Brassinosteroid Signaling, Crosstalk and, Physiological Functions in Plants Under Heavy Metal Stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
33841453
PubMed Central
PMC8024700
DOI
10.3389/fpls.2021.608061
Knihovny.cz E-zdroje
- Klíčová slova
- BR biosynthetic pathway, BR signaling, heavy metal, hormone crosstalk, stress, transcription,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Brassinosteroids (BRs) are group of plant steroidal hormones that modulate developmental processes and also have pivotal role in stress management. Biosynthesis of BRs takes place through established early C-6 and late C-6 oxidation pathways and the C-22 hydroxylation pathway triggered by activation of the DWF4 gene that acts on multiple intermediates. BRs are recognized at the cell surface by the receptor kinases, BRI1 and BAK1, which relay signals to the nucleus through a phosphorylation cascade involving phosphorylation of BSU1 protein and proteasomal degradation of BIN2 proteins. Inactivation of BIN2 allows BES1/BZR1 to enter the nucleus and regulate the expression of target genes. In the whole cascade of signal recognition, transduction and regulation of target genes, BRs crosstalk with other phytohormones that play significant roles. In the current era, plants are continuously exposed to abiotic stresses and heavy metal stress is one of the major stresses. The present study reveals the mechanism of these events from biosynthesis, transport and crosstalk through receptor kinases and transcriptional networks under heavy metal stress.
Department of Agriculture Food and Environment University of Pisa Pisa Italy
Department of Botanical and Environmental Sciences Guru Nanak Dev University Amritsar India
Department of Botany and Plant Physiology Czech University of Life Sciences Prague Prague Czechia
Department of Plant Physiology Slovak University of Agriculture Nitra Slovakia
Department of Zoology Guru Nanak Dev University Amritsar India
State Key Laboratory of Subtropical Silviculture Zhejiang A and F University Hangzhou China
Zobrazit více v PubMed
Achard P., Renou J. P., Berthomé R., Harberd N. P., Genschik P. (2008). Plant DELLAs restrain growth and promote survival of adversity by reducing the levels of reactive oxygen species. Curr. Biol. 18 656–660. 10.1016/j.cub.2008.04.034 PubMed DOI
Ahammed G. J., Li X., Liu A., Chen S. (2020). Brassinosteroids in Plant Tolerance to Abiotic Stress. J. Plant Growth Regul. 2020 1–14.
Albrecht C., Russinova E., Kemmerling B., Kwaaitaal M., de Vries S. C. (2008). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE proteins serve brassinosteroid-dependent and-independent signaling pathways. Plant Physiol. 148 611–619. 10.1104/pp.108.123216 PubMed DOI PMC
Ali B. (2019). Brassinosteroids: The Promising Plant Growth Regulators in Horticulture. In Brassinosteroids: Plant Growth and Development. Singapore: Springer, 349–365.
Anwar A., Liu Y., Dong R., Bai L., Yu X., Li Y. (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biol. Res. 51:46. PubMed PMC
Anwar R., Mattoo A. K., Handa A. K. (2015). Polyamine interactions with plant hormones: crosstalk at several levels. In Polyamines. Tokyo: Springer, 267–302.
Bai M. Y., Shang J. X., Oh E., Fan M., Bai Y., Zentella R., et al. (2012). Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nat. Cell Biol. 14, 810–817. 10.1038/ncb2546 PubMed DOI PMC
Bajguz A. (2010). An enhancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metals stress. Environ. Exp. Bot. 68 175–179. 10.1016/j.envexpbot.2009.11.003 DOI
Bajguz A., Tretyn A. (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochem 62 1027–1046. 10.1016/s0031-9422(02)00656-8 PubMed DOI
Bajguz A. (2019). Brassinosteroids in microalgae: application for growth improvement and protection against abiotic stresses. In Brassinosteroids: Plant Growth and Development. Singapore: Springer, 45–58.
Bajguz A. (2002). Brassinosteroids and lead as stimulators of phytochelatins synthesis in Chlorella vulgaris. J. Plant Physiol. 159 321–324. 10.1078/0176-1617-00654 DOI
Bar M., Sharfman M., Ron M., Avni A. (2010). BAK1 is required for the attenuation of ethylene-inducing xylanase (Eix)-induced defense responses by the decoy receptor LeEix1. Plant J. 63 791–800. 10.1111/j.1365-313x.2010.04282.x PubMed DOI
Barbafieri M., Tassi E. (2011). Brassinosteroids for phytoremediation application. In Brassinosteroids: a class of plant hormone. Dordrecht: Springer, 403–437.
Bartwal A., Arora S. (2020). Brassinosteroids: Molecules with Myriad Roles. Co-Evol. Sec. Metabol. 2020 869–895. 10.1007/978-3-319-96397-6_18 DOI
Belin C., de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A. (2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol. 141 1316–1327. 10.1104/pp.106.079327 PubMed DOI PMC
Belkhadir Y., Jaillais Y., Epple P., Balsemão-Pires E., Dangl J. L., Chory J. (2012). Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc. Natl. Acad. Sci. 109 297–302. 10.1073/pnas.1112840108 PubMed DOI PMC
Bhanu A. N. (2019). Brassinosteroids: Relevance in Biological Activities of Plants and Agriculture. J. Plant Sci. Res. 35 1–15. 10.32381/jpsr.2019.35.01.1 DOI
Bishop G. J. (2007). Refining the plant steroid hormone biosynthesis pathway. Trends Plant Sci. 12 377–380. 10.1016/j.tplants.2007.07.001 PubMed DOI
Bücker-Neto L., Paiva A. L. S., Machado R. D., Arenhart R. A., Margis-Pinheiro M. (2017). Interactions between plant hormones and heavy metals responses. Genet. Mol. Bio. 40 373–386. 10.1590/1678-4685-gmb-2016-0087 PubMed DOI PMC
Caño-Delgado A., Yin Y., Yu C., Vafeados D., Mora-García S., Cheng J. C., et al. (2004). BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis. Development 131 5341–5351. 10.1242/dev.01403 PubMed DOI
Chaiwanon J., Wang Z. Y. (2015). Spatiotemporal brassinosteroid signaling and antagonism with auxin pattern stem cell dynamics in Arabidopsis roots. Curr. Biol. 25 1031–1042. 10.1016/j.cub.2015.02.046 PubMed DOI PMC
Chakraborty N., Sharma P., Kanyuka K., Pathak R. R., Choudhury D., Hooley R., et al. (2015). G-protein α-subunit (GPA1) regulates stress, nitrate and phosphate response, flavonoid biosynthesis, fruit/seed development and substantially shares GCR1 regulation in A. thaliana. Plant Mol. Biol. 89 559–576. 10.1007/s11103-015-0374-2 PubMed DOI
Chen J., Fei K., Zhang W., Wang Z., Zhang J., Yang J. (2021). Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo-thermosensitive genetic male-sterile rice lines. Crop J. 9, 109–119.
