspb.2003.2618. PubMed DOI PMC
Rutowski R.L., Macedonia J.M., Kemp D.J., Taylor-Taft L. Diversity in structural ultraviolet coloration among female sulphur butterflies (Coliadinae, Pieridae) Arthropod Struct. Dev. 2007;36:280–290. doi: 10.1016/j.asd.2006.11.005. PubMed DOI
Rutowski R.L., Macedonia J.M., Merry J.W., Morehouse N.I., Yturralde K., Taylor-Taft L., Gaalema D., Kemp D.J., Papke R.S. Iridescent ultraviolet signal in the orange sulphur butterfly (Colias eurytheme): Spatial, temporal and spectral properties. Biol. J. Linn. Soc. 2007;90:349–364. doi: 10.1111/j.1095-8312.2007.00749.x. DOI
Endler J.A. Signals, signal conditions, and the direction of evolution. Am. Nat. 1992;139:S125–S153. doi: 10.1086/285308. DOI
Pirih P., Wilts B.D., Stavenga D.G. Spatial reflection patterns of iridescent wings of male pierid butterflies: Curved scales reflect at a wider angle than flat scales. J. Comp. Physiol. A. 2011;197:987–997. doi: 10.1007/s00359-011-0661-6. PubMed DOI PMC
Vukusic P., Sambles J., Lawrence C., Wootton R. Now you see it-now you don‘t. Nature. 2001;410:36. doi: 10.1038/35065161. PubMed DOI
Simpson R.K., McGraw K.J. It’s not just what you have, but how you use it: Solar-positional and behavioural effects on hummingbird colour appearance during courtship. Ecol. Lett. 2018;21:1413–1422. doi: 10.1111/ele.13125. PubMed DOI
Smith J.M., Harper D. Animal Signals. Oxford University Press; Oxford, UK: 2003.
Zahavi A. Mate selection—A selection for a handicap. J. Theor. Biol. 1975;53:205–214. doi: 10.1016/0022-5193(75)90111-3. PubMed DOI
Boggs C.L., Gilbert L.E. Male contribution to egg production in butterflies: Evidence for transfer of nutrients at mating. Science. 1979;206:83–84. doi: 10.1126/science.206.4414.83. PubMed DOI
Yang M., Pyornila A., Meyer-Rochow V.B. UV-reflectivity of parafocal eyespot elements on butterfly wings in normal and abnormal specimens. Entomol. Fenn. 2004;15:34–40. doi: 10.33338/ef.84204. DOI
Sekimura T. In Pattern Formation and Diversity in Butterfly Wings: Experiments and Models. In: Jenkins O.P., editor. Advances in Zoology Research. Nova Science Publishers; New York, NY, USA: 2014. pp. 1–26.
Stavenga D.G., Leertouwer H.L., Wilts B.D. Coloration principles of nymphaline butterflies—Thin films, melanin, ommochromes and wing scale stacking. J. Exp. Biol. 2014;217:2171–2180. PubMed
Nijhout H.F. The Development and Evolution of Butterfly Wing Patterns. Smithsonian Institution Scholarly Press; Calvert Cliffs, MD, USA: 1991. (Smithsonian series in comparative evolutionary biology).
Krishna A., Nie X., Warren A.D., Llorente-Bousquets J.E., Briscoe A.D., Lee J. Infrared optical and thermal properties of microstructures in butterfly wings. Proc. Natl. Acad. Sci. USA. 2020;117:1566–1572. doi: 10.1073/pnas.1906356117. PubMed DOI PMC
Caro T., Mallarino R. Coloration in Mammals. Trends Ecol. Evol. 2020 doi: 10.1016/j.tree.2019.12.008. In Press. PubMed DOI PMC
Gloger C.W.L. Das Abändern der Vögel durch Einfluss des Klima’s, etc. August Schulz & Co.; Cambridge, UK: 1833.
