Gibberellin-induced parthenocarpy in fruits of a prickly pear mutant
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-38-0023
Ministerium für Ländliche Entwicklung, Umwelt und Landwirtschaft des Landes Brandenburg
M37-007
USAID-MERC
CZ.02.01.01/00/22_008/0004581
TowArds Next GENeration Crops (TANGENC)
PubMed
40770428
PubMed Central
PMC12328502
DOI
10.1007/s00299-025-03568-w
PII: 10.1007/s00299-025-03568-w
Knihovny.cz E-zdroje
- Klíčová slova
- Opuntia ficus-indica, Cacti, Gibberellins, Ovule, Parthenocarpy, Prickly pear,
- MeSH
- gibereliny * metabolismus farmakologie MeSH
- květy genetika účinky léků MeSH
- mutace genetika MeSH
- Opuntia * genetika růst a vývoj účinky léků metabolismus MeSH
- ovoce * genetika růst a vývoj účinky léků metabolismus MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- rostlinné proteiny genetika metabolismus MeSH
- vajíčko rostlin růst a vývoj genetika účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- gibereliny * MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
A parthenocarpic fruit mutant of prickly pear was isolated, revealing the role of GAs in parthenocarpic fruit development which is controlled by the GID-GA20ox/GA2ox genetic system modulating GA biosynthesis/regulation. We explored the intricate dynamics of parthenocarpic fruit development in prickly pear Opuntia ficus-indica (Cactaceae) through the investigation of fruits of the Beer Sheva1 (BS1) a parthenocarpic mutant and its revertant non-parthenocarpic stems. BS1 fruits, characterized by parthenocarpy and enlarged unfertilized ovules, provide a unique model for investigating the regulatory mechanisms underlying fruit development in prickly pear. We hypothesized that elevated levels of gibberellins (GAs) in BS1 ovaries induce parthenocarpic fruit development. By integrating different approaches, including GA quantification and expression analysis of ovaries from BS1 and revertant flowers, we elucidated the pivotal role of biosynthetic, catabolic, and regulatory GA genes in orchestrating ovule development. Notably, our investigation revealed a complex interplay between GA biosynthesis and catabolic genes, particularly GID1, GA20ox, and GA2ox, which significantly influenced GA levels in BS1 ovaries. Quantification of endogenous GAs confirmed higher levels of bioactive GA1, GA3, and GA4 in BS1 compared to revertant ovules, indicating the central role of GAs in parthenocarpy. Furthermore, application of the GA inhibitor paclobutrazol (PBZ) to BS1 flower buds resulted in the reversion of BS1 fruits to the progenitor phenotype containing viable seeds, thereby validating the critical involvement of GAs in seed development. High-throughput RNA-sequencing analysis identified a total of 7717 differentially expressed genes (DEGs) in BS1, among them GA-related genes. Overall, our findings shed light on the complex hormonal regulatory network governing parthenocarpic fruit development in prickly pear, paving the way for future studies aiming at understanding ovule development and development of commercially desirable seedless fruits.
Zobrazit více v PubMed
Abo-El-Ez AEDT, El-Shenawi MR, Hussien MA et al (2023) Effect of exogenous application of gibberellic acid (GA3) on seed size and fruit quality of prickly pear cactus (
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477 PubMed PMC
Bao W, Kojima KK, Kohany O (2015) Repbase update, a database of repetitive elements in eukaryotic genomes. Mob DNA 6:1–6 PubMed PMC
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B-Methodol 57:289–300
Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527 PubMed
Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60 PubMed
Chai P, Dong S, Chai L et al (2019) Cytokinin-induced parthenocarpy of San Pedro type fig ( PubMed
Chen S, Wang XJ, Tan GF et al (2020) Gibberellin and the plant growth retardant paclobutrazol altered fruit shape and ripening in tomato. Protoplasma 257:853–861 PubMed
