Both male and female meiosis contribute to non-Mendelian inheritance of parental chromosomes in interspecific plant hybrids (Lolium × Festuca)

. 2023 Apr ; 238 (2) : 624-636. [epub] 20230209

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36658468

Some interspecific plant hybrids show unequal transmission of chromosomes from parental genomes to the successive generations. It has been suggested that this is due to a differential behavior of parental chromosomes during meiosis. However, underlying mechanism is unknown. We analyzed chromosome composition of the F2 generation of Festuca × Lolium hybrids and reciprocal backcrosses to elucidate effects of male and female meiosis on the shift in parental genome composition. We studied male meiosis, including the attachment of chromosomes to the karyokinetic spindle and gene expression profiling of the kinetochore genes. We found that Lolium and Festuca homoeologues were transmitted differently to the F2 generation. Female meiosis led to the replacement of Festuca chromosomes by their Lolium counterparts. In male meiosis, Festuca univalents were attached less frequently to microtubules than Lolium univalents, lagged in divisions and formed micronuclei, which were subsequently eliminated. Genome sequence analysis revealed a number of non-synonymous mutations between copies of the kinetochore genes from Festuca and Lolium genomes. Furthermore, we found that outer kinetochore proteins NDC80 and NNF1 were exclusively expressed from the Lolium allele. We hypothesize that silencing of Festuca alleles results in improper attachment of Festuca chromosomes to karyokinetic spindle and subsequently their gradual elimination.

Zobrazit více v PubMed

Akera T, Chmatal L, Trimm E, Yang K, Aonbangkhen C, Chenoweth DM, Janke C, Schultz RM, Lampson MA. 2017. Spindle asymmetry drives non-Mendelian chromosome segregation. Science 358: 668-672.

Allipra S, Anirudhan K, Shivanandan S, Raghunathan A, Maruthachalam R. 2022. The kinetochore protein NNF1 has a moonlighting role in the vegetative development of Arabidopsis thaliana. The Plant Journal 109: 1064-1085.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403-410.

Alushin GM, Ramey VH, Pasqualato S, Ball DA, Grigorieff N, Musacchio A, Nogales E. 2010. The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 467: 805-810.

Buckler ES, Phelps-Durr TL, Buckler CSK, Dawe RK, Doebley JF, Holtsford TP. 1999. Meiotic drive of chromosomal knobs reshaped the maize genome. Genetics 153: 415-426.

Chen YM, Riley DJ, Chen PL, Lee WH. 1997. HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Molecular and Cellular Biology 17: 6049-6056.

Chmatal L, Gabriel SI, Mitsainas GP, Martinez-Vargas J, Ventura J, Searle JB, Schultz RM, Lampson MA. 2014. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Current Biology 24: 2295-2300.

Clark FE, Akera T. 2021. Unravelling the mystery of female meiotic drive: where we are. Open Biology 11: 210074.

Courret C, Chang CH, Wei KHC, Montchamp-Moreau C, Larracuente AM. 2019. Meiotic drive mechanisms: lessons from Drosophila. Proceedings of the Royal Society B: Biological Sciences 286: 20191430.

Dawe RK. 1998. Meiotic chromosome organization and segregation in plants. Annual Review of Plant Physiology and Plant Molecular Biology 49: 371-395.

Dong SW, Adams KL. 2011. Differential contributions to the transcriptome of duplicated genes in response to abiotic stresses in natural and synthetic polyploids. New Phytologist 190: 1045-1057.

Drinnenberg IA, Henikoff S, Malik HS. 2016. Evolutionary turnover of kinetochore proteins: a ship of Theseus? Trends in Cell Biology 26: 498-510.

Du Y, Dawe RK. 2007. Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Research 15: 767-775.

Edger PP, McKain MR, Bird KA, VanBuren R. 2018. Subgenome assignment in allopolyploids: challenges and future directions. Current Opinion in Plant Biology 42: 76-80.

Fishman L, Kelly JK. 2015. Centromere-associated meiotic drive and female fitness variation in Mimulus. Evolution 69: 1208-1218.