Ellers J., Boggs C.L. Evolutionary genetics of dorsal wing colour in Colias butterflies. J. Evol. Biol. 2004;17:752–758. doi: 10.1111/j.1420-9101.2004.00736.x. PubMed DOI
Bishop T.R., Robertson M.P., Gibb H., Van Rensburg B.J., Braschler B., Chown S.L., Foord S.H., Munyai T.C., Okey I., Tshivhandekano P.G. Ant assemblages have darker and larger members in cold environments. Global Ecol. Biogeogr. 2016;25:1489–1499. doi: 10.1111/geb.12516. DOI
Heidrich L., Friess N., Fiedler K., Brändle M., Hausmann A., Brandl R., Zeuss D. The dark side of Lepidoptera: Colour lightness of geometrid moths decreases with increasing latitude. Glob. Ecol. Biogeogr. 2018;27:407–416. doi: 10.1111/geb.12703. DOI
Zhang L., Martin A., Perry M.W., van der Burg K.R., Matsuoka Y., Monteiro A., Reed R.D. Genetic Basis of Melanin Pigmentation in Butterfly Wings. Genetics. 2017;205:1537–1550. doi: 10.1534/genetics.116.196451. PubMed DOI PMC
Tuomaala M., Kaitala A., Rutowski R. Females show greater changes in wing colour with latitude than males in the green-veined white butterfly, Pieris napi (Lepidoptera: Pieridae) Biol. J. Linn. Soc. 2012;107:899–909. doi: 10.1111/j.1095-8312.2012.01996.x. DOI
Ramos M.E., Hulshof C.M. Using digitized museum collections to understand the effects of habitat on wing coloration in the Puerto Rican monarch. Biotropica. 2019;51:477–483. doi: 10.1111/btp.12680. DOI
Shanks K., Senthilarasu S., Mallick T.K. White butterflies as solar photovoltaic concentrators. Sci. Rep. 2015;5:12267. doi: 10.1038/srep12267. PubMed DOI PMC
Endler J.A. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 1991;31:587–608. doi: 10.1016/0042-6989(91)90109-I. PubMed DOI
Petersen B., Toernblom O., Bodin N. Verhaltensstudien am Rapsweissling und Bergweissling (Pieris napi L. und Pieris bryoniae Ochs.) Behaviour. 1951;4:67–84. doi: 10.1163/156853951X00043. DOI
Stella D., Pecháček P., Meyer-Rochow V.B., Kleisner K. UV reflectance is associated with environmental conditions in Palaearctic Pieris napi (Lepidoptera: Pieridae) Insect Sci. 2018;25:508–518. doi: 10.1111/1744-7917.12429. PubMed DOI
Obara Y., Koshitaka H., Arikawa K. Better mate in the shade: Enhancement of male mating behaviour in the cabbage butterfly, Pieris rapae crucivora, in a UV-rich environment. J. Exp. Biol. 2008;211:3698–3702. doi: 10.1242/jeb.021980. PubMed DOI
Makino K., Satoh K., Koike M., Ueno N. Sex in Pieris rapae L. and the pteridin content of their wings. Nature. 1952;170:32–55. doi: 10.1038/170933a0. PubMed DOI
Wiernasz D.C. Female choice and sexual selection of male wing melanin pattern in Pieris occidentalis (Lepidoptera) Evolution. 1989;43:1672–1682. doi: 10.1111/j.1558-5646.1989.tb02617.x. PubMed DOI
Silberglied R.E. Communication in the ultraviolet. Annu. Rev. Ecol. Syst. 1979;10:373–398. doi: 10.1146/annurev.es.10.110179.002105. DOI
Lande R. In Genetic Correlations Between the Sexes in the Evolution of Sexual Dimorphism and Mating Preferences. In: Bradbury J.W., Andersson M.B., editors. Sexual Selection: Testing the Alternatives. Wiley; Chichester, UK: 1987. pp. 83–94.
Turner J.R.G. Why male butterflies are non-mimetic: Natural selection, sexual selection, group selection, modification and sieving. Biol. J. Linn. Soc. 1978;10:385–432. doi: 10.1111/j.1095-8312.1978.tb00023.x. DOI
Stride G.O. On the courtship behaviour of Hypolimnas misippus L.; (Lepidoptera, Nymphalidae), with notes on the mimetic association with Danaus chrysippus L.; (Lepidoptera, Danaidae) Br. J. Anim. Behav. 1956;4:52–68. doi: 10.1016/S0950-5601(56)80023-3. DOI
Stride G.O. Investigations into the courtship behaviour of the male of Hypolimnas misippus L. (Lepidoptera, Nymphalidae), with special reference to the role of visual stimuli. Br. J. Anim. Behav. 1957;5:153–167. doi: 10.1016/S0950-5601(57)80022-7. DOI
Rutowski R.L., Gilchrist G.W., Terkanian B. Female butterflies mated with recently mated males show reduced reproductive output. Behav. Ecol. Sociobiol. 1987;20:319–322. doi: 10.1007/BF00300677. DOI
Bonduriansky R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 2001;76:305–339. doi: 10.1017/S1464793101005693. PubMed DOI
Rutowski R.L., Gilchrist G.W. Copulation in Colias eurytheme (Lepidoptera: Pieridae): Patterns and frequency. J. Zool. 1986;209:115–124. doi: 10.1111/j.1469-7998.1986.tb03569.x. DOI
Iwasa Y., Pomiankowski A. Continual change in mate preferences. Nature. 1995;377:420–422. doi: 10.1038/377420a0. PubMed DOI
White T.E., Zeil J., Kemp D.J. Signal design and courtship presentation coincide for highly biased delivery of an iridescent butterfly mating signal. Evolution. 2015;69:14–25. doi: 10.1111/evo.12551. PubMed DOI PMC
Hamilton W.D., Zuk M. Heritable true fitness and bright birds: A role for parasites? Science. 1982;218:384–387. doi: 10.1126/science.7123238. PubMed DOI
Kemp D.J. Female mating biases for bright ultraviolet iridescence in the butterfly Eurema hecabe (Pieridae) Behav. Ecol. 2007;19:1–8. doi: 10.1093/beheco/arm094. DOI
Fitzpatrick S. Colour schemes for birds: Structural coloration and signals of quality in feathers. Ann. Zool. Fenn. 1998;35:67–77.