Cheng C, Xu X, Singer SD et al (2013) Effect of GA3 treatment on seed development and seed-related gene expression in grape. PLoS ONE 8:e80044 PubMed PMC
Cisneros A, Garcia RB, Tel-Zur N (2011) Ovule morphology, embryogenesis and seed development in three
Corrales-García J, González-Martínez P (2001) Effect of gibberellic acid and (2-chloroethane) phosphonic acid on glochid abscission in cactus pear fruit (
Dorcey E, Urbez C, Blázquez MA et al (2009) Fertilization-dependent auxin response in ovules triggers fruit development through the modulation of gibberellin metabolism in PubMed
Eriksson S, Böhlenius H, Moritz T et al (2006) GA4 is the active gibberellin in the regulation of LEAFY transcription and PubMed PMC
Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341 PubMed
Fleet CM, Yamaguchi S, Hanada A et al (2003) Overexpression of PubMed PMC
Fos M, Nuez F, García-Martínez JL (2000) The gene PubMed PMC
Fuentes S, Ljung K, Sorefan K et al (2012) Fruit growth in PubMed PMC
Galimba KD, Bullock DG, Dardick C et al (2019) Gibberellic acid induced parthenocarpic ‘Honeycrisp’ apples ( PubMed PMC
Gallego-Giraldo C, Hu J, Urbez C et al (2014) Role of the gibberellin receptors GID1 during fruit-set in PubMed PMC
García-Hurtado N, Carrera E, Ruiz-Rivero O et al (2012) The characterization of transgenic tomato overexpressing gibberellin 20-oxidase reveals induction of parthenocarpic fruit growth, higher yield, and alteration of the gibberellin biosynthetic pathway. J Exp Bot 63:5803–5813 PubMed
Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-seq data. BMC Bioinformatics 19:1–24 PubMed PMC
Giacomelli L, Rota-Stabelli O, Masuero D et al (2013) Gibberellin metabolism in PubMed PMC
Gomez MD, Barro-Trastoy D, Escoms E et al (2018) Gibberellins negatively modulate ovule number in plants. Development 145:dev163865 PubMed PMC
Gomez MD, Barro-Trastoy D, Fuster-Almunia C et al (2020) Gibberellin-mediated RGA-LIKE1 degradation regulates embryo sac development in PubMed PMC
Gupta SK, Barg R, Arazi T et al (2021) Tomato AGAMOUS-like6 parthenocarpy is facilitated by ovule integument reprogramming involving the growth regulator KLUH. Plant Physiol 185:969–984 PubMed PMC
Hedden P (2020) The current status of research on gibberellin biosynthesis. Plant Cell Physiol 61:1832–1849 PubMed PMC
Hirano K, Aya K, Hobo T et al (2008) Comprehensive transcriptome analysis of phytohormone biosynthesis and signaling genes in microspore/pollen and tapetum of rice. Plant Cell Physiol 49:1429–1450 PubMed PMC
Jaiswal V, Kakkar M, Kumari P et al (2022) Multifaceted roles of GRAS transcription factors in growth and stress responses in plants. iScience 25:105026 PubMed PMC
Jiang S, An H, Xu F et al (2020) Proteome analysis provides new insight into major proteins involved in gibberellin-induced fruit setting in triploid loquat ( PubMed
Kasahara RD, Notaguchi M, Nagahara S et al (2016) Pollen tube contents initiate ovule enlargement and enhance seed coat development without fertilization. Sci Adv 2:e1600554 PubMed PMC
Li J, Wu Z, Cui L et al (2014) Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber ( PubMed
Liu L, Wang Z, Liu J et al (2018) Histological, hormonal, and transcriptomic reveal the changes upon gibberellin-induced parthenocarpy in pear fruit. Hortic Res 5:1 PubMed PMC
Livera-Muñoz M, Muratalla-Lúa A, Flores-Almaraz R et al (2024) Parthenocarpic cactus pears (Opuntia spp.) with edible sweet peel and long shelf life. Horticulture 10:39
Magome H, Nomura T, Hanada A et al (2013) CYP714B1 and CYP714B2 encode gibberellin 13-oxidases that reduce gibberellin activity in rice. Proc Natl Acad Sci USA 110:1947–1952 PubMed PMC
Marini L, Grassi C, Fino P et al (2020) The effects of gibberellic acid and emasculation treatments on seed and fruit production in the prickly pear (
Martí C, Orzáez D, Ellul P et al (2007) Silencing of DELLA induces facultative parthenocarpy in tomato fruits. Plant J 52:865–876 PubMed
Martínez-Bello L, Moritz T, López-Díaz I (2015) Silencing C19-GA 2-oxidases induces parthenocarpic development and inhibits lateral branching in tomato plants. J Exp Bot 66:5897–5910 PubMed PMC