Chen L. G., Gao Z., Zhao Z., Liu X., Li Y., Zhang Y., et al. (2019). BZR1 family transcription factors function redundantly and indispensably in BR signaling but exhibit BRI1-independent function in regulating anther development in Arabidopsis. Mole. Plant 12 1408–1415. 10.1016/j.molp.2019.06.006 PubMed DOI
Cheng X., Gou X., Yin H., Mysore K. S., Li J., Wen J. (2017). Functional characterisation of brassinosteroid receptor MtBRI1 in Medicago truncatula. Sci. Rep. 7 1–12. PubMed PMC
Chi C., Li X., Fang P., Xia X., Shi K., Zhou Y., et al. (2020). Brassinosteroids act as a positive regulator of NBR1-dependent selective autophagy in response to chilling stress in tomato. J. Exp. Bot. 71, 1092–1106. 10.1093/jxb/erz466 PubMed DOI
Choudhary S. P., Kanwar M., Bhardwaj R., Yu J. Q., Tran L. S. P. (2012a). Chromium stress mitigation by polyamine-brassinosteroid application involves phytohormonal and physiological strategies in Raphanus sativus L. PLoS One 7:e33210. 10.1371/journal.pone.0033210 PubMed DOI PMC
Choudhary S. P., Oral H. V., Bhardwaj R., Yu J. Q., Tran L. S. P. (2012b). Interaction of brassinosteroids and polyamines enhances copper stress tolerance in Raphanus sativus. J. Exp. Bot. 63 5659–5675. 10.1093/jxb/ers219 PubMed DOI PMC
Chung Y., Choe S. (2013). The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit. Rev. Plant Sci. 32 396–410. 10.1080/07352689.2013.797856 DOI
Chung Y., Maharjan P. M., Lee O., Fujioka S., Jang S., Kim B., et al. (2011). Auxin stimulates DWARF4 expression and brassinosteroid biosynthesis in Arabidopsis. Plant J. 66 564–578. 10.1111/j.1365-313x.2011.04513.x PubMed DOI
Clouse S. D. (2011). Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell. 23 1219–1230. 10.1105/tpc.111.084475 PubMed DOI PMC
Clouse S. D., Sasse J. M. (1998). Brassinosteroids: essential regulators of plant growth and development. Annu. Rev. Plant Biol. 49 427–451. 10.1146/annurev.arplant.49.1.427 PubMed DOI
Dalyan E., Yüzbaşıoğlu E., Akpınar I. (2018). Effect of 24-epibrassinolide on antioxidative defence system against lead-induced oxidative stress in the roots of Brassica juncea L. seedlings. Russian J. Plant Physiol. 65 570–578. 10.1134/s1021443718040118 DOI
Daszkowska-Golec A., Szarejko I. (2013). Open or close the gate–stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 4:138. PubMed PMC
Divi U. K., Rahman T., Krishna P. (2010). Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Bio. 10:151. 10.1186/1471-2229-10-151 PubMed DOI PMC
dos Santos L. R., da Silva B. R. S., Pedron T., Batista B. L., da Silva, Lobato A. K. (2020). 24-Epibrassinolide improves root anatomy and antioxidant enzymes in soybean plants subjected to zinc stress. J. Soil Sci. Plant Nutri. 20 105–124.
