Visible beyond Violet: How Butterflies Manage Ultraviolet

. 2022 Feb 28 ; 13 (3) : . [epub] 20220228

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35323542

Ultraviolet (UV) means 'beyond violet' (from Latin 'ultra', meaning 'beyond'), whereby violet is the colour with the highest frequencies in the 'visible' light spectrum. By 'visible' we mean human vision, but, in comparison to many other organisms, human visual perception is rather limited in terms of the wavelengths it can perceive. Still, this is why communication in the UV spectrum is often called hidden, although it most likely plays an important role in communicating various kinds of information among a wide variety of organisms. Since Silberglied's revolutionary Communication in the Ultraviolet, comprehensive studies on UV signals in a wide list of genera are lacking. This review investigates the significance of UV reflectance (and UV absorption)-a feature often neglected in intra- and interspecific communication studies-mainly in Lepidoptera. Although the text focuses on various butterfly families, links and connections to other animal groups, such as birds, are also discussed in the context of ecology and the evolution of species. The basic mechanisms of UV colouration and factors shaping the characteristics of UV patterns are also discussed in a broad context of lepidopteran communication.

Zobrazit více v PubMed

Silberglied R.E., Taylor J., Orley R. Ultraviolet reflection and its behavioral role in the courtship of the sulphur butterflies Colias eurytheme and C. philodice (Lepidoptera, Pieridae) Behav. Ecol. Sociobiol. 1978;3:203–243. doi: 10.1007/BF00296311. DOI

Lutz F.E. “Invisible” colors of flowers and butterflies. Nat. Hist. 1933;33:565–567.

Crane J. Spectral reflectance characteristics of butterflies (Lepidoptera) from Trinidad, BWI. Zoologica. 1954;39:85–115.

Meyer-Rochow V.B., Järvilehto M. Ultraviolet Colours in Pieris napi from Northern and Southern Finland: Arctic Females Are the Brightest! Naturwissenschaften. 1997;84:165–168. doi: 10.1007/s001140050373. DOI

Meyer-Rochow V.B. Flugelfarben, wie sie die Falter sehen—A study of UV-and other colour patterns in Lepidoptera. Annot. Zool. Jpn. 1983;56:85–99.

Lyytinen A., Lindström L., Mappes J. Ultraviolet reflection and predation risk in diurnal and nocturnal Lepidoptera. Behav. Ecol. 2004;15:982–987. doi: 10.1093/beheco/arh102. DOI

Bowden W.B., Watt S.R. Chemical phenotypes of pteridine colour forms in Pieris butterflies. Nature. 1966;210:304–306.

Silberglied R.E., Taylor O.R. Ultraviolet differences between the sulphur butterflies, Colias eurytheme and C. philodice, and a possible isolating mechanism. Nature. 1973;241:406–408. doi: 10.1038/241406a0. PubMed DOI

Nekrutenko Y.P. ’Gynandromorphic Effect‘ and the Optical Nature of Hidden Wing-pattern in Gonepteryx rhamni L. (Lepidoptera, Pieridae) Nature. 1965;205:417. doi: 10.1038/205417a0. DOI

Allyn A.C., Downey J.C. Observations on male U-V reflectance and scale ultrastructure in Phoebis (Pieridae) Bull. Allyn Mus. 1977;42:1–20.

Kemp D.J. Heightened phenotypic variation and age-based fading of ultraviolet butterfly wing coloration. Evol. Ecol. Res. 2006;8:515–527.

Kemp D.J., Macedonia J.M. Structural ultraviolet ornamentation in the butterfly Hypolimnas bolina L. (Nymphalidae): Visual, morphological and ecological properties. Aust. J. Zool. 2006;54:235–244. doi: 10.1071/ZO06005. DOI

Dushkina N., Erten S., Lakhtakia A. Coloration and Structure of the Wings of Chorinea sylphina Bates. J. Lepid. Soc. 2017;71:1–11.

Imafuku M., Hirose Y., Takeuchi T. Wing colors of Chrysozephyrus butterflies (Lepidoptera; Lycaenidae): Ultraviolet reflection by males. Zool. Sci. 2002;19:175–183. doi: 10.2108/zsj.19.175. PubMed DOI

Imafuku M. Variation in UV light reflected from the wings of Favonius and Quercusia butterflies. Entomol. Sci. 2008;11:75–80. doi: 10.1111/j.1479-8298.2007.00247.x. DOI

Huxley J. The basis of structural colour variation in two species of Papilio. J. Entomol. Ser. A Gen. Entomol. 1975;50:9–22. doi: 10.1111/j.1365-3032.1975.tb00087.x. DOI

Eguchi E., Meyer-Rochow V.B. Ultraviolet photography of forty-three species of Lepidoptera representing ten families. Annot. Zool. Jpn. 1983;56:10–18.

Vukusic P., Sambles J.R. Photonic structures in biology. Nature. 2003;424:852. doi: 10.1038/nature01941. PubMed DOI

Wilts B.D., Pirih P., Stavenga D.G. Spectral reflectance properties of iridescent pierid butterfly wings. J. Comp. Physiol. A. 2011;197:693–702. doi: 10.1007/s00359-011-0632-y. PubMed DOI PMC

Ghiradella H. Advances in Insect Physiology. Volume 38. Elsevier; Amsterdam, The Netherlands: 2010. Insect cuticular surface modifications: Scales and other structural formations; pp. 135–180.

Ghiradella H., Aneshansley D., Eisner T., Silberglied R.E., Hinton H.E. Ultraviolet reflection of a male butterfly: Interference color caused by thin-layer elaboration of wing scales. Science. 1972;178:1214–1217. doi: 10.1126/science.178.4066.1214. PubMed DOI

Ren A., Day C.R., Hanly J.J., Counterman B.A., Morehouse N.I., Martin A. Convergent evolution of broadband reflectors underlies metallic coloration in butterflies. Front. Ecol. Evol. 2020:206. doi: 10.3389/fevo.2020.00206. DOI

Ghiradella H. Structure and development of iridescent butterfly scales: Lattices and laminae. J. Morphol. 1989;202:69–88. doi: 10.1002/jmor.1052020106. PubMed DOI

Stavenga D.G., Giraldo M.A., Leertouwer H.L. Butterfly wing colors: Glass scales of Graphium sarpedon cause polarized iridescence and enhance blue/green pigment coloration of the wing membrane. J. Exp. Biol. 2010;213:1731–1739. doi: 10.1242/jeb.041434. PubMed DOI

Kemp D.J., Rutowski R.L. Advances in the Study of Behavior. Volume 43. Elsevier; Amsterdam, The Netherlands: 2011. The role of coloration in mate choice and sexual interactions in butterflies; pp. 55–92.