Brooks R., Couldridge V. Multiple sexual ornaments coevolve with multiple mating preferences. Am. Nat. 1999;154:37–45. doi: 10.1086/303219. PubMed DOI
Grether G.F., Kolluru G.R., Nersissian K. Individual colour patches as multicomponent signals. Biol. Rev. 2004;79:583–610. doi: 10.1017/S1464793103006390. PubMed DOI
Johnstone R.A. Sexual selection, honest advertisement and the handicap principle: Reviewing the evidence. Biol. Rev. 1995;70:1–65. doi: 10.1111/j.1469-185X.1995.tb01439.x. PubMed DOI
Johnstone R.A., Reynolds J.D., Deutsch J.C. Mutual mate choice and sex differences in choosiness. Evolution. 1996;50:1382–1391. doi: 10.1111/j.1558-5646.1996.tb03912.x. PubMed DOI
Schluter D., Price T. Honesty, perception and population divergence in sexually selected traits. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1993;253:117–122. PubMed
Lindsay W.R., Andersson S., Bererhi B., Höglund J., Johnsen A., Kvarnemo C., Leder E.H., Lifjeld J.T., Ninnes C.E., Olsson M. Endless forms of sexual selection. PeerJ. 2019;7:e7988. doi: 10.7717/peerj.7988. PubMed DOI PMC
Doucet S.M., Montgomerie R. Multiple sexual ornaments in satin bowerbirds: Ultraviolet plumage and bowers signal different aspects of male quality. Behav. Ecol. 2003;14:503–509. doi: 10.1093/beheco/arg035. DOI
Obara Y. Studies on the mating behavior of the White Cabbage Butterfly, Pieris rapae crucivora Boisduval. Z. Vgl. Physiol. 1970;69:99–116. doi: 10.1007/BF00340912. DOI
Papke R.S., Kemp D.J., Rutowski R.L. Multimodal signalling: Structural ultraviolet reflectance predicts male mating success better than pheromones in the butterfly Colias eurytheme L. (Pieridae) Anim. Behav. 2007;73:47–54. doi: 10.1016/j.anbehav.2006.07.004. DOI
Rutowski R.L. Evidence for mate choice in a sulphur butterfly (Colias eurytheme) Z. Tierpsychol. 1985;70:103–114. doi: 10.1111/j.1439-0310.1985.tb00504.x. DOI
Nakagawa T., Eguchi E. Differences in Flicker Fusion Frequencies of the Five Spectral Photoreceptor Types in the Swallowtail Butterfly′ s Compound Eye. Zool. Sci. 1994;11:759–762.
Takizawa T., Koyama N. Reflection of ultraviolet light from the wing surface of the cabbage butterfly, Pieris rapae crucivora Boisduval (Lepidoptera: Pieridae) J. Ser. A Biol. 1974;61:1–12.
Coutsis J.G. Ultra-violet reflection pattern in Polyommatus andronicus Coutsis & Chávalas, 1995 and Polyommatus icarus (Rottenburg, 1775) (Lepidoptera: Lycaenidae) Phegea. 1996;24:167–169.
Huq M., Bhardwaj S., Monteiro A. Male Bicyclus anynana Butterflies Choose Females on the Basis of Their Ventral UV-Reflective Eyespot Centers. J. Insect Sci. 2019;19:1–25. doi: 10.1093/jisesa/iez014. PubMed DOI PMC
Sweeney A., Jiggins C., Johnsen S. Insect communication: Polarized light as a butterfly mating signal. Nature. 2003;423:31–32. doi: 10.1038/423031a. PubMed DOI
Obara Y., Ozawa G., Fukano Y. Geographic variation in ultraviolet reflectance of the wings of the female cabbage butterfly, Pieris rapae. Zool. Sci. 2008;25:1106–1110. doi: 10.2108/zsj.25.1106. PubMed DOI
Costanzo K., Monteiro A. The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc. Biol. Sci. 2007;274:845–851. doi: 10.1098/rspb.2006.3729. PubMed DOI PMC
Giraldo M., Stavenga D. Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies. Proc. R. Soc. B Biol. Sci. 2007;274:97–102. doi: 10.1098/rspb.2006.3708. PubMed DOI PMC
Obara Y., Majerus M.N. Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae. Zool. Sci. 2000;17:725–730. doi: 10.2108/zsj.17.725. DOI
Obara Y., Watanabe K., Satoh T. UV reflectance of inter-subspecific hybrid females obtained by crossing cabbage butterflies from Japan (Pieris rapae crucivora) with those from New Zealand (P. rapae rapae) Entomol. Sci. 2010;13:156–158. doi: 10.1111/j.1479-8298.2010.00364.x. DOI
Kral K. Implications of insect responses to supernormal visual releasing stimuli in intersexual communication and ower-visiting behaviour: A review. Eur. J. Entomol. 2016;113:429–437. doi: 10.14411/eje.2016.056. DOI
Penn D.J., Számadó S. The Handicap Principle: How an erroneous hypothesis became a scientific principle. Biol. Rev. 2020;95:267–290. doi: 10.1111/brv.12563. PubMed DOI PMC
Andersson M.B. Sexual Selection. Princeton University Press; Princeton, NJ, USA: 1994. 624p
Morehouse N.I. Condition-dependent ornaments, life histories, and the evolving architecture of resource-use. Integr. Comp. Biol. 2014;54:591–600. doi: 10.1093/icb/icu103. PubMed DOI
Vane-Wright R.I. The role of pseudosexual selection in the evolution of butterfly colour pattern. In: Vane-Wright R.I., Ackery P.R., editors. The Biology of Butterflies. Princeton University Press; Princeton, NJ, USA: 1984. pp. 251–253.