Fariduddin Q., Ahmed M., Mir B. A., Yusuf M., Khan T. A. (2015). 24-Epibrassinolide mitigates the adverse effects of manganese induced toxicity through improved antioxidant system and photosynthetic attributes in Brassica juncea. Env. Sci. and Pollut. Res. 22 11349–11359. 10.1007/s11356-015-4339-4 PubMed DOI
Filová A., Sytar O., Krivosudská E. (2013). Effects of brassinosteroid on the induction of physiological changes in Helianthus annuus L. under copper stress. Acta Uni. Agri. et Silvi. Mend. Brun. 61 623–629. 10.11118/actaun201361030623 DOI
Fujii H., Zhu J. K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. 106 8380–8385. 10.1073/pnas.0903144106 PubMed DOI PMC
Fujioka S., Sakurai A. (1997). Brassinosteroids. Nat. Prod. Rep. 14 1–10. 10.1007/978-94-017-0948-4_1 PubMed DOI
Fujioka S., Yokota T. (2003). Biosynthesis and metabolism of brassinosteroids. Ann. Rev. Plant Biol. 54 137–164. PubMed
Fujioka S., Noguchi T., Yokota T., Takatsuto S., Yoshida S. (1998). Brassinosteroids in Arabidopsis thaliana. Phytochem. 48 595–599. 10.1016/s0031-9422(98)00065-x PubMed DOI
Gray W. M., Östin A., Sandberg G., Romano C. P., Estelle M. (1998). High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc. Natl. Acad. Sci. 95 7197–7202. 10.1073/pnas.95.12.7197 PubMed DOI PMC
Gui J., Zheng S., Liu C., Shen J., Li J., Li L. (2016). OsREM4. 1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev. Cell. 38 201–213. 10.1016/j.devcel.2016.06.011 PubMed DOI
Guo H., Li L., Aluru M., Aluru S., Yin Y. (2013). Mechanisms and networks for brassinosteroid regulated gene expression. Curr. Opin. Plant Bio. 16 545–553. 10.1016/j.pbi.2013.08.002 PubMed DOI
Guo R., Qian H., Shen W., Liu L., Zhang M., Cai C., et al. (2013). BZR1 and BES1 participate in regulation of glucosinolate biosynthesis by brassinosteroids in Arabidopsis. J. Exp. Bot. 64 2401–2412. 10.1093/jxb/ert094 PubMed DOI PMC
Guo Y. F., Shan W., Liang S. M., Wu C. J., Wei W., Chen J. Y., et al. (2019). MaBZR1/2 act as transcriptional repressors of ethylene biosynthetic genes in banana fruit. Physio. Planta. 165 555–568. 10.1111/ppl.12750 PubMed DOI
Guo Z., Fujioka S., Blancaflor E. B., Miao S., Gou X., Li J. (2010). TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell. 22 1161–1173. 10.1105/tpc.109.069203 PubMed DOI PMC
Hacham Y., Sela A., Friedlander L., Savaldi-Goldstein S. (2012). BRI1 activity in the root meristem involves post-transcriptional regulation of PIN auxin efflux carriers. Plant Sign. Behav. 7 68–70. 10.4161/psb.7.1.18657 PubMed DOI PMC
Hagen G., Guilfoyle T. (2002). Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Bio. 49 373–385. 10.1007/978-94-010-0377-3_9 PubMed DOI
Hansen M., Chae H. S., Kieber J. J. (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 57 606–614. 10.1111/j.1365-313x.2008.03711.x PubMed DOI PMC
Hartmann M. A. (1998). Plant sterols and the membrane environment. Trends Plant Sci. 3 170–175. 10.1016/s1360-1385(98)01233-3 DOI
Hartwig T., Corvalan C., Best N. B., Budka J. S., Zhu J.-Y., et al. (2012). Propiconazole Is a Specific and Accessible Brassinosteroid (BR) Biosynthesis Inhibitor for Arabidopsis and Maize. PLoS One. 7:e36625. 10.1371/journal.pone.0036625 PubMed DOI PMC
Hasan S. A., Hayat S., Ahmad A. (2011). Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84 1446–1451. 10.1016/j.chemosphere.2011.04.047 PubMed DOI
Hayat S., Alyemeni M. N., Hasan S. A. (2012). Foliar spray of brassinosteroid enhances yield and quality of Solanum lycopersicum under cadmium stress. Saudi J. Bio. Sci. 19 325–335. 10.1016/j.sjbs.2012.03.005 PubMed DOI PMC
He J. X., Gendron J. M., Sun Y., Gampala S. S., Gendron N., Sun C. Q., et al. (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307 1634–1638. 10.1126/science.1107580 PubMed DOI PMC
He K., Gou X., Yuan T., Lin H., Asami T., Yoshida S., et al. (2007). BAK1 and BKK1 regulate brassinosteroid dependent growth and brassinosteroid-independent cell-death pathways. Curr. Biol. 17 1109–1115. 10.1016/j.cub.2007.05.036 PubMed DOI
Heldt H. W., Piechulla B. (2011). In the photorespiratory pathway phosphoglycolate formed by the oxygenase activity of Rubisco is recycled. Plant Biochem. London: Academic Press, 193–209.
Hu S., Wang C., Sanchez D. L., Lipka A. E., Liu P., Yin Y., et al. (2017). Gibberellins promote brassinosteroids action and both increase heterosis for plant height in maize (Zea mays L.). Front. Plant Sci. 8:1039. PubMed PMC
Huangfu J., Li J., Li R., Ye M., Kuai P., Zhang T., et al. (2016). The transcription factor OsWRKY45 negatively modulates the resistance of rice to the brown planthopper Nilaparvata lugens. Int. J. Mol. Sci. 17:697. 10.3390/ijms17060697 PubMed DOI PMC
Hussain A., Nazir F., Fariduddin Q. (2019). 24-epibrassinolide and spermidine alleviate Mn stress via the modulation of root morphology, stomatal behavior, photosynthetic attributes and antioxidant defense in Brassica juncea. Physio. Mol. Bio. Plants. 25 905–919. 10.1007/s12298-019-00672-6 PubMed DOI PMC
Ibañez C., Delker C., Martinez C., Bürstenbinder K., Janitza P., Lippmann R., et al. (2018). Brassinosteroids dominate hormonal regulation of plant thermo morphogenesis via BZR1. Curr. Biol. 28 303–310. 10.1016/j.cub.2017.11.077 PubMed DOI
Jaillais Y., Hothorn M., Belkhadir Y., Dabi T., Nimchuk Z. L., Meyerowitz E. M., et al. (2011). Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev. 25 232–237. 10.1101/gad.2001911 PubMed DOI PMC
Jakubowska D., Janicka M. (2017). The role of brassinosteroids in the regulation of the plasma membrane H+-ATPase and NADPH oxidase under cadmium stress. Plant Sci. 264 37–47. 10.1016/j.plantsci.2017.08.007 PubMed DOI
Jakubowska D., Janicka-Russak M., Kabała K., Migocka M., Reda M. (2015). Modification of plasma membrane NADPH oxidase activity in cucumber seedling roots in response to cadmium stress. Plant Sci. 234 50–59. 10.1016/j.plantsci.2015.02.005 PubMed DOI
Jan S., Alyemeni M. N., Wijaya L., Alam P., Siddique K. H., Ahmad P. (2018). Interactive effect of 24-epibrassinolide and silicon alleviates cadmium stress via the modulation of antioxidant defense and glyoxalase systems and macronutrient content in Pisum sativum L. seedlings. BMC Plant Biol. 18, 1–18. 10.1186/s12870-018-1359-5 PubMed DOI PMC
Je B. I., Piao H. L., Park S. J., Park S. H., Kim C. M., Xuan Y. H., et al. (2010). RAV-Like1 maintains brassinosteroid homeostasis via the coordinated activation of BRI1 and biosynthetic genes in rice. Plant Cell. 22 1777–1791. 10.1105/tpc.109.069575 PubMed DOI PMC
Jiang J., Zhang C., Wang X. (2015). A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana. Plant Cell. 27 361–374. 10.1105/tpc.114.133678 PubMed DOI PMC
Jiang Y. P., Cheng F., Zhou Y. H., Xia X. J., Mao W. H., Shi K., et al. (2012). Cellular glutathione redox homeostasis plays an important role in the brassinosteroid−induced increase in CO2 assimilation in Cucumis sativus. New Phytol. 194 932–943. 10.1111/j.1469-8137.2012.04111.x PubMed DOI
Kang Y. Y., Guo S. R. (2011). Role of brassinosteroids on horticultural crops. In Brassinosteroids: A class of plant hormone. Dordrecht: Springer, 269–288.