Wilts B.D., IJbema N., Stavenga D.G. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides) BMC Evol. Biol. 2014;14:160. doi: 10.1186/s12862-014-0160-9. PubMed DOI PMC

Kemp D.J., Rutowski R.L. Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution. 2007;61:168–183. doi: 10.1111/j.1558-5646.2007.00014.x. PubMed DOI

Stavenga D.G., Stowe S., Siebke K., Zeil J., Arikawa K. Butterfly wing colours: Scale beads make white pierid wings brighter. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2004;271:1577–1584. doi: 10.1098/rspb.2004.2781. PubMed DOI PMC

Kumazawa K., Tanaka S., Negita K., Tabata H. Fluorescence from wing of Morpho sulkowskyi butterfly. Jpn. J. Appl. Phys. 1994;33:2119. doi: 10.1143/JJAP.33.2119. DOI

Wijnen B., Leertouwer H., Stavenga D. Colors and pterin pigmentation of pierid butterfly wings. J. Insect Physiol. 2007;53:1206–1217. doi: 10.1016/j.jinsphys.2007.06.016. PubMed DOI

Grether G.F., Hudon J., Endler J.A. Carotenoid scarcity, synthetic pteridine pigments and the evolution of sexual coloration in guppies (Poecilia reticulata) Proc. Biol. Sci. 2001;268:1245–1253. doi: 10.1098/rspb.2001.1624. PubMed DOI PMC

Rutowski R.L., Macedonia J.M., Morehouse N., Taylor-Taft L. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme. Proc. R. Soc. B Biol. Sci. 2005;272:2329–2335. doi: 10.1098/rspb.2005.3216. PubMed DOI PMC

Morehouse N.I., Vukusic P., Rutowski R. Pterin pigment granules are responsible for both broadband light scattering and wavelength selective absorption in the wing scales of pierid butterflies. Proc. Biol. Sci. 2007;274:359–366. doi: 10.1098/rspb.2006.3730. PubMed DOI PMC

Knuttel H., Fiedler K. Host-plant-derived variation in ultraviolet wing patterns influences mate selection by male butterflies. J. Exp. Biol. 2001;204:2447–2459. doi: 10.1242/jeb.204.14.2447. PubMed DOI

Griffith S.C., Parker T.H., Olson V.A. Melanin-versus carotenoid-based sexual signals: Is the difference really so black and red? Anim. Behav. 2006;71:749–763. doi: 10.1016/j.anbehav.2005.07.016. DOI

Glover B.J., Whitney H.M. Structural colour and iridescence in plants: The poorly studied relations of pigment colour. Ann. Bot. 2010;105:505–511. doi: 10.1093/aob/mcq007. PubMed DOI PMC

Yoshioka S., Kinoshita S. Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly. Proc. Biol. Sci. 2004;271:581–587. doi: 10.1098/rspb.2003.2618. PubMed DOI PMC

Rutowski R.L., Macedonia J.M., Kemp D.J., Taylor-Taft L. Diversity in structural ultraviolet coloration among female sulphur butterflies (Coliadinae, Pieridae) Arthropod Struct. Dev. 2007;36:280–290. doi: 10.1016/j.asd.2006.11.005. PubMed DOI

Rutowski R.L., Macedonia J.M., Merry J.W., Morehouse N.I., Yturralde K., Taylor-Taft L., Gaalema D., Kemp D.J., Papke R.S. Iridescent ultraviolet signal in the orange sulphur butterfly (Colias eurytheme): Spatial, temporal and spectral properties. Biol. J. Linn. Soc. 2007;90:349–364. doi: 10.1111/j.1095-8312.2007.00749.x. DOI

Endler J.A. Signals, signal conditions, and the direction of evolution. Am. Nat. 1992;139:S125–S153. doi: 10.1086/285308. DOI

Pirih P., Wilts B.D., Stavenga D.G. Spatial reflection patterns of iridescent wings of male pierid butterflies: Curved scales reflect at a wider angle than flat scales. J. Comp. Physiol. A. 2011;197:987–997. doi: 10.1007/s00359-011-0661-6. PubMed DOI PMC

Vukusic P., Sambles J., Lawrence C., Wootton R. Now you see it-now you don‘t. Nature. 2001;410:36. doi: 10.1038/35065161. PubMed DOI

Simpson R.K., McGraw K.J. It’s not just what you have, but how you use it: Solar-positional and behavioural effects on hummingbird colour appearance during courtship. Ecol. Lett. 2018;21:1413–1422. doi: 10.1111/ele.13125. PubMed DOI

Smith J.M., Harper D. Animal Signals. Oxford University Press; Oxford, UK: 2003.

Zahavi A. Mate selection—A selection for a handicap. J. Theor. Biol. 1975;53:205–214. doi: 10.1016/0022-5193(75)90111-3. PubMed DOI

Boggs C.L., Gilbert L.E. Male contribution to egg production in butterflies: Evidence for transfer of nutrients at mating. Science. 1979;206:83–84. doi: 10.1126/science.206.4414.83. PubMed DOI

Yang M., Pyornila A., Meyer-Rochow V.B. UV-reflectivity of parafocal eyespot elements on butterfly wings in normal and abnormal specimens. Entomol. Fenn. 2004;15:34–40. doi: 10.33338/ef.84204. DOI

Sekimura T. In Pattern Formation and Diversity in Butterfly Wings: Experiments and Models. In: Jenkins O.P., editor. Advances in Zoology Research. Nova Science Publishers; New York, NY, USA: 2014. pp. 1–26.

Stavenga D.G., Leertouwer H.L., Wilts B.D. Coloration principles of nymphaline butterflies—Thin films, melanin, ommochromes and wing scale stacking. J. Exp. Biol. 2014;217:2171–2180. PubMed

Nijhout H.F. The Development and Evolution of Butterfly Wing Patterns. Smithsonian Institution Scholarly Press; Calvert Cliffs, MD, USA: 1991. (Smithsonian series in comparative evolutionary biology).

