Brassinolide and BZR1 are up-regulated in a parthenocarpic mutant of prickly pear
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004581
European Society of Regional Anaesthesia and Pain Therapy
16-38-0023
Israel Ministry of Agriculture
PubMed
40407932
PubMed Central
PMC12102005
DOI
10.1007/s00299-025-03514-w
PII: 10.1007/s00299-025-03514-w
Knihovny.cz E-zdroje
- Klíčová slova
- Opuntia ficus-indica, BZR1, Brassinolide, Brassinosteroids, Cacti, Fruit, Ovule, Parthenocarpy, Prickly pear,
- MeSH
- brassinosteroidy * metabolismus MeSH
- květy genetika MeSH
- mutace genetika MeSH
- Opuntia * genetika metabolismus růst a vývoj MeSH
- ovoce genetika růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné proteiny * genetika metabolismus MeSH
- steroidy heterocyklické * metabolismus MeSH
- upregulace genetika MeSH
- vajíčko rostlin genetika metabolismus růst a vývoj MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- brassinolide MeSH Prohlížeč
- brassinosteroidy * MeSH
- rostlinné proteiny * MeSH
- steroidy heterocyklické * MeSH
Parthenocarpic fruit development in prickly pear involves up-regulation of the transcription factor BZR1 and increased levels of brassinolide in developing ovules. We explored the complex process of parthenocarpic fruit development in prickly pear Opuntia ficus-indica (Cactaceae) by comparing the fruits of the parthenocarpic Beer Sheva1 (BS1) mutant and revertant non-parthenocarpic fruits. The mutant plants produce flowers with enlarged ovules that develop into degenerated seed-like stony structures. Pollen tubes fail to penetrate the ovule, resulting in the formation of lignified and hard seed coat brown in colour. Some new stems on BS1 plants bear normal revertant flowers containing small and viable fertilized ovules. BS1 thus provides a unique model for elucidating the regulatory mechanisms underlying parthenocarpy in prickly pear. Our working hypothesis was that parthenocarpy is induced by elevated levels of brassinolide in the ovules of BS1. By comparing transcriptomes, we identified 7717 differentially expressed genes between BS1 and the revertant among them brassinosteroid-related genes. Quantification of the brassinosteroids confirmed higher brassinolide levels and up-regulation of the brassinosteroid positive regulator BRASSINAZOLE RESISTANT1 (BZR1) in BS1 ovules compared to revertant ovules displaying normal seed development. Thereby, implicating the involvement of brassinolide in ovule development, fruit phenology, and parthenocarpy. The early flowering and fruit ripening observed in BS1 support our hypothesis that brassinolide promotes parthenocarpic fruit development and ripening.
Zobrazit více v PubMed
Bai MY, Zhang LY, Gampala SS et al (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proce Nat Acad Sci USA 104:13839–13844 PubMed PMC
Bankevich A, Nurk S, Antipov D et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comp Biol 19:455–477 PubMed PMC
Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Stat Soci, Series B, (Methodol) 57:289–300
Bishop JG (2003) Brassinosteroid mutants of crops. J Plant Grow Regul 22:325–335 PubMed
Bray NL, Pimentel H, Melsted P et al (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525–527 PubMed
Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60 PubMed
Depuydt S, Hardtke CS (2011) Hormone signaling crosstalk in plant growth regulation. Curr Biol 21:R365–R373 PubMed
Domagalska MA, Sarnowska E, Nagy F et al (2010) Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in PubMed PMC
Fu FQ, Mao WH, Shi K et al (2008) A role of brassinosteroids in early fruit development in cucumber. J Exp Bot 59:2299–2308 PubMed PMC
Ge SX, Son EW, Yao R (2018) iDEP: an integrated web application for differential expression and pathway analysis of RNA-Seq data. BMC Bioinform 19:1–24 PubMed PMC
Gendron JM, Liu JS, Fan M et al (2012) Brassinosteroids regulate organ boundary formation in the shoot apical meristem of PubMed PMC
González-García MP, Vilarrasa-Blasi J, Zhiponova M et al (2011) Brassinosteroids control meristem size by promoting cell cycle progression in PubMed