Kanwar M. K., Bhardwaj R., Arora P., Chowdhary S. P., Sharma P., Kumar S. (2012). Plant steroid hormones produced under Ni stress are involved in the regulation of metal uptake and oxidative stress in Brassica juncea L. Chemosphere 86 41–49. 10.1016/j.chemosphere.2011.08.048 PubMed DOI
Kapoor D., Kaur S., Bhardwaj R. (2014). Physiological and biochemical changes in Brassica juncea plants under Cd-induced stress. BioMed Res. Int. 2:2014. PubMed PMC
Karlova R., Boeren S., Russinova E., Aker J., Vervoort J., de Vries S. (2006). The Arabidopsis Somatic Embryogenesis Receptor-Like Kinase1 Protein Complex Includes Brassinosteroid- Insensitive1. Plant Cell. 18 626–638. 10.1105/tpc.105.039412 PubMed DOI PMC
Kim B. K., Fujioka S., Takatsuto S., Tsujimoto M., Choe S. (2008). Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem. Biophysio. Res. Commun. 374 614–619. 10.1016/j.bbrc.2008.07.073 PubMed DOI
Kim T. W., Wang Z. Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu. Rev. Plant Biol. 61 681–704. 10.1146/annurev.arplant.043008.092057 PubMed DOI
Kim T. W., Guan S., Sun Y., Deng Z., Tang W., Shang J. X., et al. (2009). Brassinosteroid signaltransduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11 1254–1260. 10.1038/ncb1970 PubMed DOI PMC
Kim T. W., Hwang J. Y., Kim Y. S., Joo S. H., Chang S. C., Lee J. S., et al. (2005). Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell. 17 2397–2412. 10.1105/tpc.105.033738 PubMed DOI PMC
Kohli S. K., Handa N., Sharma A., Gautam V., Arora S., Bhardwaj R., et al. (2018). Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma 255 11–24. 10.1007/s00709-017-1124-x PubMed DOI
Kwon M., Fujioka S., Jeon J. H., Kim H. B., Takatsuto S., Yoshida S., et al. (2005). A double mutant for theCYP85A1 andCYP85A2 Genes of Arabidopsis exhibits a Brassinosteroid dwarf phenotype. J. Plant Biol. 48 237–244. 10.1007/bf03030413 DOI
Lemmon M. A., Schlessinger J. (2010). Cell signaling by receptor tyrosine kinases. Cell 141 1117–1134. 10.1016/j.cell.2010.06.011 PubMed DOI PMC
Li Q.-F., He J.-X. (2013). Mechanisms of signaling crosstalk between brassinosteroids and gibberellins. Plant Signal Behav. 8:e24686. 10.4161/psb.24686 PubMed DOI PMC
Li H., Ye K., Shi Y., Cheng J., Zhang X., Yang S. (2017). BZR1 positively regulates freezing tolerance via CBF-dependent and CBF-independent pathways in Arabidopsis. Mol. Plant. 10 545–559. 10.1016/j.molp.2017.01.004 PubMed DOI
Li Q. F., He J. X. (2016). BZR1 interacts with HY5 to mediate brassinosteroid-and light-regulated cotyledon opening in Arabidopsis in darkness. Mol. Plant. 9 113–125. 10.1016/j.molp.2015.08.014 PubMed DOI
Li Q. F., Lu J., Yu J. W., Zhang C. Q., He J. X., Liu Q. Q. (2018). The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth. Biochim. Biophys. Acta 1861 561–571. 10.1016/j.bbagrm.2018.04.003 PubMed DOI
Li W., Nishiyama R., Watanabe Y., Van Ha C., Kojima M., An P., et al. (2018). Effects of overproduced ethylene on the contents of other phytohormones and expression of their key biosynthetic genes. Plant Physio. Biochem. 128 170–177. 10.1016/j.plaphy.2018.05.013 PubMed DOI
Lim W. A., Pawson T. (2010). Phosphotyrosine signaling: Evolving a new cellular communication system. Cell 142 661–667. 10.1016/j.cell.2010.08.023 PubMed DOI PMC
Lima M. D. R., Junior U. D. O. B., Batista B. L., da Silva, Lobato A. K. (2018). Brassinosteroids mitigate iron deficiency improving nutritional status and photochemical efficiency in Eucalyptus urophylla plants. Trees 32 1681–1694. 10.1007/s00468-018-1743-7 DOI
Liu F., Wang P., Zhang X., Li X., Yan X., Fu D., et al. (2018). The genetic and molecular basis of crop height based on a rice model. Planta 247 1–26. 10.1007/s00425-017-2798-1 PubMed DOI
Liu J., Zhang D., Sun X., Ding T., Lei B., Zhang C. (2017). Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids 124 1–17. 10.1016/j.steroids.2017.05.005 PubMed DOI
Lv B., Tian H., Zhang F., Liu J., Lu S., Bai M., et al. (2018). Brassinosteroids regulate root growth by controlling reactive oxygen species homeostasis and dual effect on ethylene synthesis in Arabidopsis. PLoS Genetics 14:e1007144. 10.1371/journal.pgen.1007144 PubMed DOI PMC
Madhan M., Mahesh K., Rao S. S. (2014). Effect of 24-epibrassinolide on aluminium stress induced inhibition of seed germination and seedling growth of Cajanus cajan (L.) Millsp. Int. J. Multidiscipl. Curr. Res. 2 286–290.
