Gibberellin-induced parthenocarpy in fruits of a prickly pear mutant

. 2025 Aug 06 ; 44 (9) : 194. [epub] 20250806

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40770428

Grantová podpora
16-38-0023 Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg
M37-007 USAID-MERC
CZ.02.01.01/00/22_008/0004581 TowArds Next GENeration Crops (TANGENC)

Odkazy

PubMed 40770428
PubMed Central PMC12328502
DOI 10.1007/s00299-025-03568-w
PII: 10.1007/s00299-025-03568-w
Knihovny.cz E-zdroje

A parthenocarpic fruit mutant of prickly pear was isolated, revealing the role of GAs in parthenocarpic fruit development which is controlled by the GID-GA20ox/GA2ox genetic system modulating GA biosynthesis/regulation. We explored the intricate dynamics of parthenocarpic fruit development in prickly pear Opuntia ficus-indica (Cactaceae) through the investigation of fruits of the Beer Sheva1 (BS1) a parthenocarpic mutant and its revertant non-parthenocarpic stems. BS1 fruits, characterized by parthenocarpy and enlarged unfertilized ovules, provide a unique model for investigating the regulatory mechanisms underlying fruit development in prickly pear. We hypothesized that elevated levels of gibberellins (GAs) in BS1 ovaries induce parthenocarpic fruit development. By integrating different approaches, including GA quantification and expression analysis of ovaries from BS1 and revertant flowers, we elucidated the pivotal role of biosynthetic, catabolic, and regulatory GA genes in orchestrating ovule development. Notably, our investigation revealed a complex interplay between GA biosynthesis and catabolic genes, particularly GID1, GA20ox, and GA2ox, which significantly influenced GA levels in BS1 ovaries. Quantification of endogenous GAs confirmed higher levels of bioactive GA1, GA3, and GA4 in BS1 compared to revertant ovules, indicating the central role of GAs in parthenocarpy. Furthermore, application of the GA inhibitor paclobutrazol (PBZ) to BS1 flower buds resulted in the reversion of BS1 fruits to the progenitor phenotype containing viable seeds, thereby validating the critical involvement of GAs in seed development. High-throughput RNA-sequencing analysis identified a total of 7717 differentially expressed genes (DEGs) in BS1, among them GA-related genes. Overall, our findings shed light on the complex hormonal regulatory network governing parthenocarpic fruit development in prickly pear, paving the way for future studies aiming at understanding ovule development and development of commercially desirable seedless fruits.

Zobrazit více v PubMed

Abo-El-Ez AEDT, El-Shenawi MR, Hussien MA et al (2023) Effect of exogenous application of gibberellic acid (GA3) on seed size and fruit quality of prickly pear cactus (

Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477 PubMed PMC

Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:1–6 PubMed PMC

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol 57:289–300

Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527 PubMed

Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60 PubMed

Chai P, Dong S, Chai L et al (2019) Cytokinin-induced parthenocarpy of San Pedro type fig ( PubMed

Chen S, Wang XJ, Tan GF et al (2020) Gibberellin and the plant growth retardant paclobutrazol altered fruit shape and ripening in tomato. Protoplasma 257:853–861 PubMed

Cheng C, Xu X, Singer SD et al (2013) Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS ONE 8:e80044 PubMed PMC

Cisneros A, Garcia RB, Tel-Zur N (2011) Ovule morphology, embryogenesis and seed development in three

Corrales-García J, González-Martínez P (2001) Effect of gibberellic acid and (2-chloroethane) phosphonic acid on glochid abscission in cactus pear fruit (

Dorcey E, Urbez C, Blázquez MA et al (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in PubMed

Eriksson S, Böhlenius H, Moritz T et al (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and PubMed PMC

Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341 PubMed

Fleet CM, Yamaguchi S, Hanada A et al (2003) Overexpression of PubMed PMC

Fos M, Nuez F, García-Martínez JL (2000) The gene PubMed PMC

Fuentes S, Ljung K, Sorefan K et al (2012) Fruit growth in PubMed PMC

Galimba KD, Bullock DG, Dardick C et al (2019) Gibberellic acid induced parthenocarpic ‘Honeycrisp’ apples ( PubMed PMC

Gallego-Giraldo C, Hu J, Urbez C et al (2014) Role of the gibberellin receptors GID1 during fruit-set in PubMed PMC

García-Hurtado N, Carrera E, Ruiz-Rivero O et al (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813 PubMed

Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-seq data. BMC Bioinformatics 19:1–24 PubMed PMC

Giacomelli L, Rota-Stabelli O, Masuero D et al (2013) Gibberellin metabolism in PubMed PMC

Gomez MD, Barro-Trastoy D, Escoms E et al (2018) Gibberellins negatively modulate ovule number in plants. Development 145:dev163865 PubMed PMC

Gomez MD, Barro-Trastoy D, Fuster-Almunia C et al (2020) Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in PubMed PMC

Gupta SK, Barg R, Arazi T et al (2021) Tomato AGAMOUS-like6 parthenocarpy is facilitated by ovule integument reprogramming involving the growth regulator KLUH. Plant Physiol 185:969–984 PubMed PMC

Hedden P (2020) The current status of research on gibberellin biosynthesis. Plant Cell Physiol 61:1832–1849 PubMed PMC

