• This record comes from PubMed

Impact of repetitive DNA on sex chromosome evolution in plants

. 2015 Sep ; 23 (3) : 561-70.

Language English Country Netherlands Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 26474787
DOI 10.1007/s10577-015-9496-2
PII: 10.1007/s10577-015-9496-2
Knihovny.cz E-resources

Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.

See more in PubMed

PLoS Biol. 2013;11(8):e1001643 PubMed

Chromosoma. 1999 Aug;108(4):266-70 PubMed

EMBO Rep. 2013 Sep;14(9):823-8 PubMed

Chromosoma. 2006 Oct;115(5):376-82 PubMed

New Phytol. 2014 Apr;202(2):662-78 PubMed

Mol Cytogenet. 2012 Jun 01;5(1):28 PubMed

Genome Res. 2011 Dec;21(12):2038-48 PubMed

Mol Genet Genomics. 2007 Dec;278(6):633-8 PubMed

Genome Biol Evol. 2013;5(4):769-82 PubMed

Genome Res. 2009 Aug;19(8):1419-28 PubMed

Curr Opin Struct Biol. 2011 Apr;21(2):249-56 PubMed

Mol Genet Genomics. 2013 Jun;288(5-6):277-84 PubMed

Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13716-21 PubMed

J Mol Evol. 2005 Mar;60(3):391-9 PubMed

PLoS One. 2012;7(2):e31898 PubMed

Nature. 2009 Oct 22;461(7267):1130-4 PubMed

BMC Genomics. 2015 Jul 25;16:546 PubMed

Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9233-7 PubMed

Nat Rev Genet. 2007 Dec;8(12):973-82 PubMed

Heredity (Edinb). 2009 Jun;102(6):533-41 PubMed

Nature. 2014 Apr 17;508(7496):411-5 PubMed

Genetica. 2009 Jan;135(1):87-93 PubMed

Mob DNA. 2010 Mar 08;1(1):11 PubMed

Science. 2009 Jun 12;324(5933):1451-4 PubMed

New Phytol. 2013 Jan;197(2):409-15 PubMed

Science. 2009 Jun 12;324(5933):1447-51 PubMed

BMC Genet. 2011 Oct 20;12:90 PubMed

Trends Plant Sci. 2010 Aug;15(8):471-8 PubMed

Chromosome Res. 2000;8(3):229-36 PubMed

Mob DNA. 2011 Mar 03;2(1):4 PubMed

Plant Mol Biol. 2000 Dec;44(6):723-32 PubMed

Plant Cell. 2003 Aug;15(8):1771-80 PubMed

J Virol. 1997 Jan;71(1):458-64 PubMed

Nat Rev Genet. 2007 Apr;8(4):272-85 PubMed

Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6472-7 PubMed

Nat Rev Microbiol. 2005 Nov;3(11):848-58 PubMed

Genome Res. 2008 Mar;18(3):359-69 PubMed

Gene. 2007 Apr 1;390(1-2):92-7 PubMed

Heredity (Edinb). 2013 Oct;111(4):314-20 PubMed

Mol Genet Genomics. 2006 Sep;276(3):254-63 PubMed

Nature. 2004 Jan 22;427(6972):348-52 PubMed

Genet Res. 1988 Dec;52(3):223-35 PubMed

PLoS Biol. 2014 Jul 01;12(7):e1001899 PubMed

Annu Rev Plant Biol. 2011;62:485-514 PubMed

Gene. 2008 Feb 15;409(1-2):72-82 PubMed

Plant Cell. 2005 Mar;17(3):665-75 PubMed

Nature. 1994 Sep 15;371(6494):215-20 PubMed

Cell. 2009 Feb 6;136(3):461-72 PubMed

Cytogenet Genome Res. 2014;143(1-3):87-95 PubMed

Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2322-7 PubMed

Curr Biol. 2011 Sep 27;21(18):R685-8 PubMed

Cytogenet Genome Res. 2014;142(1):59-65 PubMed

Mol Biol Evol. 2010 Apr;27(4):896-904 PubMed

Mol Genet Genomics. 2009 Mar;281(3):249-59 PubMed

Genome Res. 2008 Dec;18(12):1938-43 PubMed

BMC Genomics. 2014 May 04;15:335 PubMed

Chromosome Res. 2008;16(7):961-76 PubMed

Heredity (Edinb). 2005 Aug;95(2):118-28 PubMed

Plant Sci. 2015 Jul;236:126-35 PubMed

Nat Rev Genet. 2004 Jun;5(6):435-45 PubMed

Curr Biol. 2015 May 4;25(9):1234-40 PubMed

Science. 2015 May 1;348(6234):585-8 PubMed

PLoS Biol. 2010 Sep 28;8(9):null PubMed

Genetica. 2006 Sep-Nov;128(1-3):167-75 PubMed

Science. 2012 Sep 14;337(6100):1360-1364 PubMed

PLoS One. 2013;8(1):e45519 PubMed

PLoS Pathog. 2006 Jun;2(6):e60 PubMed

Cell. 2012 Sep 28;151(1):194-205 PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Sexy ways: approaches to studying plant sex chromosomes

. 2024 Sep 11 ; 75 (17) : 5204-5219.

Non-canonical bases differentially represented in the sex chromosomes of the dioecious plant Silene latifolia

. 2024 Jul 10 ; 75 (13) : 3849-3861.

A step forward in the genome characterization of the sugarcane borer, Diatraea saccharalis: karyotype analysis, sex chromosome system and repetitive DNAs through a cytogenomic approach

. 2022 Dec ; 131 (4) : 253-267. [epub] 20221011

The Sister Chromatid Division of the Heteromorphic Sex Chromosomes in Silene Species and Their Transmissibility towards the Mitosis

. 2022 Feb 22 ; 23 (5) : . [epub] 20220222

The Role of Satellite DNAs in Genome Architecture and Sex Chromosome Evolution in Crambidae Moths

. 2021 ; 12 () : 661417. [epub] 20210330

Fundamentally different repetitive element composition of sex chromosomes in Rumex acetosa

. 2021 Jan 01 ; 127 (1) : 33-47.

Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards

. 2020 May 11 ; 11 (5) : . [epub] 20200511

Sex and the flower - developmental aspects of sex chromosome evolution

. 2018 Dec 31 ; 122 (7) : 1085-1101.

DNA methylation and genetic degeneration of the Y chromosome in the dioecious plant Silene latifolia

. 2018 Jul 16 ; 19 (1) : 540. [epub] 20180716

The slowdown of Y chromosome expansion in dioecious Silene latifolia due to DNA loss and male-specific silencing of retrotransposons

. 2018 Feb 20 ; 19 (1) : 153. [epub] 20180220

Centromeric and non-centromeric satellite DNA organisation differs in holocentric Rhynchospora species

. 2017 Mar ; 126 (2) : 325-335. [epub] 20160919

Satellite DNA and Transposable Elements in Seabuckthorn (Hippophae rhamnoides), a Dioecious Plant with Small Y and Large X Chromosomes

. 2017 Jan 01 ; 9 (1) : 197-212.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...