Maharjan P. M., Choe S. (2011). High temperature stimulates DWARF4 (DWF4) expression to increase hypocotyl elongation in Arabidopsis. J. Plant Bio. 54:425. 10.1007/s12374-011-9183-6 DOI
Maharjan P. M., Schulz B., Choe S. (2011). BIN2/DWF12 antagonistically transduces brassinosteroid and auxin signals in the roots of Arabidopsis. J. Plant Bio. 54 126–134. 10.1007/s12374-010-9138-3 DOI
Mir B. A., Khan T. A., Fariduddin Q. (2015). 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. Int. J. Adv. Res. 3 592–608.
Mouchel C. F., Osmont K. S., Hardtke C. S. (2006). BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443 458–461. 10.1038/nature05130 PubMed DOI
Nagata N., Min Y. K., Nakano T., Asami T., Yoshida S. (2000). Treatment of dark-grown Arabidopsis thaliana with a brassinosteroid-biosynthesis inhibitor, brassinazole, induces some characteristics of light-grown plants. Planta 211 781–790. 10.1007/s004250000351 PubMed DOI
Nahar K., Kyndt T., Hause B., Höfte M., Gheysen G. (2013). Brassinosteroids suppress rice defense against root-knot nematodes through antagonism with the jasmonate pathway. Mol. Plant-Microbe Inter. 26 106–115. 10.1094/mpmi-05-12-0108-fi PubMed DOI
Nemhauser J. L., Mockler T. C., Chory J. (2004). Interdependency of brassinosteroid and auxin signaling in Arabidopsis. PLoS Biol. 2:e258. 10.1371/journal.pbio.0020258 PubMed DOI PMC
Nie S., Huang S., Wang S., Cheng D., Liu J., Lv S., et al. (2017). Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Front. Plant Sci. 8:1386. PubMed PMC
Nolan T. M., Vukašinoviæ N., Liu D., Russinova E., Yin Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell. 32 295–318. 10.1105/tpc.19.00335 PubMed DOI PMC
Nolan T., Chen J., Yin Y. (2017). Cross-talk of Brassinosteroid signaling in controlling growth and stress responses. Biochem. J. 474 2641–2661. 10.1042/bcj20160633 PubMed DOI PMC
Oh E., Zhu J. Y., Wang Z. Y. (2012). Interaction between BZR1 and PIF4 integrates brassinosteroid and environmental responses. Nat. Cell Biol. 14 802–809. 10.1038/ncb2545 PubMed DOI PMC
Oh K., Matsumoto T., Yamagami A., Hoshi T., Nakano T., Yoshizawa Y. (2015b). Fenarimol, a pyrimidine-type fungicide, inhibits brassinosteroid biosynthesis. Int. J. Mol. Sci. 16 17273–17288. 10.3390/ijms160817273 PubMed DOI PMC
Oh K., Matsumoto T., Yamagami A., Ogawa A., Yamada K., Suzuki R., et al. (2015a). YCZ-18 is a new brassinosteroid biosynthesis inhibitor. PLoS One. 10:e0120812. 10.1371/journal.pone.0120812 PubMed DOI PMC
Oh M. H., Wang X., Kota U., Goshe M. B., Clouse S. D., Huber S. C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. 106 658–663. 10.1073/pnas.0810249106 PubMed DOI PMC
Oh M. H., Wang X., Wu X., Zhao Y., Clouse S. D., Huber S. C. (2010). Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression. Proc. Natl. Acad. Sci. U. S. A. 107 17827–17832. 10.1073/pnas.0915064107 PubMed DOI PMC
Ohnishi T., Godza B., Watanabe B., Fujioka S., Hategan L., Ide K., et al. (2012). CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J. Biol. Chem. 287 31551–31560. 10.1074/jbc.m112.392720 PubMed DOI PMC
Ohri P., Bhardwaj R., Bali S., Kaur R., Jasrotia S., Khajuria A., et al. (2015). The common molecular players in plant hormone crosstalk and signaling. Curr. Prot. Pep. Sci. 16 369–388. 10.2174/1389203716666150330141922 PubMed DOI
Ohri P., Bhardwaj R., Kaur R., Jasrotia S., Parihar R. D., Khajuria A., et al. (2019). Emerging Trends on Crosstalk of BRS with Other Phytohormones. In Brassinosteroids: Plant Growth and Development. Singapore: Springer, 425–441.