Brunton C., Majerus M.N. Ultraviolet colours in butterflies: Intra-or inter-specific communication? Proc. R. Soc. Lond. Ser. B Biol. Sci. 1995;260:199–204.
Crane J. Imaginal behavior of a Trinidad butterfly, Heliconius erato hydara Heiwitson, with special reference to the social use of color. Zoologica. 1955;40:167–196.
Merrill R.M., Dasmahapatra K.K., Davey J.W., Dell’Aglio D.D., Hanly J.J., Huber B., Jiggins C.D., Joron M., Kozak K.M., Llaurens V. The diversification of Heliconius butterflies: What have we learned in 150 years? J. Evol. Biol. 2015;28:1417–1438. doi: 10.1111/jeb.12672. PubMed DOI
Dalbosco Dell’Aglio D. Ph.D. Thesis. University of Cambridge; Cambridge, UK: Sep, 2016. Behavioural and Ecological Interactions between Heliconius Butterflies, Their Predators and Host Plants.
Bybee S.M., Yuan F., Ramstetter M.D., Llorente-Bousquets J., Reed R.D., Osorio D., Briscoe A.D. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. Am. Nat. 2011;179:38–51. doi: 10.1086/663192. PubMed DOI
Robertson K.A., Monteiro A. Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc. Biol. Sci. 2005;272:1541–1546. PubMed PMC
Dell’Aglio D.D., Troscianko J., McMillan W.O., Stevens M., Jiggins C.D. The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution. 2018;72:2156–2166. doi: 10.1111/evo.13583. PubMed DOI PMC
Rutowski R.L., Nahm A.C., Macedonia J.M. Iridescent hindwing patches in the Pipevine Swallowtail: Differences in dorsal and ventral surfaces relate to signal function and context. Funct. Ecol. 2010;24:767–775. doi: 10.1111/j.1365-2435.2010.01693.x. DOI
Tabata H., Hasegawa T., Nakagoshi M., Takikawa S., Tsusue M. Occurrence of biopterin in the wings of Morpho butterflies. Experientia. 1996;52:85–87. doi: 10.1007/BF01922422. DOI
DeVries P.J., Penz C.M., Hill R.I. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. J. Anim. Ecol. 2010;79:1077–1085. doi: 10.1111/j.1365-2656.2010.01710.x. PubMed DOI
Brunton C. The evolution of ultraviolet patterns in European Colias butterflies (Lepidoptera, Pieridae): A phylogeny using mitochondrial DNA. Heredity. 1998;80:611–616. doi: 10.1046/j.1365-2540.1998.00336.x. DOI
Stella D., Faltýnek Fric Z., Rindoš M., Kleisner K., Pecháček P. Distribution of Ultraviolet Ornaments in Colias Butterflies (Lepidoptera: Pieridae) Environ. Entomol. 2018;47:1344–1354. doi: 10.1093/ee/nvy111. PubMed DOI
Nekrutenko Y.P. Phylogeny and geographical distribution of the genus Gonepteryx (Lepidoptera, Pieridae): An attempt of study in historical zoogeography. Kiev Nauk. Dumka. 1968;20:130–131.
Brunton C.F., Hurst G.D.D. Mitochondrial DNA phylogeny of Brimstone butterflies (genus Gonepteryx) from the Canary Islands and Madeira. Biol. J. Linn. Soc. 1998;63:69–79. doi: 10.1111/j.1095-8312.1998.tb01639.x. PubMed DOI
Bozano G.C., Coutsis J.G., Herman P., Allegrucci G., Cesaroni D., Sbordoni V. Guide to the Butterflies of the Palearctic Region: Pieridae 3: Coliadinae: Rhodocerini, Euremini, Coliadini (Gonepteryx and others) & Dismorpiinae (Leptidea) Omnes Artes; Milan, Italy: 2016.