Krishna A., Nie X., Warren A.D., Llorente-Bousquets J.E., Briscoe A.D., Lee J. Infrared optical and thermal properties of microstructures in butterfly wings. Proc. Natl. Acad. Sci. USA. 2020;117:1566–1572. doi: 10.1073/pnas.1906356117. PubMed DOI PMC

Caro T., Mallarino R. Coloration in Mammals. Trends Ecol. Evol. 2020 doi: 10.1016/j.tree.2019.12.008. In Press. PubMed DOI PMC

Gloger C.W.L. Das Abändern der Vögel durch Einfluss des Klima’s, etc. August Schulz & Co.; Cambridge, UK: 1833.

Ellers J., Boggs C.L. Evolutionary genetics of dorsal wing colour in Colias butterflies. J. Evol. Biol. 2004;17:752–758. doi: 10.1111/j.1420-9101.2004.00736.x. PubMed DOI

Bishop T.R., Robertson M.P., Gibb H., Van Rensburg B.J., Braschler B., Chown S.L., Foord S.H., Munyai T.C., Okey I., Tshivhandekano P.G. Ant assemblages have darker and larger members in cold environments. Global Ecol. Biogeogr. 2016;25:1489–1499. doi: 10.1111/geb.12516. DOI

Heidrich L., Friess N., Fiedler K., Brändle M., Hausmann A., Brandl R., Zeuss D. The dark side of Lepidoptera: Colour lightness of geometrid moths decreases with increasing latitude. Glob. Ecol. Biogeogr. 2018;27:407–416. doi: 10.1111/geb.12703. DOI

Zhang L., Martin A., Perry M.W., van der Burg K.R., Matsuoka Y., Monteiro A., Reed R.D. Genetic Basis of Melanin Pigmentation in Butterfly Wings. Genetics. 2017;205:1537–1550. doi: 10.1534/genetics.116.196451. PubMed DOI PMC

Tuomaala M., Kaitala A., Rutowski R. Females show greater changes in wing colour with latitude than males in the green-veined white butterfly, Pieris napi (Lepidoptera: Pieridae) Biol. J. Linn. Soc. 2012;107:899–909. doi: 10.1111/j.1095-8312.2012.01996.x. DOI

Ramos M.E., Hulshof C.M. Using digitized museum collections to understand the effects of habitat on wing coloration in the Puerto Rican monarch. Biotropica. 2019;51:477–483. doi: 10.1111/btp.12680. DOI

Shanks K., Senthilarasu S., Mallick T.K. White butterflies as solar photovoltaic concentrators. Sci. Rep. 2015;5:12267. doi: 10.1038/srep12267. PubMed DOI PMC

Endler J.A. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vis. Res. 1991;31:587–608. doi: 10.1016/0042-6989(91)90109-I. PubMed DOI

Petersen B., Toernblom O., Bodin N. Verhaltensstudien am Rapsweissling und Bergweissling (Pieris napi L. und Pieris bryoniae Ochs.) Behaviour. 1951;4:67–84. doi: 10.1163/156853951X00043. DOI

Stella D., Pecháček P., Meyer-Rochow V.B., Kleisner K. UV reflectance is associated with environmental conditions in Palaearctic Pieris napi (Lepidoptera: Pieridae) Insect Sci. 2018;25:508–518. doi: 10.1111/1744-7917.12429. PubMed DOI

Obara Y., Koshitaka H., Arikawa K. Better mate in the shade: Enhancement of male mating behaviour in the cabbage butterfly, Pieris rapae crucivora, in a UV-rich environment. J. Exp. Biol. 2008;211:3698–3702. doi: 10.1242/jeb.021980. PubMed DOI

Makino K., Satoh K., Koike M., Ueno N. Sex in Pieris rapae L. and the pteridin content of their wings. Nature. 1952;170:32–55. doi: 10.1038/170933a0. PubMed DOI

Wiernasz D.C. Female choice and sexual selection of male wing melanin pattern in Pieris occidentalis (Lepidoptera) Evolution. 1989;43:1672–1682. doi: 10.1111/j.1558-5646.1989.tb02617.x. PubMed DOI

Silberglied R.E. Communication in the ultraviolet. Annu. Rev. Ecol. Syst. 1979;10:373–398. doi: 10.1146/annurev.es.10.110179.002105. DOI

Lande R. In Genetic Correlations Between the Sexes in the Evolution of Sexual Dimorphism and Mating Preferences. In: Bradbury J.W., Andersson M.B., editors. Sexual Selection: Testing the Alternatives. Wiley; Chichester, UK: 1987. pp. 83–94.

Turner J.R.G. Why male butterflies are non-mimetic: Natural selection, sexual selection, group selection, modification and sieving. Biol. J. Linn. Soc. 1978;10:385–432. doi: 10.1111/j.1095-8312.1978.tb00023.x. DOI

Stride G.O. On the courtship behaviour of Hypolimnas misippus L.; (Lepidoptera, Nymphalidae), with notes on the mimetic association with Danaus chrysippus L.; (Lepidoptera, Danaidae) Br. J. Anim. Behav. 1956;4:52–68. doi: 10.1016/S0950-5601(56)80023-3. DOI

Stride G.O. Investigations into the courtship behaviour of the male of Hypolimnas misippus L. (Lepidoptera, Nymphalidae), with special reference to the role of visual stimuli. Br. J. Anim. Behav. 1957;5:153–167. doi: 10.1016/S0950-5601(57)80022-7. DOI

Rutowski R.L., Gilchrist G.W., Terkanian B. Female butterflies mated with recently mated males show reduced reproductive output. Behav. Ecol. Sociobiol. 1987;20:319–322. doi: 10.1007/BF00300677. DOI

Bonduriansky R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. 2001;76:305–339. doi: 10.1017/S1464793101005693. PubMed DOI

Rutowski R.L., Gilchrist G.W. Copulation in Colias eurytheme (Lepidoptera: Pieridae): Patterns and frequency. J. Zool. 1986;209:115–124. doi: 10.1111/j.1469-7998.1986.tb03569.x. DOI

Iwasa Y., Pomiankowski A. Continual change in mate preferences. Nature. 1995;377:420–422. doi: 10.1038/377420a0. PubMed DOI

White T.E., Zeil J., Kemp D.J. Signal design and courtship presentation coincide for highly biased delivery of an iridescent butterfly mating signal. Evolution. 2015;69:14–25. doi: 10.1111/evo.12551. PubMed DOI PMC

Hamilton W.D., Zuk M. Heritable true fitness and bright birds: A role for parasites? Science. 1982;218:384–387. doi: 10.1126/science.7123238. PubMed DOI

Kemp D.J. Female mating biases for bright ultraviolet iridescence in the butterfly Eurema hecabe (Pieridae) Behav. Ecol. 2007;19:1–8. doi: 10.1093/beheco/arm094. DOI

Fitzpatrick S. Colour schemes for birds: Structural coloration and signals of quality in feathers. Ann. Zool. Fenn. 1998;35:67–77.