Fishman L, Saunders A. 2008. Centromere-associated female meiotic drive entails male fitness costs in monkeyflowers. Science 322: 1559-1562.

Foltz DR, Jansen LE, Bailey AO, Yates JR 3rd, Bassett EA, Wood S, Black BE, Cleveland DW. 2009. Centromere-specific assembly of CENP-A nucleosomes is mediated by HJURP. Cell 137: 472-484.

Frei D, Veekman E, Grogg D, Stoffel-Studer I, Morishima A, Shimizu-Inatsugi R, Yates S, Shimizu KK, Frey JE, Studer B et al. 2021. Ultralong Oxford Nanopore reads enable the development of a reference-grade perennial ryegrass genome assembly. Genome Biology and Evolution 13: evab159.

Glombik M, Bačovský V, Hobza R, Kopecký D. 2020. Competition of parental genomes in plant hybrids. Frontiers in Plant Science 11: 200.

Glombik M, Copetti D, Bartos J, Stoces S, Zwierzykowski Z, Ruttink T, Wendel JF, Duchoslav M, Doležel J, Studer B et al. 2021. Reciprocal allopolyploid grasses (Festuca × Lolium) display stable patterns of genome dominance. The Plant Journal 107: 1166-1182.

Henikoff S, Ahmad K, Malik HS. 2001. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293: 1098-1102.

Hurst GDD, Werren JH. 2001. The role of selfish genetic elements in eukaryotic evolution. Nature Reviews Genetics 2: 597-606.

Kixmoeller K, Allu PK, Black B. 2020. The centromere comes into focus: from CENP-A nucleosomes to kinetochore connections with the spindle. Open Biology 10: 200051.

Kopecký D, Horáková L, Duchoslav M, Doležel J. 2019. Selective elimination of parental chromatin from introgression cultivars of ×Festulolium (Festuca × Lolium). Sustainability 11: 3153.

Kopecký D, Scholten O, Majka J, Burger-Meijer K, Duchoslav M, Bartoš J. 2022. Genome dominance in Allium hybrids (A. cepa × A. roylei). Frontiers in Plant Science 13: 854127.

Kruger AN, Mueller JL. 2021. Mechanisms of meiotic drive in symmetric and asymmetric meiosis. Cellular and Molecular Life Sciences 78: 3205-3218.

Kubalova I, Nemeckova A, Weisshart K, Hribova E, Schubert V. 2021. Comparing super-resolution microscopy techniques to analyze chromosomes. International Journal of Molecular Sciences 22: 1903.

Le Goff S, Keçeli BN, Jeřábková H, Heckmann S, Rutten T, Cotterell S, Schubert V, Roitinger E, Mechtler K, Franklin FCH et al. 2020. The H3 histone chaperone NASPSIM3 escorts CenH3 in Arabidopsis. The Plant Journal 101: 71-86.

Li X, Dawe RK. 2009. Fused sister kinetochores initiate the reductional division in meiosis I. Nature Cell Biology 11: 1103-1108.

Lindholm AK, Dyer KA, Firman RC, Fishman L, Forstmeier W, Holman L, Johannesson H, Knief U, Kokko H, Larracuente AM et al. 2016. The ecology and evolutionary dynamics of meiotic drive. Trends in Ecology & Evolution 31: 315-326.

Loytynoja A. 2014. Phylogeny-aware alignment with Prank. Multiple Sequence Alignment Methods 1079: 155-170.

Lukaszewski AJ. 2010. Behavior of centromeres in univalents and centric misdivision in wheat. Cytogenetic and Genome Research 129: 97-109.

Lv J, Yu K, Wei J, Gui HP, Liu CX, Liang DW, Wang YL, Zhou HJ, Carlin R, Rich R et al. 2020. Generation of paternal haploids in wheat by genome editing of the centromeric histone CENH3. Nature Biotechnology 38: 1397-1401.

Maheshwari S, Ishii T, Brown CT, Houben A, Comai L. 2017. Centromere location in Arabidopsis is unaltered by extreme divergence in CENH3 protein sequence. Genome Research 27: 471-478.

Majka J, Majka M, Kopecký D, Doležel J. 2020. Cytogenetic insights into Festulolium. Biologia Plantarum 64: 598-603.