Pál M., Csávás G., Szalai G., Oláh T., Khalil R., Yordanova R., et al. (2017). Polyamines may influence phytochelatin synthesis during Cd stress in rice. J. Hazardous Mater. 340 272–280. 10.1016/j.jhazmat.2017.07.016 PubMed DOI
Paponov I. A., Teale W. D., Trebar M., Blilou I., Palme K. (2005). The PIN auxin efflux facilitators: evolutionary and functional perspectives. Trends Plant Sci. 10 170–177. 10.1016/j.tplants.2005.02.009 PubMed DOI
Planas-Riverola A., Gupta A., Betegón-Putze I., Bosch N., Ibañes M., Caño-Delgado A. I. (2019). Brassinosteroid signaling in plant development and adaptation to stress. Development 146:dev151894. 10.1242/dev.151894 PubMed DOI PMC
Peng Z., Han C., Yuan L., Zhang K., Huang H., Ren C. (2011). Brassinosteroid enhances jasmonate−induced anthocyanin accumulation in Arabidopsis seedlings. J. Integr. Plant Bio. 53 632–640. 10.1111/j.1744-7909.2011.01042.x PubMed DOI
Peres A. L. G., Soares J. S., Tavares R. G., Righetto G., Zullo M. A., Mandava N. B., et al. (2019). Brassinosteroids, the sixth class of phytohormones: a molecular view from the discovery to hormonal interactions in plant development and stress adaptation. Int. J. Mol. Sci. 20:331. 10.3390/ijms20020331 PubMed DOI PMC
Perilli S., Moubayidin L., Sabatini S. (2010). The molecular basis of cytokinin function. Curr. Opin. Plant Bio. 13 21–26. 10.1016/j.pbi.2009.09.018 PubMed DOI
Piotrowska-Niczyporuk A., Bajguz A., Zambrzycka E., Godlewska-Żyłkiewicz B. (2012). Phytohormones as regulators of heavy metal biosorption and toxicity in green alga Chlorella vulgaris (Chlorophyceae). Plant Phys. Biochem. 52 52–65. 10.1016/j.plaphy.2011.11.009 PubMed DOI
Polko J. K., Pierik R., van Zanten M., Tarkowská D., Strnad M., Voesenek L. A., et al. (2013). Ethylene promotes hyponastic growth through interaction with ROTUNDIFOLIA3/CYP90C1 in Arabidopsis. J. Exp. Bot. 64 613–624. 10.1093/jxb/ers356 PubMed DOI PMC
Poppenberger B., Rozhon W., Khan M., Husar S., Adam G., Luschnig C., et al. (2011). CESTA, a positive regulator of brassinosteroid biosynthesis. EMBO J. 30 1149–1161. 10.1038/emboj.2011.35 PubMed DOI PMC
Poonam R. K., Bali S., Singh R., Pati P. K., Bhardwaj R. (2014). Treatment of 24-EBL to Brassica juncea plants under Cu-metal stress lowers oxidative burst by activity antioxidative enzymes. J. Stress Physiol. Biochem. 10, 315–327.
Rattan A., Kapoor D., Kapoor N., Bhardwaj R., Sharma A. (2020). Brassinosteroids Regulate Functional Components of Antioxidative Defense System in Salt Stressed Maize Seedlings. J. Plant Growth Reg. 2020 1–11.
Rady M. M. (2011). Effect of 24-epibrassinolide on growth, yield, antioxidant system and cadmium content of bean (Phaseolus vulgaris L.) plants under salinity and cadmium stress. Sci. Horticult. 129 232–237. 10.1016/j.scienta.2011.03.035 DOI
Rady M. M., Osman A. S. (2012). Response of growth and antioxidant system of heavy metal-contaminated tomato plants to 24-epibrassinolide. Afr. J. Agric. Res. 7 3249–3254.
Rajewska I., Talarek M., Bajguz A. (2016). Brassinosteroids and response of plants to heavy metals action. Front. Plant Sci. 7:629. 10.3389/fpls.2016.00629 PubMed DOI PMC
Ramakrishna B., Rao S. S. R. (2015). Foliar application of brassinosteroids alleviates adverse effects of zinc toxicity in radish (Raphanus sativus L.) plants. Protoplasma 252 665–677. 10.1007/s00709-014-0714-0 PubMed DOI
Ross J. J., Quittenden L. J. (2016). Interactions between brassinosteroids and gibberellins: synthesis or signaling? Plant Cell. 28 829–832. 10.1105/tpc.15.00917 PubMed DOI PMC
Roychoudhury A., Ghosh S., Paul S., Mazumdar S., Das G., Das S. (2016). Pre-treatment of seeds with salicylic acid attenuates cadmium chloride-induced oxidative damages in the seedlings of mungbean (Vigna radiata L. Wilczek). Acta Physiol. Planta. 38:11.
Rozhon W., Mayerhofer J., Petutschnig E., Fujioka S., Jonak C. (2010). ASKtheta, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway. Plant J. 62 215–223. 10.1111/j.1365-313x.2010.04145.x PubMed DOI PMC
Rozhon W., Akter S., Fernandez A., Poppenberger B. (2019). Inhibitors of brassinosteroid biosynthesis and signal transduction. Molecules 24:4372. 10.3390/molecules24234372 PubMed DOI PMC
Saini S., Sharma I., Pati P. K. (2015). Versatile roles of brassinosteroid in plants in the context of its homoeostasis, signaling and crosstalks. Front. Plant Sci. 6:950. 10.3389/fpls.2015.00950 PubMed DOI PMC
Sharma I., Pati P. K., Bhardwaj R. (2011). Effect of 24-epibrassinolide on oxidative stress markers induced by nickel-ion in Raphanus sativus L. Acta Physiol. Plant 33, 1723–1735. 10.1007/s11738-010-0709-1 DOI
Sharma A., Thakur S., Kumar V., Kanwar M. K., Kesavan A. K., Thukral A. K., et al. (2016). Pre-sowing seed treatment with 24-epibrassinolide ameliorates pesticide stress in Brassica juncea L. through the modulation of stress markers. Front. Plant Sci. 7:1569. PubMed PMC
Sharma A., Thakur S., Kumar V., Kesavan A. K., Thukral A. K., Bhardwaj R. (2017). 24-epibrassinolide stimulates imidacloprid detoxification by modulating the gene expression of Brassica juncea L. BMC Plant Bio. 17:56. PubMed PMC
Shahzad B., Tanveer M., Che Z., Rehman A., Cheema S. A., Sharma A., et al. (2018). Role of 24-epibrassinolide (EBL) in mediating heavy metal and pesticide induced oxidative stress in plants: A review. Ecotoxico. Environ. Safety. 147 935–944. 10.1016/j.ecoenv.2017.09.066 PubMed DOI