Brooks R., Couldridge V. Multiple sexual ornaments coevolve with multiple mating preferences. Am. Nat. 1999;154:37–45. doi: 10.1086/303219. PubMed DOI

Grether G.F., Kolluru G.R., Nersissian K. Individual colour patches as multicomponent signals. Biol. Rev. 2004;79:583–610. doi: 10.1017/S1464793103006390. PubMed DOI

Johnstone R.A. Sexual selection, honest advertisement and the handicap principle: Reviewing the evidence. Biol. Rev. 1995;70:1–65. doi: 10.1111/j.1469-185X.1995.tb01439.x. PubMed DOI

Johnstone R.A., Reynolds J.D., Deutsch J.C. Mutual mate choice and sex differences in choosiness. Evolution. 1996;50:1382–1391. doi: 10.1111/j.1558-5646.1996.tb03912.x. PubMed DOI

Schluter D., Price T. Honesty, perception and population divergence in sexually selected traits. Proc. R. Soc. Lond. Ser. B Biol. Sci. 1993;253:117–122. PubMed

Lindsay W.R., Andersson S., Bererhi B., Höglund J., Johnsen A., Kvarnemo C., Leder E.H., Lifjeld J.T., Ninnes C.E., Olsson M. Endless forms of sexual selection. PeerJ. 2019;7:e7988. doi: 10.7717/peerj.7988. PubMed DOI PMC

Doucet S.M., Montgomerie R. Multiple sexual ornaments in satin bowerbirds: Ultraviolet plumage and bowers signal different aspects of male quality. Behav. Ecol. 2003;14:503–509. doi: 10.1093/beheco/arg035. DOI

Obara Y. Studies on the mating behavior of the White Cabbage Butterfly, Pieris rapae crucivora Boisduval. Z. Vgl. Physiol. 1970;69:99–116. doi: 10.1007/BF00340912. DOI

Papke R.S., Kemp D.J., Rutowski R.L. Multimodal signalling: Structural ultraviolet reflectance predicts male mating success better than pheromones in the butterfly Colias eurytheme L. (Pieridae) Anim. Behav. 2007;73:47–54. doi: 10.1016/j.anbehav.2006.07.004. DOI

Rutowski R.L. Evidence for mate choice in a sulphur butterfly (Colias eurytheme) Z. Tierpsychol. 1985;70:103–114. doi: 10.1111/j.1439-0310.1985.tb00504.x. DOI

Nakagawa T., Eguchi E. Differences in Flicker Fusion Frequencies of the Five Spectral Photoreceptor Types in the Swallowtail Butterfly′ s Compound Eye. Zool. Sci. 1994;11:759–762.

Takizawa T., Koyama N. Reflection of ultraviolet light from the wing surface of the cabbage butterfly, Pieris rapae crucivora Boisduval (Lepidoptera: Pieridae) J. Ser. A Biol. 1974;61:1–12.

Coutsis J.G. Ultra-violet reflection pattern in Polyommatus andronicus Coutsis & Chávalas, 1995 and Polyommatus icarus (Rottenburg, 1775) (Lepidoptera: Lycaenidae) Phegea. 1996;24:167–169.

Huq M., Bhardwaj S., Monteiro A. Male Bicyclus anynana Butterflies Choose Females on the Basis of Their Ventral UV-Reflective Eyespot Centers. J. Insect Sci. 2019;19:1–25. doi: 10.1093/jisesa/iez014. PubMed DOI PMC

Sweeney A., Jiggins C., Johnsen S. Insect communication: Polarized light as a butterfly mating signal. Nature. 2003;423:31–32. doi: 10.1038/423031a. PubMed DOI

Obara Y., Ozawa G., Fukano Y. Geographic variation in ultraviolet reflectance of the wings of the female cabbage butterfly, Pieris rapae. Zool. Sci. 2008;25:1106–1110. doi: 10.2108/zsj.25.1106. PubMed DOI

Costanzo K., Monteiro A. The use of chemical and visual cues in female choice in the butterfly Bicyclus anynana. Proc. Biol. Sci. 2007;274:845–851. doi: 10.1098/rspb.2006.3729. PubMed DOI PMC

Giraldo M., Stavenga D. Sexual dichroism and pigment localization in the wing scales of Pieris rapae butterflies. Proc. R. Soc. B Biol. Sci. 2007;274:97–102. doi: 10.1098/rspb.2006.3708. PubMed DOI PMC

Obara Y., Majerus M.N. Initial mate recognition in the British cabbage butterfly, Pieris rapae rapae. Zool. Sci. 2000;17:725–730. doi: 10.2108/zsj.17.725. DOI

Obara Y., Watanabe K., Satoh T. UV reflectance of inter-subspecific hybrid females obtained by crossing cabbage butterflies from Japan (Pieris rapae crucivora) with those from New Zealand (P. rapae rapae) Entomol. Sci. 2010;13:156–158. doi: 10.1111/j.1479-8298.2010.00364.x. DOI

Kral K. Implications of insect responses to supernormal visual releasing stimuli in intersexual communication and ower-visiting behaviour: A review. Eur. J. Entomol. 2016;113:429–437. doi: 10.14411/eje.2016.056. DOI

Penn D.J., Számadó S. The Handicap Principle: How an erroneous hypothesis became a scientific principle. Biol. Rev. 2020;95:267–290. doi: 10.1111/brv.12563. PubMed DOI PMC

Andersson M.B. Sexual Selection. Princeton University Press; Princeton, NJ, USA: 1994. 624p

Morehouse N.I. Condition-dependent ornaments, life histories, and the evolving architecture of resource-use. Integr. Comp. Biol. 2014;54:591–600. doi: 10.1093/icb/icu103. PubMed DOI

Vane-Wright R.I. The role of pseudosexual selection in the evolution of butterfly colour pattern. In: Vane-Wright R.I., Ackery P.R., editors. The Biology of Butterflies. Princeton University Press; Princeton, NJ, USA: 1984. pp. 251–253.

Brunton C., Majerus M.N. Ultraviolet colours in butterflies: Intra-or inter-specific communication? Proc. R. Soc. Lond. Ser. B Biol. Sci. 1995;260:199–204.