Hanzalová D. Master’s Thesis. University of South Bohemia; České Budějovice, Czech Republic: Jun, 2018. Phylogeny of Brimstone Butterflies (genus Gonepteryx): The Evolution of Colour Pattern in UV Spectrum and Geographical Area. Faculty of Science.
Brown W.L., Wilson E.O. Character displacement. Syst. Zool. 1956;5:49–64. doi: 10.2307/2411924. DOI
Graham S.M., Watt W.B., Gall L.F. Metabolic resource allocation vs. mating attractiveness: Adaptive pressures on the “alba” polymorphism of Colias butterflies. Proc. Natl. Acad. Sci. USA. 1980;77:3615–3619. doi: 10.1073/pnas.77.6.3615. PubMed DOI PMC
Taylor O.R. Reproductive isolation in Colias eurytheme and C. philodice (Lepidoptera: Pieridae): Use of olfaction in mate selection. Ann. Entomol. Soc. Am. 1973;66:621–626. doi: 10.1093/aesa/66.3.621. DOI
Meyer-Rochow V.B. Differences in ultraviolet wing patterns in the New Zealand lycaenid butterflies Lycaena salustius, L. rauparaha, and L. feredayi as a likely isolating mechanism. J. R. Soc. N. Z. 1991;21:169–177. doi: 10.1080/03036758.1991.10431405. DOI
Remington C.L. Ultraviolet reflectance in mimicry and sexual signals in the Lepidoptera. J. N. Y. Entomol. Soc. 1973;81:124.
Nekrutenko Y.P. The hidden wing-pattern of some Palearctic species of Gonepteryx and its taxonomic value. J. Res. Lepid. 1964;3:65–68.
Nekrutenko Y.P. Three cases of gynandromorphism in Gonepteryx: An observation with ultraviolet rays. J. Res. Lepid. 1965;4:103–108.
Nekrutenko Y.P. New subspecies of Gonepteryx rhamini from Tian-Shan Mountains, USSR. Lepid. Soc. J. 1970;24:218–220.
Nekrutenko Y.P. A new subspecies of Gonepteryx amintha (Pieridae) from Yunnan, Mainland China, with comparative notes. J. Res. Lepid. 1972;11:235–244.
Pecháček P., Stella D., Keil P., Kleisner K. Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly (Gonepteryx rhamni, Pieridae, Lepidoptera) Naturwissenschaften. 2014;101:1055–1063. doi: 10.1007/s00114-014-1244-5. PubMed DOI
Ferris C.D. Ultraviolet photography as an adjunct to taxonomy. Lepid. Soc. J. 1972;26:210–215.
Schaider P. Unterschiede von Lycaena hippothoe und candens im UV-Licht (Lep., Lycaenidae) Atalanta. 1988;18:415–425.
Ferris C.D. A revision of the Colias alexandra complex (Pieridae) aided by ultraviolet reflectance photography with designation of a new subspecies. J. Lepid. Soc. 1973;27:57–73.
Ferris C.D. A note on films and ultraviolet photography. News Lepid. Soc. 1975;6:6–7.
Wheat C.W., Watt W.B. A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies (Lepidoptera, Pieridae) Mol. Phylogenet. Evol. 2008;47:893–902. doi: 10.1016/j.ympev.2008.03.013. PubMed DOI
Gaunet A., Dincă V., Dapporto L., Montagud S., Vodă R., Schär S., Badiane A., Font E., Vila R. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae) Zool. Scr. 2019;48:507–519. doi: 10.1111/zsc.12355. DOI
Lyytinen A., Alatalo R.V., Lindström L., Mappes J. Are European white butterflies aposematic? Evol. Ecol. 1999;13:709–719. doi: 10.1023/A:1011081800202. DOI
Brues C.T. Photographic evidence on the visibility of color patterns in butterflies to the human and insect eye. Proc. Am. Acad. Arts Sci. 1941;74:281–286. doi: 10.2307/20023402. DOI
Viitala J., Korplmäki E., Palokangas P., Koivula M. Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature. 1995;373:425. doi: 10.1038/373425a0. DOI
Church S.C., Bennett A.T.D., Cuthill I.C., Hunt S., Hart N.S., Partridge J.C. Does lepidopteran larval crypsis extend into the ultraviolet? Naturwissenschaften. 1998;85:189–192. doi: 10.1007/s001140050483. DOI
Majerus M.E.N., Brunton C.F.A., Stalker J. A bird’s eye view of the peppered moth. J. Evol. Biol. 2000;13:155–159. doi: 10.1046/j.1420-9101.2000.00170.x. DOI
Kettlewell H.B.D. Insect survival and selection for pattern. Science. 1965;148:1290–1296. doi: 10.1126/science.148.3675.1290. PubMed DOI
Komárek S. Mimicry, Aposematism and Related Phenomena. Volume 168 Coronet Books Inc.; London, UK: 1998.
