High-throughput screening for the identification of new therapeutic options for metastatic pheochromocytoma and paraganglioma
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural
Grantová podpora
Intramural NIH HHS - United States
PubMed
24699253
PubMed Central
PMC3974653
DOI
10.1371/journal.pone.0090458
PII: PONE-D-13-38221
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- feochromocytom farmakoterapie genetika sekundární MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- myši MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádory nadledvin farmakoterapie genetika patologie MeSH
- objevování léků * MeSH
- paragangliom farmakoterapie genetika patologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- přehodnocení terapeutických indikací léčivého přípravku * MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky farmakologie MeSH
- průtoková cytometrie MeSH
- rychlé screeningové testy * MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- signální transdukce MeSH
- stanovení celkové genové exprese MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- messenger RNA MeSH
- nádorové biomarkery MeSH
- protinádorové látky MeSH
Drug repurposing or repositioning is an important part of drug discovery that has been growing in the last few years for the development of therapeutic options in oncology. We applied this paradigm in a screening of a library of about 3,800 compounds (including FDA-approved drugs and pharmacologically active compounds) employing a model of metastatic pheochromocytoma, the most common tumor of the adrenal medulla in children and adults. The collection of approved drugs was screened in quantitative mode, testing the compounds in compound-titration series (dose-response curves). Analysis of the dose-response screening data facilitated the selection of 50 molecules with potential bioactivity in pheochromocytoma cells. These drugs were classified based on molecular/cellular targets and signaling pathways affected, and selected drugs were further validated in a proliferation assay and by flow cytometric cell death analysis. Using meta-analysis information from molecular targets of the top drugs identified by our screening with gene expression data from human and murine microarrays, we identified potential drugs to be used as single drugs or in combination. An example of a combination with a synergistic effect is presented. Our study exemplifies a promising model to identify potential drugs from a group of clinically approved compounds that can more rapidly be implemented into clinical trials in patients with metastatic pheochromocytoma or paraganglioma.
Medical Oncology Branch National Cancer Institute NIH Bethesda Maryland United States of America
National Center for Advancing Translational Sciences NIH Rockville Maryland United States of America
National Human Genome Research Institute NIH Bethesda Maryland United States of America
Radiation Oncology Branch National Cancer Institute NIH Bethesda Maryland United States of America
Zobrazit více v PubMed
Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer statistics. CA Cancer J Clin 61: 69–90. PubMed
Karasek D, Shah U, Frysak Z, Stratakis C, Pacak K (2013) An update on the genetics of pheochromocytoma. J Hum Hypertens 27: 141–147. PubMed PMC
Buffet A, Venisse A, Nau V, Roncellin I, Boccio V, et al. (2012) A decade (2001–2010) of genetic testing for pheochromocytoma and paraganglioma. Horm Metab Res 44: 359–366. PubMed
Gimenez-Roqueplo AP, Dahia PL, Robledo M (2012) An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 44: 328–333. PubMed
Cascon A, Robledo M (2012) MAX and MYC: a heritable breakup. Cancer Res 72: 3119–3124. PubMed
Fliedner SM, Lehnert H, Pacak K (2010) Metastatic paraganglioma. Semin Oncol 37: 627–637. PubMed PMC
Adjalle R, Plouin PF, Pacak K, Lehnert H (2009) Treatment of malignant pheochromocytoma. Horm Metab Res 41: 687–696. PubMed PMC
Jimenez C, Rohren E, Habra MA, Rich T, Jimenez P, et al. (2013) Current and Future Treatments for Malignant Pheochromocytoma and Sympathetic Paraganglioma. Curr Oncol Rep PubMed
Adler JT, Meyer-Rochow GY, Chen H, Benn DE, Robinson BG, et al. (2008) Pheochromocytoma: current approaches and future directions. Oncologist 13: 779–793. PubMed
Shah U, Giubellino A, Pacak K (2012) Pheochromocytoma: implications in tumorigenesis and the actual management. Minerva Endocrinol 37: 141–156. PubMed PMC
Weir SJ, DeGennaro LJ, Austin CP (2012) Repurposing approved and abandoned drugs for the treatment and prevention of cancer through public-private partnership. Cancer Res 72: 1055–1058. PubMed PMC
Duenas-Gonzalez A, Garcia-Lopez P, Herrera LA, Medina-Franco JL, Gonzalez-Fierro A, et al. (2008) The prince and the pauper. A tale of anticancer targeted agents. Mol Cancer 7: 82. PubMed PMC
Collins FS (2011) Mining for therapeutic gold. Nat Rev Drug Discov 10: 397. PubMed PMC
King KS, Prodanov T, Kantorovich V, Fojo T, Hewitt JK, et al. (2011) Metastatic pheochromocytoma/paraganglioma related to primary tumor development in childhood or adolescence: significant link to SDHB mutations. J Clin Oncol 29: 4137–4142. PubMed PMC
Ayala-Ramirez M, Feng L, Johnson MM, Ejaz S, Habra MA, et al. (2011) Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators. J Clin Endocrinol Metab 96: 717–725. PubMed
Huang R, Southall N, Wang Y, Yasgar A, Shinn P, et al. (2011) The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med 3: 80ps16. PubMed PMC
Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, Landa I, Leandro-Garcia LJ, et al. (2011) Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat Genet 43: 663–667. PubMed
Burnichon N, Buffet A, Parfait B, Letouze E, Laurendeau I, et al. (2012) Somatic NF1 inactivation is a frequent event in sporadic pheochromocytoma. Hum Mol Genet 21: 5397–5405. PubMed
Martiniova L, Lai EW, Elkahloun AG, Abu-Asab M, Wickremasinghe A, et al. (2009) Characterization of an animal model of aggressive metastatic pheochromocytoma linked to a specific gene signature. Clin Exp Metastasis 26: 239–250. PubMed PMC
Inglese J, Auld DS, Jadhav A, Johnson RL, Simeonov A, et al. (2006) Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc Natl Acad Sci U S A 103: 11473–11478. PubMed PMC
Fliedner SM, Breza J, Kvetnansky R, Powers JF, Tischler AS, et al. (2010) Tyrosine hydroxylase, chromogranin A, and steroidogenic acute regulator as markers for successful separation of human adrenal medulla. Cell Tissue Res 340: 607–612. PubMed PMC
Team RDC (2010) R: A Language and Environment for Statistical Computing.