Crane J. Imaginal behavior of a Trinidad butterfly, Heliconius erato hydara Heiwitson, with special reference to the social use of color. Zoologica. 1955;40:167–196.

Merrill R.M., Dasmahapatra K.K., Davey J.W., Dell’Aglio D.D., Hanly J.J., Huber B., Jiggins C.D., Joron M., Kozak K.M., Llaurens V. The diversification of Heliconius butterflies: What have we learned in 150 years? J. Evol. Biol. 2015;28:1417–1438. doi: 10.1111/jeb.12672. PubMed DOI

Dalbosco Dell’Aglio D. Ph.D. Thesis. University of Cambridge; Cambridge, UK: Sep, 2016. Behavioural and Ecological Interactions between Heliconius Butterflies, Their Predators and Host Plants.

Bybee S.M., Yuan F., Ramstetter M.D., Llorente-Bousquets J., Reed R.D., Osorio D., Briscoe A.D. UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. Am. Nat. 2011;179:38–51. doi: 10.1086/663192. PubMed DOI

Robertson K.A., Monteiro A. Female Bicyclus anynana butterflies choose males on the basis of their dorsal UV-reflective eyespot pupils. Proc. Biol. Sci. 2005;272:1541–1546. PubMed PMC

Dell’Aglio D.D., Troscianko J., McMillan W.O., Stevens M., Jiggins C.D. The appearance of mimetic Heliconius butterflies to predators and conspecifics. Evolution. 2018;72:2156–2166. doi: 10.1111/evo.13583. PubMed DOI PMC

Rutowski R.L., Nahm A.C., Macedonia J.M. Iridescent hindwing patches in the Pipevine Swallowtail: Differences in dorsal and ventral surfaces relate to signal function and context. Funct. Ecol. 2010;24:767–775. doi: 10.1111/j.1365-2435.2010.01693.x. DOI

Tabata H., Hasegawa T., Nakagoshi M., Takikawa S., Tsusue M. Occurrence of biopterin in the wings of Morpho butterflies. Experientia. 1996;52:85–87. doi: 10.1007/BF01922422. DOI

DeVries P.J., Penz C.M., Hill R.I. Vertical distribution, flight behaviour and evolution of wing morphology in Morpho butterflies. J. Anim. Ecol. 2010;79:1077–1085. doi: 10.1111/j.1365-2656.2010.01710.x. PubMed DOI

Brunton C. The evolution of ultraviolet patterns in European Colias butterflies (Lepidoptera, Pieridae): A phylogeny using mitochondrial DNA. Heredity. 1998;80:611–616. doi: 10.1046/j.1365-2540.1998.00336.x. DOI

Stella D., Faltýnek Fric Z., Rindoš M., Kleisner K., Pecháček P. Distribution of Ultraviolet Ornaments in Colias Butterflies (Lepidoptera: Pieridae) Environ. Entomol. 2018;47:1344–1354. doi: 10.1093/ee/nvy111. PubMed DOI

Nekrutenko Y.P. Phylogeny and geographical distribution of the genus Gonepteryx (Lepidoptera, Pieridae): An attempt of study in historical zoogeography. Kiev Nauk. Dumka. 1968;20:130–131.

Brunton C.F., Hurst G.D.D. Mitochondrial DNA phylogeny of Brimstone butterflies (genus Gonepteryx) from the Canary Islands and Madeira. Biol. J. Linn. Soc. 1998;63:69–79. doi: 10.1111/j.1095-8312.1998.tb01639.x. PubMed DOI

Bozano G.C., Coutsis J.G., Herman P., Allegrucci G., Cesaroni D., Sbordoni V. Guide to the Butterflies of the Palearctic Region: Pieridae 3: Coliadinae: Rhodocerini, Euremini, Coliadini (Gonepteryx and others) & Dismorpiinae (Leptidea) Omnes Artes; Milan, Italy: 2016.

Hanzalová D. Master’s Thesis. University of South Bohemia; České Budějovice, Czech Republic: Jun, 2018. Phylogeny of Brimstone Butterflies (genus Gonepteryx): The Evolution of Colour Pattern in UV Spectrum and Geographical Area. Faculty of Science.

Brown W.L., Wilson E.O. Character displacement. Syst. Zool. 1956;5:49–64. doi: 10.2307/2411924. DOI

Graham S.M., Watt W.B., Gall L.F. Metabolic resource allocation vs. mating attractiveness: Adaptive pressures on the “alba” polymorphism of Colias butterflies. Proc. Natl. Acad. Sci. USA. 1980;77:3615–3619. doi: 10.1073/pnas.77.6.3615. PubMed DOI PMC

Taylor O.R. Reproductive isolation in Colias eurytheme and C. philodice (Lepidoptera: Pieridae): Use of olfaction in mate selection. Ann. Entomol. Soc. Am. 1973;66:621–626. doi: 10.1093/aesa/66.3.621. DOI

Meyer-Rochow V.B. Differences in ultraviolet wing patterns in the New Zealand lycaenid butterflies Lycaena salustius, L. rauparaha, and L. feredayi as a likely isolating mechanism. J. R. Soc. N. Z. 1991;21:169–177. doi: 10.1080/03036758.1991.10431405. DOI

Remington C.L. Ultraviolet reflectance in mimicry and sexual signals in the Lepidoptera. J. N. Y. Entomol. Soc. 1973;81:124.

Nekrutenko Y.P. The hidden wing-pattern of some Palearctic species of Gonepteryx and its taxonomic value. J. Res. Lepid. 1964;3:65–68.

Nekrutenko Y.P. Three cases of gynandromorphism in Gonepteryx: An observation with ultraviolet rays. J. Res. Lepid. 1965;4:103–108.

Nekrutenko Y.P. New subspecies of Gonepteryx rhamini from Tian-Shan Mountains, USSR. Lepid. Soc. J. 1970;24:218–220.

Nekrutenko Y.P. A new subspecies of Gonepteryx amintha (Pieridae) from Yunnan, Mainland China, with comparative notes. J. Res. Lepid. 1972;11:235–244.

Pecháček P., Stella D., Keil P., Kleisner K. Environmental effects on the shape variation of male ultraviolet patterns in the Brimstone butterfly (Gonepteryx rhamni, Pieridae, Lepidoptera) Naturwissenschaften. 2014;101:1055–1063. doi: 10.1007/s00114-014-1244-5. PubMed DOI

Ferris C.D. Ultraviolet photography as an adjunct to taxonomy. Lepid. Soc. J. 1972;26:210–215.