Brower L.P., Ryerson W.N., Coppinger L.L., Glazier S.C. Ecological chemistry and the palatability spectrum. Science. 1968;161:1349–1350. doi: 10.1126/science.161.3848.1349. PubMed DOI
Lyytinen A., Alatalo R.V., Lindström L., Mappes J. Can ultraviolet cues function as aposematic signals? Behav. Ecol. 2001;12:65–70. doi: 10.1093/oxfordjournals.beheco.a000380. DOI
Maddocks S.A., Church S.C., Cuthill I.C. The effects of the light environment on prey choice by zebra finches. J. Exp. Biol. 2001;204:2509–2515. doi: 10.1242/jeb.204.14.2509. PubMed DOI
Arias M., Mappes J., Desbois C., Gordon S., McClure M., Elias M., Nokelainen O., Gomez D. Transparency reduces predator detection in mimetic clearwing butterflies. Funct. Ecol. 2019;33:1110–1119. doi: 10.1111/1365-2435.13315. DOI
Murali G. Now you see me, now you don’t: Dynamic flash coloration as an antipredator strategy in motion. Anim. Behav. 2018;142:207–220. doi: 10.1016/j.anbehav.2018.06.017. DOI
Kjernsmo K., Whitney H.M., Scott-Samuel N.E., Hall J.R., Knowles H., Talas L., Cuthill I.C. Iridescence as Camouflage. Curr. Biol. 2020;30:1–5. doi: 10.1016/j.cub.2019.12.013. PubMed DOI PMC
Prudic K.L., Stoehr A.M., Wasik B.R., Monteiro A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 2015;282:20141531. doi: 10.1098/rspb.2014.1531. PubMed DOI PMC
Olofsson M., Vallin A., Jakobsson S., Wiklund C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE. 2010;5:e10798. doi: 10.1371/journal.pone.0010798. PubMed DOI PMC
Dong C.M., McLean C.A., Moussalli A., Stuart-Fox D. Conserved visual sensitivities across divergent lizard lineages that differ in an ultraviolet sexual signal. Ecol. Evol. 2019;9:11824–11832. doi: 10.1002/ece3.5686. PubMed DOI PMC
Hastad O., Victorsson J., Odeen A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc. Natl. Acad. Sci. USA. 2005;102:6391–6394. doi: 10.1073/pnas.0409228102. PubMed DOI PMC
Mullen P., Pohland G. Studies on UV reflection in feathers of some 1000 bird species: Are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? IBIS. 2008;150:59–68. doi: 10.1111/j.1474-919X.2007.00736.x. DOI
Cummings M.E., Rosenthal G.G., Ryan M.J. A private ultraviolet channel in visual communication. Proc. Biol. Sci. 2003;270:897–904. doi: 10.1098/rspb.2003.2334. PubMed DOI PMC
Siebeck U.E., Parker A.N., Sprenger D., Mäthger L.M., Wallis G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 2010;20:407–410. doi: 10.1016/j.cub.2009.12.047. PubMed DOI
Le Roy C., Debat V., Llaurens V. Adaptive evolution of butterfly wing shape: From morphology to behaviour. Biol. Rev. 2019;94:1261–1281. doi: 10.1111/brv.12500. PubMed DOI
Advani N.K., Parmesan C., Singer M.C. Takeoff temperatures in Melitaea cinxia butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance. Ecol. Entomol. 2019;44:389–396. doi: 10.1111/een.12714. DOI
Chen Z., Xu L., Li L., Wu H., Xu Y. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) Bull. Entomol. Res. 2019;109:212–220. doi: 10.1017/S0007485318000469. PubMed DOI
Galarza J.A., Dhaygude K., Ghaedi B., Suisto K., Valkonen J., Mappes J. Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis) Philos. Trans. R. Soc. B. 2019;374:20190295. doi: 10.1098/rstb.2019.0295. PubMed DOI PMC
Sekimura T., Nijhout H.F. Diversity and Evolution of Butterfly Wing Patterns. Springer; Singapore: 2017.