Sharma N., Hundal G. S., Sharma I., Bhardwaj R. (2014). 28-Homobrassinolide alters protein content and activities of glutathione-S-transferase and polyphenol oxidase in Raphanus sativus L. plants under heavy metal stress. Toxico. Int. 21:44. PubMed PMC
Sharma P., Kumar A., Bhardwaj R. (2016). Plant steroidal hormone epibrassinolide regulate–Heavy metal stress tolerance in Oryza sativa L. by modulating antioxidant defense expression. Environ. Exp. Bot. 122 1–9. 10.1016/j.envexpbot.2015.08.005 DOI
Singh S., Prasad S. M. (2017). Effects of 28-homobrassinoloid on key physiological attributes of Solanum lycopersicum seedlings under cadmium stress: photosynthesis and nitrogen metabolism. Plant Growth Regul. 82, 161–173. 10.1007/s10725-017-0248-5 DOI
Soares C., de Sousa A., Pinto A., Azenha M., Teixeira J., Azevedo R. A., et al. (2016). Effect of 24-epibrassinolide on ROS content, antioxidant system, lipid peroxidation and Ni uptake in Solanum nigrum L. under Ni stress. Environ. Exp. Bot. 122 115–125. 10.1016/j.envexpbot.2015.09.010 DOI
Stewart Lilley J. L., Gan Y., Graham I. A., Nemhauser J. L. (2013). The effects of DELLA s on growth change with developmental stage and brassinosteroid levels. Plant J. 76 165–173. PubMed
Sun T. P. (2011). The molecular mechanism and evolution of the GA–GID1–DELLA signaling module in plants. Curr. Bio. 21 R338–R345. PubMed
Sun Y., Fan X. Y., Cao D. M., Tang W., He K., Zhu J. Y., et al. (2010). Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev. Cell. 19 765–777. 10.1016/j.devcel.2010.10.010 PubMed DOI PMC
Symons G. M., Ross J. J., Jager C. E., Reid J. B. (2008). Brassinosteroid transport. J. Exp. Bot. 59 17–24. 10.1093/jxb/erm098 PubMed DOI
Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., et al. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85 171–182. 10.1016/s0092-8674(00)81094-6 PubMed DOI
Tadayon M. S., Moafpourian G. (2019). Effects of Exogenous epi-brassinolid, zinc and boron foliar nutrition on fruit development and ripening of grape (Vitis vinifera L. clv.‘Khalili’). Scient. Horticult. 244 94–101. 10.1016/j.scienta.2018.09.036 DOI
Takahashi T., Kakehi J. I. (2010). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Anna. Bot. 105 1–6. 10.1093/aob/mcp259 PubMed DOI PMC
Tanaka K., Asami T., Yoshida S., Nakamura Y., Matsuo T., Okamoto S. (2005). Brassinosteroid homeostasis in Arabidopsis is ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol. 138 1117–1125. 10.1104/pp.104.058040 PubMed DOI PMC
Tang W., Kim T. W., Oses-Prieto J. A., Sun Y., Deng Z., Zhu S., et al. (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321 557–560. 10.1126/science.1156973 PubMed DOI PMC
Tian H., Lv B., Ding T., Bai M., Ding Z. (2018). Auxin-BR interaction regulates plant growth and development. Front. Plant Sci. 8: 2256. PubMed PMC
Tong H., Chu C. (2018). Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. 23 1016–1028. 10.1016/j.tplants.2018.08.007 PubMed DOI
Tong H., Xiao Y., Liu D., Gao S., Liu L., Yin Y., et al. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell. 26 4376–4393. 10.1105/tpc.114.132092 PubMed DOI PMC
Ulmasov T., Murfett J., Hagen G., Guilfoyle T. J. (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell. 9 1963–1971. 10.2307/3870557 PubMed DOI PMC
Vert G., Walcher C. L., Chory J., Nemhauser J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin Response Factor 2. Proc. Natl. Acad. Sci. 105 9829–9834. 10.1073/pnas.0803996105 PubMed DOI PMC
Vriet C., Russinova E., Reuzeau C. (2012). Boosting crop yields with plant steroids. Plant Cell. 24 842–857. 10.1105/tpc.111.094912 PubMed DOI PMC
Vriet C., Russinova E., Reuzeau C. (2013). From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol. Plant. 6 1738–1757. 10.1093/mp/sst096 PubMed DOI
Wang H., Tang J., Liu J., Hu J., Liu J., Chen Y., et al. (2018). Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol. Plant. 11 315–325. 10.1016/j.molp.2017.12.013 PubMed DOI
Wang R., Wang J., Zhao L., Yang S., Song Y. (2015). Impact of heavy metal stresses on the growth and auxin homeostasis of Arabidopsis seedlings. Biometals 28 123–132. 10.1007/s10534-014-9808-6 PubMed DOI
Wang X., Chory J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling, from the plasma membrane. Science 313 1118–1122. 10.1126/science.1127593 PubMed DOI
Wang X., Kota U., He K., Blackburn K., Li J., Goshe M. B., et al. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell. 15 220–235. 10.1016/j.devcel.2008.06.011 PubMed DOI
Wang Z. Y., Nakano T., Gendron J., He J., Chen M., Vafeados D., et al. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell. 2 505–513. 10.1016/s1534-5807(02)00153-3 PubMed DOI
Watanabe T., Noguchi T., Yokota T., Shibata K., Koshino H., Seto H., et al. (2001). Synthesis and biological activity of 26-norbrassinolide, 26-norcastasterone and 26-nor-6-deoxocastasterone. Phytochem 58 343–349. PubMed
Werner T., Schmülling T. (2009). Cytokinin action in plant development. Curr. Opin. Plant Bio. 12 527–538. PubMed
Wu C., Li F., Xu H., Zeng W., Yu R., Wu X., et al. (2019). The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in Arabidopsis thaliana. Plant Physio Biochem. 141 51–59. PubMed
Xia X. J., Fang P. P., Guo X., Qian X. J., Zhou J., Shi K., et al. (2018). Brassinosteroid−mediated apoplastic H2O2−glutaredoxin 12/14 cascade regulates antioxidant capacity in response to chilling in tomato. Plant. Cell ENV. 41 1052–1064. PubMed