Schaider P. Unterschiede von Lycaena hippothoe und candens im UV-Licht (Lep., Lycaenidae) Atalanta. 1988;18:415–425.

Ferris C.D. A revision of the Colias alexandra complex (Pieridae) aided by ultraviolet reflectance photography with designation of a new subspecies. J. Lepid. Soc. 1973;27:57–73.

Ferris C.D. A note on films and ultraviolet photography. News Lepid. Soc. 1975;6:6–7.

Wheat C.W., Watt W.B. A mitochondrial-DNA-based phylogeny for some evolutionary-genetic model species of Colias butterflies (Lepidoptera, Pieridae) Mol. Phylogenet. Evol. 2008;47:893–902. doi: 10.1016/j.ympev.2008.03.013. PubMed DOI

Gaunet A., Dincă V., Dapporto L., Montagud S., Vodă R., Schär S., Badiane A., Font E., Vila R. Two consecutive Wolbachia-mediated mitochondrial introgressions obscure taxonomy in Palearctic swallowtail butterflies (Lepidoptera, Papilionidae) Zool. Scr. 2019;48:507–519. doi: 10.1111/zsc.12355. DOI

Lyytinen A., Alatalo R.V., Lindström L., Mappes J. Are European white butterflies aposematic? Evol. Ecol. 1999;13:709–719. doi: 10.1023/A:1011081800202. DOI

Brues C.T. Photographic evidence on the visibility of color patterns in butterflies to the human and insect eye. Proc. Am. Acad. Arts Sci. 1941;74:281–286. doi: 10.2307/20023402. DOI

Viitala J., Korplmäki E., Palokangas P., Koivula M. Attraction of kestrels to vole scent marks visible in ultraviolet light. Nature. 1995;373:425. doi: 10.1038/373425a0. DOI

Church S.C., Bennett A.T.D., Cuthill I.C., Hunt S., Hart N.S., Partridge J.C. Does lepidopteran larval crypsis extend into the ultraviolet? Naturwissenschaften. 1998;85:189–192. doi: 10.1007/s001140050483. DOI

Majerus M.E.N., Brunton C.F.A., Stalker J. A bird’s eye view of the peppered moth. J. Evol. Biol. 2000;13:155–159. doi: 10.1046/j.1420-9101.2000.00170.x. DOI

Kettlewell H.B.D. Insect survival and selection for pattern. Science. 1965;148:1290–1296. doi: 10.1126/science.148.3675.1290. PubMed DOI

Komárek S. Mimicry, Aposematism and Related Phenomena. Volume 168 Coronet Books Inc.; London, UK: 1998.

Brower L.P., Ryerson W.N., Coppinger L.L., Glazier S.C. Ecological chemistry and the palatability spectrum. Science. 1968;161:1349–1350. doi: 10.1126/science.161.3848.1349. PubMed DOI

Lyytinen A., Alatalo R.V., Lindström L., Mappes J. Can ultraviolet cues function as aposematic signals? Behav. Ecol. 2001;12:65–70. doi: 10.1093/oxfordjournals.beheco.a000380. DOI

Maddocks S.A., Church S.C., Cuthill I.C. The effects of the light environment on prey choice by zebra finches. J. Exp. Biol. 2001;204:2509–2515. doi: 10.1242/jeb.204.14.2509. PubMed DOI

Arias M., Mappes J., Desbois C., Gordon S., McClure M., Elias M., Nokelainen O., Gomez D. Transparency reduces predator detection in mimetic clearwing butterflies. Funct. Ecol. 2019;33:1110–1119. doi: 10.1111/1365-2435.13315. DOI

Murali G. Now you see me, now you don’t: Dynamic flash coloration as an antipredator strategy in motion. Anim. Behav. 2018;142:207–220. doi: 10.1016/j.anbehav.2018.06.017. DOI

Kjernsmo K., Whitney H.M., Scott-Samuel N.E., Hall J.R., Knowles H., Talas L., Cuthill I.C. Iridescence as Camouflage. Curr. Biol. 2020;30:1–5. doi: 10.1016/j.cub.2019.12.013. PubMed DOI PMC

Prudic K.L., Stoehr A.M., Wasik B.R., Monteiro A. Eyespots deflect predator attack increasing fitness and promoting the evolution of phenotypic plasticity. Proc. R. Soc. B Biol. Sci. 2015;282:20141531. doi: 10.1098/rspb.2014.1531. PubMed DOI PMC

Olofsson M., Vallin A., Jakobsson S., Wiklund C. Marginal eyespots on butterfly wings deflect bird attacks under low light intensities with UV wavelengths. PLoS ONE. 2010;5:e10798. doi: 10.1371/journal.pone.0010798. PubMed DOI PMC

Dong C.M., McLean C.A., Moussalli A., Stuart-Fox D. Conserved visual sensitivities across divergent lizard lineages that differ in an ultraviolet sexual signal. Ecol. Evol. 2019;9:11824–11832. doi: 10.1002/ece3.5686. PubMed DOI PMC

Hastad O., Victorsson J., Odeen A. Differences in color vision make passerines less conspicuous in the eyes of their predators. Proc. Natl. Acad. Sci. USA. 2005;102:6391–6394. doi: 10.1073/pnas.0409228102. PubMed DOI PMC

Mullen P., Pohland G. Studies on UV reflection in feathers of some 1000 bird species: Are UV peaks in feathers correlated with violet-sensitive and ultraviolet-sensitive cones? IBIS. 2008;150:59–68. doi: 10.1111/j.1474-919X.2007.00736.x. DOI

Cummings M.E., Rosenthal G.G., Ryan M.J. A private ultraviolet channel in visual communication. Proc. Biol. Sci. 2003;270:897–904. doi: 10.1098/rspb.2003.2334. PubMed DOI PMC

Siebeck U.E., Parker A.N., Sprenger D., Mäthger L.M., Wallis G. A species of reef fish that uses ultraviolet patterns for covert face recognition. Curr. Biol. 2010;20:407–410. doi: 10.1016/j.cub.2009.12.047. PubMed DOI

Le Roy C., Debat V., Llaurens V. Adaptive evolution of butterfly wing shape: From morphology to behaviour. Biol. Rev. 2019;94:1261–1281. doi: 10.1111/brv.12500. PubMed DOI

Advani N.K., Parmesan C., Singer M.C. Takeoff temperatures in Melitaea cinxia butterflies from latitudinal and elevational range limits: A potential adaptation to solar irradiance. Ecol. Entomol. 2019;44:389–396. doi: 10.1111/een.12714. DOI

Chen Z., Xu L., Li L., Wu H., Xu Y. Effects of constant and fluctuating temperature on the development of the oriental fruit moth, Grapholita molesta (Lepidoptera: Tortricidae) Bull. Entomol. Res. 2019;109:212–220. doi: 10.1017/S0007485318000469. PubMed DOI

Galarza J.A., Dhaygude K., Ghaedi B., Suisto K., Valkonen J., Mappes J. Evaluating responses to temperature during pre-metamorphosis and carry-over effects at post-metamorphosis in the wood tiger moth (Arctia plantaginis) Philos. Trans. R. Soc. B. 2019;374:20190295. doi: 10.1098/rstb.2019.0295. PubMed DOI PMC

Sekimura T., Nijhout H.F. Diversity and Evolution of Butterfly Wing Patterns. Springer; Singapore: 2017.