Mapleson D, Accinelli GG, Kettleborough G, Wright J, Clavijo BJ. 2017. Kat: a K-mer analysis toolkit to quality control NGS datasets and genome assemblies. Bioinformatics 33: 574-576.

Marimuthu MPA, Maruthachalam R, Bondada R, Kuppu S, Tan EH, Britt A, Chan SWL, Comai L. 2021. Epigenetically mismatched parental centromeres trigger genome elimination in hybrids. Science Advances 7: eabk1151.

Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR. 2002. Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Research 10: 349-357.

McCleland ML, Gardner RD, Kallio MJ, Daum JR, Gorbsky GJ, Burke DJ, Stukenberg PT. 2003. The highly conserved Ndc80 complex is required for kinetochore assembly, chromosome congression, and spindle checkpoint activity. Genes & Development 17: 101-114.

Medina-Pritchard B, Lazou V, Zou J, Byron O, Abad MA, Rappsilber J, Heun P, Jeyaprakash AA. 2020. Structural basis for centromere maintenance by Drosophila CENP-A chaperone CAL1. EMBO Journal 39: e103234.

Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D et al. 2013. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biology 14: R10.

Meraldi P, McAinsh AD, Rheinbay E, Sorger PK. 2006. Phylogenetic and structural analysis of centromeric DNA and kinetochore proteins. Genome Biology 7: R23.

Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J. 2004. Sequencing of a rice centromere uncovers active genes. Nature Genetics 36: 138-145.

Petrovic A, Keller J, Liu YH, Overlack K, John J, Dimitrova YN, Jenni S, van Gerwen S, Stege P, Wohlgemuth S et al. 2016. Structure of the MIS12 complex and molecular basis of its interaction with CENP-C at human kinetochores. Cell 167: 1028-1040.

Pidoux AL, Choi ES, Abbott JK, Liu X, Kagansky A, Castillo AG, Hamilton GL, Richardson W, Rappsilber J, He X et al. 2009. Fission yeast Scm3: a CENP-A receptor required for integrity of subkinetochore chromatin. Molecular Cell 33: 299-311.

Ravi M, Chan SWL. 2010. Haploid plants produced by centromere-mediated genome elimination. Nature 464: 615-618.

Ravi M, Kwong PN, Menorca RMG, Valencia JT, Ramahi JS, Stewart JL, Tran RK, Sundaresan V, Comai L, Chan SWL. 2010. The rapidly evolving centromere-specific histone has stringent functional requirements in Arabidopsis thaliana. Genetics 186: 461-471.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139-140.

Sanei M, Pickering R, Kumke K, Nasuda S, Houben A. 2011. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proceedings of the National Academy of Sciences, USA 108: E498-E505.

Schubert V, Lermontova I, Schubert I. 2014. Loading of the centromeric histone H3 variant during meiosis-how does it differ from mitosis? Chromosoma 123: 491-497.

Steiner FA, Henikoff S. 2015. Diversity in the organization of centromeric chromatin. Current Opinion in Genetics & Development 31: 28-35.

Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S. 2002. Centromeric localization and adaptive evolution of an Arabidopsis histone H3 variant. Plant Cell 14: 1053-1066.

Wang N, Gent JI, Dawe RK. 2021. Haploid induction by a maize cenh3 null mutant. Science Advances 7: eabe2299.

Wei KHC, Reddy HM, Rathnam C, Lee J, Lin DAN, Ji SQ, Mason JM, Clark AG, Barbash DA. 2017. A pooled sequencing approach identifies a candidate meiotic driver in Drosophila. Genetics 206: 451-465.

Yamada M, Goshima G. 2017. Mitotic spindle assembly in land plants: molecules and mechanisms. Biology 6: 6.

Yang ZH. 2007. Paml 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24: 1586-1591.

Zwierzykowski Z, Kosmala A, Zwierzykowska E, Jones N, Joks W, Bocianowski J. 2006. Genome balance in six successive generations of the allotetraploid Festuca pratensis × Lolium perenne. Theoretical and Applied Genetics 113: 539-547.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...