Brehm G., Zeuss D., Colwell R.K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography. 2019;42:632–642. doi: 10.1111/ecog.03917. DOI
Montejo-Kovacevich G., Smith J.E., Meier J.I., Bacquet C.N., Whiltshire-Romero E., Nadeau N.J., Jiggins C.D. Altitude and life-history shape the evolution of Heliconius wings. Evolution. 2019;73:2436–2450. doi: 10.1111/evo.13865. PubMed DOI PMC
Hovanitz W. The ecological significance of the color phases of Colias chrysotheme in North America. Ecology. 1944;25:45–60. doi: 10.2307/1930761. DOI
Dalrymple R.L., Kemp D.J., Flores-Moreno H., Laffan S.W., White T.E., Hemmings F.A., Tindall M.L., Moles A.T. Birds, butterflies and flowers in the tropics are not more colourful than those at higher latitudes. Glob. Ecol. Biogeogr. 2015;24:1424–1432. doi: 10.1111/geb.12368. DOI
Beerli N., Bärtschi F., Ballesteros-Mejia L., Kitching I.J., Beck J. How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths. J. Biogeogr. 2019;46:1687–1698. doi: 10.1111/jbi.13583. DOI
Hazel W.N. Sex-limited variability mimicry in the swallowtail butterfly Papilio polyxenes Fabr. Heredity. 1990;65:109–114. doi: 10.1038/hdy.1990.76. DOI
Mazokhin-Porshnyakov G.A. Ultraviolet radiation of the sun as a factor in insect habitats. Zh. Obshchei. Biol. 1954;15:362–367. PubMed
Koski M.H., Ashman T. Floral pigmentation patterns provide an example of Gloger’s rule in plants. Nat. Plants. 2015;1:14007. doi: 10.1038/nplants.2014.7. PubMed DOI
Pecháček P., Stella D., Kleisner K. A morphometric analysis of environmental dependences between ultraviolet patches and wing venation patterns in Gonepteryx butterflies (Lepidoptera, Pieridae) Evol. Ecol. 2019;33:89–110. doi: 10.1007/s10682-019-09969-0. DOI
Fukano Y., Satoh T., Hirota T., Nishide Y., Obara Y. Geographic expansion of the cabbage butterfly (Pieris rapae) and the evolution of highly UV-reflecting females. Insect Sci. 2012;19:239–246. doi: 10.1111/j.1744-7917.2011.01441.x. DOI
Dalrymple R.L., Flores-Moreno H., Kemp D.J., White T.E., Laffan S.W., Hemmings F.A., Hitchcock T.D., Moles A.T. Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecol. Monogr. 2018;88:204–224. doi: 10.1002/ecm.1287. DOI
Beckmann M., Václavík T., Manceur A.M., Šprtová L., von Wehrden H., Welk E., Cord A.F. gl UV: A global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 2014;5:372–383. doi: 10.1111/2041-210X.12168. DOI
Zitko M. Master’s Thesis. Univerzita Karlova, Přírodovědecká Fakulta; Prague, Czech Republic: Sep, 2019. Ecological Factors Influencing Variability of Ultraviolet Colouration of Flowers.
Macedonia J.M. Habitat light, colour variation, and ultraviolet reflectance in the Grand Cayman anole, Anolis conspersus. Biol. J. Linn. Soc. 2001;73:299–320. doi: 10.1111/j.1095-8312.2001.tb01365.x. DOI
Prudic K.L., Jeon C., Cao H., Monteiro A. Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science. 2011;331:73–75. doi: 10.1126/science.1197114. PubMed DOI
Slansky F., Feeny P. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 1977;47:209–228. doi: 10.2307/1942617. DOI
Morehouse N.I., Rutowski R.L. Developmental responses to variable diet composition in a butterfly: The role of nitrogen, carbohydrates and genotype. Oikos. 2010;119:636–645. doi: 10.1111/j.1600-0706.2009.17866.x. DOI
Mouchet S.R., Vukusic P. Structural colours in lepidopteran scales. In: Constant R., editor. Advances in Insect Physiology. Volume 54. Elsevier; London, UK: 2018. pp. 1–53.
Kemp D.J. Resource-mediated condition dependence in sexually dichromatic butterfly wing coloration. Evol. Int. J. Org. Evol. 2008;62:2346–2358. doi: 10.1111/j.1558-5646.2008.00461.x. PubMed DOI
Knüttel H., Fiedler K. On the use of ultraviolet photography and ultraviolet wing patterns in butterfly morphology and taxonomy. J. Lepid. Soc. 2000;54:137–144.
McGraw K.J., Hill G.E. Mechanics of carotenoid-based coloration. Bird Coloration. 2006;1:177–242.
Van der Kooi Casper J., Stavenga D.G., Arikawa K., Belušič G., Kelber A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 2021;66:435–461. doi: 10.1146/annurev-ento-061720-071644. PubMed DOI
Stavenga D.G., Arikawa K. Evolution of color and vision of butterflies. Arthropod Struct. Dev. 2006;35:307–318. doi: 10.1016/j.asd.2006.08.011. PubMed DOI
Arikawa K. The eyes and vision of butterflies. J. Physiol. 2017;595:5457–5464. doi: 10.1113/JP273917. PubMed DOI PMC
Carlson S.D., Chi C. The functional morphology of the insect photoreceptor. Annu. Rev. Entomol. 1979;24:379–416. doi: 10.1146/annurev.en.24.010179.002115. DOI
Qiu X., Vanhoutte K.A.J., Stavenga D.G., Arikawa K. Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora. Cell Tissue Res. 2002;307:371–379. doi: 10.1007/s00441-002-0517-z. PubMed DOI
Meyer-Rochow V.B. Eyes and Vision of the Bumblebee: A Brief Review on how Bumblebees Detect and Perceive Flowers. J. Apic. 2019;2:107–115. doi: 10.17519/apiculture.2019.06.34.2.107. DOI
Kelber A., Somanathan H. Spatial Vision and Visually Guided Behavior in Apidae. Insects. 2019;10:418. doi: 10.3390/insects10120418. PubMed DOI PMC
Menzel R., Backhaus W. Color vision honey bees: Phenomena and physiological mechanisms. In: Stavenga D.G., Hardie R.C., editors. Facets of Vision. Springer; London, UK: 1989. pp. 281–297.