Schuetz CS, Bonin M, Clare SE, Nieselt K, Sotlar K, et al. (2006) Progression-specific genes identified by expression profiling of matched ductal carcinomas in situ and invasive breast tumors, combining laser capture microdissection and oligonucleotide microarray analysis. Cancer Res 66: 5278–5286. PubMed
Shankavaram U, Fliedner SM, Elkahloun AG, Barb JJ, Munson PJ, et al. (2013) Genotype and tumor locus determine expression profile of pseudohypoxic pheochromocytomas and paragangliomas. Neoplasia 15: 435–447. PubMed PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504. PubMed PMC
Wu G, Feng X, Stein L (2010) A human functional protein interaction network and its application to cancer data analysis. Genome Biol 11: R53. PubMed PMC
Chou TC, Talalay P (1984) Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27–55. PubMed
Chou TC (2006) Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 58: 621–681. PubMed
Giubellino A, Sourbier C, Lee MJ, Scroggins B, Bullova P, et al. (2013) Targeting heat shock protein 90 for the treatment of malignant pheochromocytoma. PLoS One 8: e56083. PubMed PMC
Nakane M, Takahashi S, Sekine I, Fukui I, Koizumi M, et al. (2003) Successful treatment of malignant pheochromocytoma with combination chemotherapy containing anthracycline. Ann Oncol 14: 1449–1451. PubMed
Gray J, Cubitt CL, Zhang S, Chiappori A (2012) Combination of HDAC and topoisomerase inhibitors in small cell lung cancer. Cancer Biol Ther 13: 614–622. PubMed PMC
Vicha A, Musil Z, Pacak K (2013) Genetics of pheochromocytoma and paraganglioma syndromes: new advances and future treatment options. Curr Opin Endocrinol Diabetes Obes 20: 186–191. PubMed PMC
Tischler AS, Powers JF, Alroy J (2004) Animal models of pheochromocytoma. Histol Histopathol 19: 883–895. PubMed
Hopewell R, Ziff EB (1995) The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner Max. Mol Cell Biol 15: 3470–3478. PubMed PMC
Powers JF, Evinger MJ, Tsokas P, Bedri S, Alroy J, et al. (2000) Pheochromocytoma cell lines from heterozygous neurofibromatosis knockout mice. Cell Tissue Res 302: 309–320. PubMed
DiMasi JA, Hansen RW, Grabowski HG (2003) The price of innovation: new estimates of drug development costs. J Health Econ 22: 151–185. PubMed
Sardana D, Zhu C, Zhang M, Gudivada RC, Yang L, et al. (2011) Drug repositioning for orphan diseases. Brief Bioinform 12: 346–356. PubMed
Yang C, Matro JC, Huntoon KM, Ye DY, Huynh TT, et al. (2012) Missense mutations in the human SDHB gene increase protein degradation without altering intrinsic enzymatic function. FASEB J 26: 4506–4516. PubMed PMC
Martiniova L, Perera SM, Brouwers FM, Alesci S, Abu-Asab M, et al. (2011) Increased uptake of [(1)(2)(3)I]meta-iodobenzylguanidine, [(1)F]fluorodopamine, and [(3)H]norepinephrine in mouse pheochromocytoma cells and tumors after treatment with the histone deacetylase inhibitors. Endocr Relat Cancer 18: 143–157. PubMed PMC
Pacak K, Sirova M, Giubellino A, Lencesova L, Csaderova L, et al. (2012) NF-kappaB inhibition significantly upregulates the norepinephrine transporter system, causes apoptosis in pheochromocytoma cell lines and prevents metastasis in an animal model. Int J Cancer PubMed PMC
Killian JK, Kim SY, Miettinen M, Smith C, Merino M, et al. (2013) Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov PubMed PMC