Brehm G., Zeuss D., Colwell R.K. Moth body size increases with elevation along a complete tropical elevational gradient for two hyperdiverse clades. Ecography. 2019;42:632–642. doi: 10.1111/ecog.03917. DOI

Montejo-Kovacevich G., Smith J.E., Meier J.I., Bacquet C.N., Whiltshire-Romero E., Nadeau N.J., Jiggins C.D. Altitude and life-history shape the evolution of Heliconius wings. Evolution. 2019;73:2436–2450. doi: 10.1111/evo.13865. PubMed DOI PMC

Hovanitz W. The ecological significance of the color phases of Colias chrysotheme in North America. Ecology. 1944;25:45–60. doi: 10.2307/1930761. DOI

Dalrymple R.L., Kemp D.J., Flores-Moreno H., Laffan S.W., White T.E., Hemmings F.A., Tindall M.L., Moles A.T. Birds, butterflies and flowers in the tropics are not more colourful than those at higher latitudes. Glob. Ecol. Biogeogr. 2015;24:1424–1432. doi: 10.1111/geb.12368. DOI

Beerli N., Bärtschi F., Ballesteros-Mejia L., Kitching I.J., Beck J. How has the environment shaped geographical patterns of insect body sizes? A test of hypotheses using sphingid moths. J. Biogeogr. 2019;46:1687–1698. doi: 10.1111/jbi.13583. DOI

Hazel W.N. Sex-limited variability mimicry in the swallowtail butterfly Papilio polyxenes Fabr. Heredity. 1990;65:109–114. doi: 10.1038/hdy.1990.76. DOI

Mazokhin-Porshnyakov G.A. Ultraviolet radiation of the sun as a factor in insect habitats. Zh. Obshchei. Biol. 1954;15:362–367. PubMed

Koski M.H., Ashman T. Floral pigmentation patterns provide an example of Gloger’s rule in plants. Nat. Plants. 2015;1:14007. doi: 10.1038/nplants.2014.7. PubMed DOI

Pecháček P., Stella D., Kleisner K. A morphometric analysis of environmental dependences between ultraviolet patches and wing venation patterns in Gonepteryx butterflies (Lepidoptera, Pieridae) Evol. Ecol. 2019;33:89–110. doi: 10.1007/s10682-019-09969-0. DOI

Fukano Y., Satoh T., Hirota T., Nishide Y., Obara Y. Geographic expansion of the cabbage butterfly (Pieris rapae) and the evolution of highly UV-reflecting females. Insect Sci. 2012;19:239–246. doi: 10.1111/j.1744-7917.2011.01441.x. DOI

Dalrymple R.L., Flores-Moreno H., Kemp D.J., White T.E., Laffan S.W., Hemmings F.A., Hitchcock T.D., Moles A.T. Abiotic and biotic predictors of macroecological patterns in bird and butterfly coloration. Ecol. Monogr. 2018;88:204–224. doi: 10.1002/ecm.1287. DOI

Beckmann M., Václavík T., Manceur A.M., Šprtová L., von Wehrden H., Welk E., Cord A.F. gl UV: A global UV-B radiation data set for macroecological studies. Methods Ecol. Evol. 2014;5:372–383. doi: 10.1111/2041-210X.12168. DOI

Zitko M. Master’s Thesis. Univerzita Karlova, Přírodovědecká Fakulta; Prague, Czech Republic: Sep, 2019. Ecological Factors Influencing Variability of Ultraviolet Colouration of Flowers.

Macedonia J.M. Habitat light, colour variation, and ultraviolet reflectance in the Grand Cayman anole, Anolis conspersus. Biol. J. Linn. Soc. 2001;73:299–320. doi: 10.1111/j.1095-8312.2001.tb01365.x. DOI

Prudic K.L., Jeon C., Cao H., Monteiro A. Developmental plasticity in sexual roles of butterfly species drives mutual sexual ornamentation. Science. 2011;331:73–75. doi: 10.1126/science.1197114. PubMed DOI

Slansky F., Feeny P. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 1977;47:209–228. doi: 10.2307/1942617. DOI

Morehouse N.I., Rutowski R.L. Developmental responses to variable diet composition in a butterfly: The role of nitrogen, carbohydrates and genotype. Oikos. 2010;119:636–645. doi: 10.1111/j.1600-0706.2009.17866.x. DOI

Mouchet S.R., Vukusic P. Structural colours in lepidopteran scales. In: Constant R., editor. Advances in Insect Physiology. Volume 54. Elsevier; London, UK: 2018. pp. 1–53.

Kemp D.J. Resource-mediated condition dependence in sexually dichromatic butterfly wing coloration. Evol. Int. J. Org. Evol. 2008;62:2346–2358. doi: 10.1111/j.1558-5646.2008.00461.x. PubMed DOI

Knüttel H., Fiedler K. On the use of ultraviolet photography and ultraviolet wing patterns in butterfly morphology and taxonomy. J. Lepid. Soc. 2000;54:137–144.

McGraw K.J., Hill G.E. Mechanics of carotenoid-based coloration. Bird Coloration. 2006;1:177–242.