Xia X. J., Gao C. J., Song L. X., Zhou Y. H., Shi K. A. I., Yu J. Q. (2014). Role of H2O2 dynamics in brassinosteroid−induced stomatal closure and opening in Solanum lycopersicum. Plant. Cell ENV. 37 2036–2050. PubMed
Xia X. J., Zhou Y. H., Shi K., Zhou J., Foyer C. H., Yu J. Q. (2015). Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 66 2839–2856. PubMed
Yamamuro C., Ihara Y., Wu X., Noguchi T., Fujioka S., Takatsuto S., et al. (2000). Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell. 12 1591–1605. PubMed PMC
Yan J., Zhang C., Gu M., Bai Z., Zhang W., Qi T., et al. (2009). The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21, 2220–2236. 10.1105/tpc.109.065730 PubMed DOI PMC
Ye H., Li L., Guo H., Yin Y. (2012). MYBL2 is a substrate of GSK3-like kinase BIN2 and acts as a corepressor of BES1 in brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. 109 20142–20147. PubMed PMC
Yin Y. L., Zhou Y., Zhou Y. H., Shi K., Zhou J., Yu Y., et al. (2016). Interplay between mitogen-activated protein kinase and nitric oxide in brassinosteroid-induced pesticide metabolism in Solanum lycopersicum. J. Hazard. Mater. 316 221–231. PubMed
Yin Y., Qin K., Song X., Zhang Q., Zhou Y., Xia X., et al. (2018). BZR1 transcription factor regulates heat stress tolerance through FERONIA receptor-like kinase-mediated reactive oxygen species signaling in tomato. Plant Cell Physio. 59 2239–2254. PubMed
Yin Y., Vafeados D., Tao Y., Yoshida S., Asami T., Chory J. (2005). A new class of transcription factors mediates brassinosteroid regulated gene expression in Arabidopsis. Cell 120 249–259. PubMed
Yokota T. (1999). The history of brassinosteroids: discovery to isolation of biosynthesis and signal transduction mutants. Brassinosteroids 1999 1–20.
Yokota T., Ogino Y., Suzuki H., Takahashi N., Saimoto H., Fujioka S., et al. (1991). Metabolism and biosynthesis of brassinosteroids. In: Brassinosteroids: Chemistry. Bioact. Appl. 1991 86–96.
Yoshimitsu Y., Tanaka K., Fukuda W., Asami T., Yoshida S., Hayashi K. I., et al. (2011). Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana. PLoS One. 6:e23851. PubMed PMC
Yu X., Li L., Zola J., Aluru M., Ye H., Foudree A., et al. (2011). A brassinosteroid transcriptional network revealed by genome−wide identification of BESI target genes in Arabidopsis thaliana. Plant J. 65 634–646. PubMed
Yuan L. B., Peng Z. H., Zhi T. T., Zho Z., Liu Y., Zhu Q., et al. (2014). Brassinosteroid enhances cytokinin-induced anthocyanin biosynthesis in Arabidopsis seedlings. Biol. Plant. 59 99–105.
Yuldashev R., Avalbaev A., Bezrukova M., Vysotskaya L., Khripach V., Shakirova F. (2012). Cytokinin oxidase is involved in the regulation of cytokinin content by 24-epibrassinolide in wheat seedlings. Plant Physio Biochem. 55 1–6. PubMed
Yunta C., Martínez-Ripoll M., Zhu J. K., Albert A. (2011). The structure of Arabidopsis thaliana OST1 provides insights into the kinase regulation mechanism in response to osmotic stress. J. Mol. Bio. 414 135–144. PubMed PMC
Yusuf M., Fariduddin Q., Ahmad A. (2012). 24-Epibrassinolide modulates growth, nodulation, antioxidant system, and osmolyte in tolerant and sensitive varieties of Vigna radiata under different levels of nickel: a shotgun approach. Plant Physio Biochem. 57 143–153. PubMed
Yusuf M., Fariduddin Q., Hayat S., Hasan S. A., Ahmad A. (2011). Protective response of 28-homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch. Environ. Cont. Toxico. 60 68–76. PubMed
Zhang A., Zhang J., Zhang J., Ye N., Zhang H., Tan M., et al. (2011). Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physio. 52 181–192. PubMed
Zhang S., Cai Z., Wang X. (2009). The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl. Acad. Sci. 106 4543–4548. PubMed PMC
Zhang X., Guo W., Du D., Pu L., Zhang C. (2020). Overexpression of a maize BR transcription factor ZmBZR1 in Arabidopsis enlarges organ and seed size of the transgenic plants. Plant Sci. 292: 110378. PubMed
Zhao B., Li J. (2012). Regulation of brassinosteroid biosynthesis and inactivation F. J. Integr. Plant Biol. 54 746–759. PubMed
Zhou Y. L., Huo S. F., Wang L. T., Meng J. F., Zhang Z. W., Xi Z. M. (2018). Exogenous 24-Epibrassinolide alleviates oxidative damage from copper stress in grape (Vitis vinifera L.) cuttings. Plant Physio. Biochem. 130 555–565. PubMed
Zhu T., Tan W. R., Deng X. G., Zheng T., Zhang D. W., Lin H. H. (2015). Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Bio Techno. 100 196–204.
Zou L., Qu M., Zeng L., Xiong G. (2020). The molecular basis of the interaction between Brassinosteroid induced and phosphorous deficiency induced leaf inclination in rice. Plant Growth Regul. 2020 1–14.
Zullo M. A. T. (2018). Brassinosteroids and related compounds. New York: LAP LAMBERT Academic Publishing.
Zullo M. A. T., Adam G. (2002). Brassinosteroid phytohormones: structure, bioactivity and applications. Braz. J. Plant Physiol. 14 143–181.
Zullo M. A. T., Bajguz A. (2019). The brassinosteroids family–structural diversity of natural compounds and their precursors. In Brassinosteroids: Plant Growth and Dev. Singapore: Springer, 1–44.
Zullo M. A. T., Kohout L. (2004). Semisystematic nomenclature of brassinosteroids. Plant Growth Regul. 42 15–28.