Hirano K, Aya K, Hobo T et al (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450 PubMed PMC

Jaiswal V, Kakkar M, Kumari P et al (2022) Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience 25:105026 PubMed PMC

Jiang S, An H, Xu F et al (2020) Proteome analysis provides new insight into major proteins involved in gibberellin-induced fruit setting in triploid loquat ( PubMed

Kasahara RD, Notaguchi M, Nagahara S et al (2016) Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. Sci Adv 2:e1600554 PubMed PMC

Li J, Wu Z, Cui L et al (2014) Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber ( PubMed

Liu L, Wang Z, Liu J et al (2018) Histological, hormonal, and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. Hortic Res 5:1 PubMed PMC

Livera-Muñoz M, Muratalla-Lúa A, Flores-Almaraz R et al (2024) Parthenocarpic cactus pears (Opuntia spp.) with edible sweet peel and long shelf life. Horticulture 10:39

Magome H, Nomura T, Hanada A et al (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci USA 110:1947–1952 PubMed PMC

Marini L, Grassi C, Fino P et al (2020) The effects of gibberellic acid and emasculation treatments on seed and fruit production in the prickly pear (

Martí C, Orzáez D, Ellul P et al (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:865–876 PubMed

Martínez-Bello L, Moritz T, López-Díaz I (2015) Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. J Exp Bot 66:5897–5910 PubMed PMC

Mauseth JD (1977) Cytokinin- and gibberellic acid-induced effects on the determination and morphogenesis of leaf primordia in

McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297 PubMed PMC

Mejía A, Cantwell M (2003) Prickly pear fruit development and quality in relation to gibberellic acid applications to intact and emasculated flower buds. J Prof Assoc Cactus Dev 5:72–85

Mesejo C, Yuste R, Reig C et al (2016) Gibberellin reactivates and maintains ovary–wall cell division causing fruit set in parthenocarpic PubMed

Mignolli F, Vidoz ML, Mariotti L et al (2015) Induction of gibberellin 20-oxidases and repression of gibberellin 2β-oxidases in unfertilized ovaries of entire tomato mutant leads to accumulation of active gibberellins and parthenocarpic fruit formation. Plant Growth Regul 75:415–425

Nakajima M, Shimada A, Takashi Y et al (2006) Identification and characterization of PubMed

Neji EJ, Mahmoud KB, Alouane RBBH (2017) Effect of exogenous application of gibberellic acid (GA3) on seed and fruit development in a Tunisian spineless clone of the prickly pear cactus

Neumann P, Novák P, Hoštáková N et al (2019) Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 10:1–17 PubMed PMC

Niu XM, Xu YC, Li ZW et al (2019) Transposable elements drive rapid phenotypic variation in PubMed PMC

Pimenta LMJ, Lange T (2016) Ovary-derived precursor gibberellin A9 is essential for female flower development in cucumber. Development 143:4425–4429 PubMed

Ramakrishnan R, Zurgil U, Tarkowská D et al (2025) Brassinolide and BZR1 are up-regulated in a parthenocarpic mutant of prickly pear. Plant Cell Rep 44:131. 10.1007/s00299-025-03514-w PubMed PMC

Rieu I, Eriksson S, Powers SJ et al (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in PubMed PMC

Rittenberg D, Foster GL (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem 133:737–744

Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140 PubMed PMC

Sakamoto T, Miura K, Itoh H et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653 PubMed PMC

Serrani JC, Fos M, Atarés A et al (2007) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. J Plant Growth Regul 26:211–221

Sharif R, Su L, Chen X et al (2022) Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Hortic Res 9:uhab024 PubMed PMC

Shinozaki Y, Beauvoit BP, Takahara M et al (2020) Fruit setting rewires central metabolism via gibberellin cascades. Proc Natl Acad Sci 117:23970–23981 PubMed PMC

Talón M, Hedden P, Primo-Millo E (1990) Gibberellins in

Tatsuki M, Soeno K, Shimada Y et al (2018) Insertion of a transposon-like sequence in the 5′-flanking region of the PubMed

Ueguchi-Tanaka M, Ashikari M, Nakajima M et al (2005) Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 437:693–698 PubMed

Urbanová T, Tarkowská D, Novák O et al (2013) Analysis of gibberellins as free acids by ultra-performance liquid chromatography-tandem mass spectrometry. Talanta 112:85–94 PubMed

Varbanova M, Yamaguchi S, Yang Y et al (2007) Methylation of gibberellins by PubMed PMC

Wang H, Wu T, Liu J et al (2020) PubMed PMC

Weiss J, Nerd A, Mizrahi Y (1993) Vegetative parthenocarpy in the cactus pear

Wen B, Song W, Sun M et al (2019) Identification and characterization of cherry ( PubMed PMC

Yao JL, Dong YH, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1312 PubMed PMC

Zaru R, Orchard S, UniProt Consortium (2023) UniProt tools: BLAST, align, peptide search, and ID mapping. Curr Protoc 3: e697 PubMed PMC

Zentella R, Zhang ZL, Park M et al (2007) Global analysis of DELLA direct targets in early gibberellin signaling in PubMed PMC

Zhang ZL, Ogawa M, Fleet CM et al (2011) Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...