Mauseth JD (1977) Cytokinin- and gibberellic acid-induced effects on the determination and morphogenesis of leaf primordia in
McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297 PubMed PMC
Mejía A, Cantwell M (2003) Prickly pear fruit development and quality in relation to gibberellic acid applications to intact and emasculated flower buds. J Prof Assoc Cactus Dev 5:72–85
Mesejo C, Yuste R, Reig C et al (2016) Gibberellin reactivates and maintains ovary–wall cell division causing fruit set in parthenocarpic PubMed
Mignolli F, Vidoz ML, Mariotti L et al (2015) Induction of gibberellin 20-oxidases and repression of gibberellin 2β-oxidases in unfertilized ovaries of entire tomato mutant leads to accumulation of active gibberellins and parthenocarpic fruit formation. Plant Growth Regul 75:415–425
Nakajima M, Shimada A, Takashi Y et al (2006) Identification and characterization of PubMed
Neji EJ, Mahmoud KB, Alouane RBBH (2017) Effect of exogenous application of gibberellic acid (GA3) on seed and fruit development in a Tunisian spineless clone of the prickly pear cactus
Neumann P, Novák P, Hoštáková N et al (2019) Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 10:1–17 PubMed PMC
Niu XM, Xu YC, Li ZW et al (2019) Transposable elements drive rapid phenotypic variation in PubMed PMC
Pimenta LMJ, Lange T (2016) Ovary-derived precursor gibberellin A9 is essential for female flower development in cucumber. Development 143:4425–4429 PubMed
Ramakrishnan R, Zurgil U, Tarkowská D et al (2025) Brassinolide and BZR1 are up-regulated in a parthenocarpic mutant of prickly pear. Plant Cell Rep 44:131. 10.1007/s00299-025-03514-w PubMed PMC
Rieu I, Eriksson S, Powers SJ et al (2008) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in PubMed PMC
Rittenberg D, Foster GL (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem 133:737–744
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140 PubMed PMC
Sakamoto T, Miura K, Itoh H et al (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653 PubMed PMC
Serrani JC, Fos M, Atarés A et al (2007) Effect of gibberellin and auxin on parthenocarpic fruit growth induction in the cv Micro-Tom of tomato. J Plant Growth Regul 26:211–221
Sharif R, Su L, Chen X et al (2022) Hormonal interactions underlying parthenocarpic fruit formation in horticultural crops. Hortic Res 9:uhab024 PubMed PMC
Shinozaki Y, Beauvoit BP, Takahara M et al (2020) Fruit setting rewires central metabolism via gibberellin cascades. Proc Natl Acad Sci 117:23970–23981 PubMed PMC
Talón M, Hedden P, Primo-Millo E (1990) Gibberellins in
Tatsuki M, Soeno K, Shimada Y et al (2018) Insertion of a transposon-like sequence in the 5′-flanking region of the PubMed
Ueguchi-Tanaka M, Ashikari M, Nakajima M et al (2005) Gibberellin insensitive dwarf1 encodes a soluble receptor for gibberellin. Nature 437:693–698 PubMed
Urbanová T, Tarkowská D, Novák O et al (2013) Analysis of gibberellins as free acids by ultra-performance liquid chromatography-tandem mass spectrometry. Talanta 112:85–94 PubMed
Varbanova M, Yamaguchi S, Yang Y et al (2007) Methylation of gibberellins by PubMed PMC
Wang H, Wu T, Liu J et al (2020) PubMed PMC
Weiss J, Nerd A, Mizrahi Y (1993) Vegetative parthenocarpy in the cactus pear
Wen B, Song W, Sun M et al (2019) Identification and characterization of cherry ( PubMed PMC
Yao JL, Dong YH, Morris BA (2001) Parthenocarpic apple fruit production conferred by transposon insertion mutations in a MADS-box transcription factor. Proc Natl Acad Sci USA 98:1306–1312 PubMed PMC
Zaru R, Orchard S, UniProt Consortium (2023) UniProt tools: BLAST, align, peptide search, and ID mapping. Curr Protoc 3: e697 PubMed PMC
Zentella R, Zhang ZL, Park M et al (2007) Global analysis of DELLA direct targets in early gibberellin signaling in PubMed PMC
Zhang ZL, Ogawa M, Fleet CM et al (2011) Scarecrow-like 3 promotes gibberellin signaling by antagonizing master growth repressor DELLA in PubMed PMC