Gupta SK, Barg R, Arazi T (2021) Tomato agamous-like6 parthenocarpy is facilitated by ovule integument reprogramming involving the growth regulator KLUH. Plant Physiol 185:969–984 PubMed PMC
Gutiérrez-Villamil DA, Magnitskiy S, Balaguera-López HE (2024) Physiological and molecular functions of brassinosteroids during fruit development, ripening, and postharvest damage of horticultural products: a review. Postharvest Biol Technol 214:112984
He JX, Gendron JM, Sun Y et al (2005) BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634–1638 PubMed PMC
Huang HY, Jiang WB, Hu YW et al (2013) BR signal influences PubMed
Jia D, Chen LG, Yin G et al (2020) Brassinosteroids regulate outer ovule integument growth in part via the control of INNER NO OUTER by BRASSINOZOLE-RESISTANT family transcription factors. J Integrative Plant Biol 62:1093–1111 PubMed
Jiang WB, Huang HY, Hu YW et al (2013) Brassinosteroid regulates seed size and shape in PubMed PMC
Kour J, Kohli SK, Khanna K et al (2021) Brassinosteroid signaling, crosstalk, and physiological functions in plants under heavy metal stress. Front Plant Sci 12:608061 PubMed PMC
Li J, Wu Z, Cui L et al (2014) Transcriptome comparison of global distinctive features between pollination and parthenocarpic fruit set reveals transcriptional phytohormone cross-talk in cucumber ( PubMed
Li A, Wu X, Huang Y et al (2024) The involvement of brassinolides in fruit ripening: crosstalk with plant growth regulators and transcription factors. Food Qual Saf 8:1–9
Lima RB, Figueiredo DD (2024) Sex on steroids: how brassinosteroids shape reproductive development in flowering plants. Plant Cell Physiol 65:1581–1600 PubMed PMC
Liu L, Jia C, Zhang M et al (2014) Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol J 12:105–115 PubMed
McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucl Acids Res 40:4288–4297 PubMed PMC
Mesejo C, Yuste R, Reig C et al (2016) Gibberellin reactivates and maintains ovary-wall cell division causing fruit set in parthenocarpic PubMed
Nomura T, Ueno M, Yamada Y et al (2007) Roles of brassinosteroids and related mRNAs in pea seed growth and germination. Plant Physiol 143:1680–1688 PubMed PMC
Oh MH, Honey SH, Tax FE (2020) The control of cell expansion, cell division, and vascular development by brassinosteroids: a historical perspective. Int J Molec Sci 21:1743 PubMed PMC
Park CH, Kim TW, Son SH et al (2010) Brassinosteroids control AtEXPA5 gene expression in PubMed
Rao X, Dixon RA (2017) Brassinosteroid-mediated cell wall remodeling in grasses under abiotic stress. Front Plant Sci 8:806 PubMed PMC
Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140 PubMed PMC
Sun Y, Fan XY, Cao DM et al (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in PubMed PMC
Symons GM, Reid JB (2004) Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol 135:2196–2206 PubMed PMC
Tarkowská D, Novák O, Oklestkova J et al (2016) The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal Bioanal Chem 408:6799–6812 PubMed
Tian H, Lv B, Ding T et al (2018) Auxin-BR interaction regulates plant growth and development. Front Plant Sci 8:2256 PubMed PMC
Tong H, Xiao Y, Liu D et al (2014) Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26:4376–4393 PubMed PMC
Wang ZY, Bai MY, Oh E et al (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Ann Rev Gen 46:701–724 PubMed
Weiss J, Nerd A, Mizrahi J (1993) Vegetative parthenocarpy in the cactus pear
Ye QQ, Zhu WJ, Lei L et al (2010) Brassinosteroids control male fertility by regulating the expression of key genes involved in PubMed PMC
Ye H, Li L, Yin Y (2011) Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J Integr Plant Biol 53:455–468 PubMed
Yu T, Ai G, Xie Q et al (2022) Regulation of tomato fruit elongation by transcription factor BZR1.7 through promotion of SUN gene expression. Hort Res 9:uhac121 PubMed PMC
Zaru R, Orchard S (2023) UniProt tools: blast, align, peptide search, and ID mapping. Curr Protoc 3:e697 PubMed PMC
Gibberellin-induced parthenocarpy in fruits of a prickly pear mutant