Koshitaka H., Kinoshita M., Vorobyev M., Arikawa K. Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc. R. Soc. B Biol. Sci. 2008;275:947–954. doi: 10.1098/rspb.2007.1614. PubMed DOI PMC
Briscoe A.D., Bernard G.D., Szeto A.S., Nagy L.M., White R.H. Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. J. Comp. Neurol. 2003;458:334–349. doi: 10.1002/cne.10582. PubMed DOI
Stalleicken J., Labhart T., Mouritsen H. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. A. 2006;192:321–331. doi: 10.1007/s00359-005-0073-6. PubMed DOI
Sauman I., Briscoe A.D., Zhu H., Shi D., Froy O., Stalleicken J., Yuan Q., Casselman A., Reppert S.M. Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron. 2005;46:457–467. doi: 10.1016/j.neuron.2005.03.014. PubMed DOI
Rutowski R.L. Visual ecology of adult butterflies. In: Boggs C.L., Watt W.B., Ehrlich P.R., editors. Butterflies: Ecology and Evolution Taking Flight. University of Chicago Press; Chicago, IL, USA: 2003. pp. 9–25.
Simoncelli E.P., Olshausen B.A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 2001;24:1193–1216. doi: 10.1146/annurev.neuro.24.1.1193. PubMed DOI
Baden T., Euler T., Berens P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 2019;21:1–16. doi: 10.1038/s41583-019-0242-1. PubMed DOI
Papiorek S., Junker R.R., Alves-dos-Santos I., Melo G.A.R., Amaral-Neto L.P., Sazima M., Wolowski M., Freitas L., Lunau K. Bees, birds and yellow flowers: Pollinator-dependent convergent evolution of UV patterns. Plant Biol. 2016;18:46–55. doi: 10.1111/plb.12322. PubMed DOI
Tocco C., Dacke M., Byrne M. Eye and wing structure closely reflects the visual ecology of dung beetles. J. Comp. Physiol. A. 2019;205:211–221. doi: 10.1007/s00359-019-01324-6. PubMed DOI
Catalán A., Macias-Munoz A., Briscoe A.D. Evolution of sex-biased gene expression and dosage compensation in the eye and brain of Heliconius butterflies. Mol. Biol. Evol. 2018;35:2120–2134. doi: 10.1093/molbev/msy111. PubMed DOI
Rutowski R.L., Warrant E.J. Visual field structure in the Empress Leilia, Asterocampa leilia (Lepidoptera, Nymphalidae): Dimensions and regional variation in acuity. J. Comp. Physiol. A. 2002;188:1–12. doi: 10.1007/s00359-001-0273-7. PubMed DOI
Briscoe A.D. Reconstructing the ancestral butterfly eye: Focus on the opsins. J. Exp. Biol. 2008;211:1805–1813. doi: 10.1242/jeb.013045. PubMed DOI
Pirih P., Arikawa K., Stavenga D.G. An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate. J. Comp. Physiol. A. 2010;196:501–517. doi: 10.1007/s00359-010-0538-0. PubMed DOI PMC
Cuthill I.C., Partridge J.C., Bennett A.T.D., Church S.C., Hart N.S., Hunt S. Ultraviolet vision in birds. Adv. Study Behav. 2000;29:159–214.
Cronin T.W., Bok M.J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 2016;219:2790–2801. doi: 10.1242/jeb.128769. PubMed DOI
Briscoe A.D., Bybee S.M., Bernard G.D., Yuan F., Sison-Mangus M.P., Reed R.D., Warren A.D., Llorente-Bousquets J., Chiao C.C. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc. Natl. Acad. Sci. USA. 2010;107:3628–3633. doi: 10.1073/pnas.0910085107. PubMed DOI PMC
Merry J.W., Morehouse N.I., Yturralde K., Rutowski R.L. The eyes of a patrolling butterfly: Visual field and eye structure in the Orange Sulphur, Colias eurytheme (Lepidoptera, Pieridae) J. Insect Physiol. 2006;52:240–248. doi: 10.1016/j.jinsphys.2005.11.002. PubMed DOI
Finkbeiner S.D., Briscoe A.D. True UV color vision in a female butterfly with two UV opsins. J. Exp. Biol. 2021;224:jeb242802. doi: 10.1242/jeb.242802. PubMed DOI
Meyer-Rochow V.B., Kashiwagi T., Eguchi E. Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron. 2002;33:23–31. doi: 10.1016/S0968-4328(00)00073-1. PubMed DOI
Friberg M., Vongvanich N., Borg-Karlson A., Kemp D.J., Merilaita S., Wiklund C. Female mate choice determines reproductive isolation between sympatric butterflies. Behav. Ecol. Sociobiol. 2008;62:873–886. doi: 10.1007/s00265-007-0511-2. DOI