Van der Kooi Casper J., Stavenga D.G., Arikawa K., Belušič G., Kelber A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 2021;66:435–461. doi: 10.1146/annurev-ento-061720-071644. PubMed DOI

Stavenga D.G., Arikawa K. Evolution of color and vision of butterflies. Arthropod Struct. Dev. 2006;35:307–318. doi: 10.1016/j.asd.2006.08.011. PubMed DOI

Arikawa K. The eyes and vision of butterflies. J. Physiol. 2017;595:5457–5464. doi: 10.1113/JP273917. PubMed DOI PMC

Carlson S.D., Chi C. The functional morphology of the insect photoreceptor. Annu. Rev. Entomol. 1979;24:379–416. doi: 10.1146/annurev.en.24.010179.002115. DOI

Qiu X., Vanhoutte K.A.J., Stavenga D.G., Arikawa K. Ommatidial heterogeneity in the compound eye of the male small white butterfly, Pieris rapae crucivora. Cell Tissue Res. 2002;307:371–379. doi: 10.1007/s00441-002-0517-z. PubMed DOI

Meyer-Rochow V.B. Eyes and Vision of the Bumblebee: A Brief Review on how Bumblebees Detect and Perceive Flowers. J. Apic. 2019;2:107–115. doi: 10.17519/apiculture.2019.06.34.2.107. DOI

Kelber A., Somanathan H. Spatial Vision and Visually Guided Behavior in Apidae. Insects. 2019;10:418. doi: 10.3390/insects10120418. PubMed DOI PMC

Menzel R., Backhaus W. Color vision honey bees: Phenomena and physiological mechanisms. In: Stavenga D.G., Hardie R.C., editors. Facets of Vision. Springer; London, UK: 1989. pp. 281–297.

Koshitaka H., Kinoshita M., Vorobyev M., Arikawa K. Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc. R. Soc. B Biol. Sci. 2008;275:947–954. doi: 10.1098/rspb.2007.1614. PubMed DOI PMC

Briscoe A.D., Bernard G.D., Szeto A.S., Nagy L.M., White R.H. Not all butterfly eyes are created equal: Rhodopsin absorption spectra, molecular identification, and localization of ultraviolet-, blue-, and green-sensitive rhodopsin-encoding mRNAs in the retina of Vanessa cardui. J. Comp. Neurol. 2003;458:334–349. doi: 10.1002/cne.10582. PubMed DOI

Stalleicken J., Labhart T., Mouritsen H. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. A. 2006;192:321–331. doi: 10.1007/s00359-005-0073-6. PubMed DOI

Sauman I., Briscoe A.D., Zhu H., Shi D., Froy O., Stalleicken J., Yuan Q., Casselman A., Reppert S.M. Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron. 2005;46:457–467. doi: 10.1016/j.neuron.2005.03.014. PubMed DOI

Rutowski R.L. Visual ecology of adult butterflies. In: Boggs C.L., Watt W.B., Ehrlich P.R., editors. Butterflies: Ecology and Evolution Taking Flight. University of Chicago Press; Chicago, IL, USA: 2003. pp. 9–25.

Simoncelli E.P., Olshausen B.A. Natural image statistics and neural representation. Annu. Rev. Neurosci. 2001;24:1193–1216. doi: 10.1146/annurev.neuro.24.1.1193. PubMed DOI

Baden T., Euler T., Berens P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 2019;21:1–16. doi: 10.1038/s41583-019-0242-1. PubMed DOI

Papiorek S., Junker R.R., Alves-dos-Santos I., Melo G.A.R., Amaral-Neto L.P., Sazima M., Wolowski M., Freitas L., Lunau K. Bees, birds and yellow flowers: Pollinator-dependent convergent evolution of UV patterns. Plant Biol. 2016;18:46–55. doi: 10.1111/plb.12322. PubMed DOI

Tocco C., Dacke M., Byrne M. Eye and wing structure closely reflects the visual ecology of dung beetles. J. Comp. Physiol. A. 2019;205:211–221. doi: 10.1007/s00359-019-01324-6. PubMed DOI

Catalán A., Macias-Munoz A., Briscoe A.D. Evolution of sex-biased gene expression and dosage compensation in the eye and brain of Heliconius butterflies. Mol. Biol. Evol. 2018;35:2120–2134. doi: 10.1093/molbev/msy111. PubMed DOI

Rutowski R.L., Warrant E.J. Visual field structure in the Empress Leilia, Asterocampa leilia (Lepidoptera, Nymphalidae): Dimensions and regional variation in acuity. J. Comp. Physiol. A. 2002;188:1–12. doi: 10.1007/s00359-001-0273-7. PubMed DOI

Briscoe A.D. Reconstructing the ancestral butterfly eye: Focus on the opsins. J. Exp. Biol. 2008;211:1805–1813. doi: 10.1242/jeb.013045. PubMed DOI

Pirih P., Arikawa K., Stavenga D.G. An expanded set of photoreceptors in the Eastern Pale Clouded Yellow butterfly, Colias erate. J. Comp. Physiol. A. 2010;196:501–517. doi: 10.1007/s00359-010-0538-0. PubMed DOI PMC

Cuthill I.C., Partridge J.C., Bennett A.T.D., Church S.C., Hart N.S., Hunt S. Ultraviolet vision in birds. Adv. Study Behav. 2000;29:159–214.

Cronin T.W., Bok M.J. Photoreception and vision in the ultraviolet. J. Exp. Biol. 2016;219:2790–2801. doi: 10.1242/jeb.128769. PubMed DOI

Briscoe A.D., Bybee S.M., Bernard G.D., Yuan F., Sison-Mangus M.P., Reed R.D., Warren A.D., Llorente-Bousquets J., Chiao C.C. Positive selection of a duplicated UV-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proc. Natl. Acad. Sci. USA. 2010;107:3628–3633. doi: 10.1073/pnas.0910085107. PubMed DOI PMC

Merry J.W., Morehouse N.I., Yturralde K., Rutowski R.L. The eyes of a patrolling butterfly: Visual field and eye structure in the Orange Sulphur, Colias eurytheme (Lepidoptera, Pieridae) J. Insect Physiol. 2006;52:240–248. doi: 10.1016/j.jinsphys.2005.11.002. PubMed DOI

Finkbeiner S.D., Briscoe A.D. True UV color vision in a female butterfly with two UV opsins. J. Exp. Biol. 2021;224:jeb242802. doi: 10.1242/jeb.242802. PubMed DOI

Meyer-Rochow V.B., Kashiwagi T., Eguchi E. Selective photoreceptor damage in four species of insects induced by experimental exposures to UV-irradiation. Micron. 2002;33:23–31. doi: 10.1016/S0968-4328(00)00073-1. PubMed DOI

Friberg M., Vongvanich N., Borg-Karlson A., Kemp D.J., Merilaita S., Wiklund C. Female mate choice determines reproductive isolation between sympatric butterflies. Behav. Ecol. Sociobiol. 2008;62:873–886. doi: 10.1007/s00265-007-0511-2. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...