Celine, a long interspersed nuclear element retrotransposon, colonizes in the centromeres of poplar chromosomes
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
IOS-1740874
National Science Foundation
MICL2707
United States Department of Agriculture National Institute of Food and Agriculture and AgBioResearch at Michigan State University
ISO-2029959
NSF
CEP - Centrální evidence projektů
National Natural Science Foundation of China
PubMed
38652695
PubMed Central
PMC11288735
DOI
10.1093/plphys/kiae214
PII: 7656883
Knihovny.cz E-zdroje
- MeSH
- centromera * genetika metabolismus MeSH
- chromozomy rostlin * genetika MeSH
- dlouhé rozptýlené jaderné elementy genetika MeSH
- fylogeneze MeSH
- histony metabolismus genetika MeSH
- Populus * genetika MeSH
- retroelementy * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
- retroelementy * MeSH
Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat centromeric retrotransposon of maize (CRM), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here, we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. In contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared with the CRM elements. Using a phylogenetically guided approach, we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.
Department of Horticulture Michigan State University East Lansing MI 48824 USA
Department of Plant Biology Michigan State University East Lansing MI 48824 USA
Michigan State University AgBioResearch East Lansing MI 48824 USA
Zobrazit více v PubMed
Alisch RS, Garcia-Perez JL, Muotri AR, Gage FH, Moran JV. Unconventional translation of mammalian LINE-1 retrotransposons. Genes Dev. 2006:20(2):210–224. 10.1101/gad.1380406 PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990:215(3):403–410. 10.1016/S0022-2836(05)80360-2 PubMed DOI
An XM, Gao K, Chen Z, Li J, Yang X, Yang XY, Zhou J, Guo T, Zhao TY, Huang S, et al. . High quality haplotype-resolved genome assemblies of Populus tomentosa Carr., a stabilized interspecific hybrid species widespread in Asia. Mol Ecol Resour. 2022:22(2):786–802. 10.1111/1755-0998.13507 PubMed DOI
Aragon-Alcaide L, Miller T, Schwarzacher T, Reader S, Moore G. A cereal centromeric sequence. Chromosoma 1996:105(5):261–268. 10.1007/BF02524643 PubMed DOI
Bao WD, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015:6(1):11. 10.1186/s13100-015-0041-9 PubMed DOI PMC
Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet. 2011:12(1):187–215. 10.1146/annurev-genom-082509-141802 PubMed DOI PMC
Belser C, Baurens FC, Noel B, Martin G, Cruaud C, Istace B, Yahiaoui N, Labadie K, Hribova E, Dolezel J, et al. . Telomere-to-telomere gapless chromosomes of banana using nanopore sequencing. Commun Biol. 2021:4(1):1047. 10.1038/s42003-021-02559-3 PubMed DOI PMC
Blumenstiel JP. Birth, school, work, death, and resurrection: the life stages and dynamics of transposable element proliferation. Genes (Basel). 2019:10(5):336. 10.3390/genes10050336 PubMed DOI PMC
Cerbin S, Ou SJ, Li Y, Sun YN, Jiang N. Distinct composition and amplification dynamics of transposable elements in sacred lotus (Nelumbo nucifera Gaertn.). Plant J. 2022:112(1):172–192. 10.1111/tpj.15938 PubMed DOI PMC
Cheng ZK, Buell CR, Wing RA, Jiang JM. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res. 2002:10(5):379–387. 10.1023/A:1016849618707 PubMed DOI
Cheng ZK, Dong FG, Langdon T, Ouyang S, Buell CB, Gu MH, Blattner FR, Jiang JM. Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell. 2002:14(8):1691–1704. 10.1105/tpc.003079 PubMed DOI PMC
Contreras-Galindo R, Kaplan MH, He S, Contreras-Galindo AC, Gonzalez-Hernandez MJ, Kappes F, Dube D, Chan SM, Robinson D, Meng F, et al. . HIV infection reveals widespread expansion of novel centromeric human endogenous retroviruses. Genome Res. 2013:23(9):1505–1513. 10.1101/gr.144303.112 PubMed DOI PMC
Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004:14(6):1188–1190. 10.1101/gr.849004 PubMed DOI PMC
D'Hont A, Denoeud F, Aury JM, Baurens FC, Carreel F, Garsmeur O, Noel B, Bocs S, Droc G, Rouard M, et al. . The banana (Musa acuminata) genome and the evolution of monocotyledonous plants. Nature 2012:488(7410):213–217. 10.1038/nature11241 PubMed DOI
de Sotero-Caio CG, Cabral-de-Mello D, Calixto MD, Valente G, Martins C, Loreto V, de Souza MJ, Santos N. Centromeric enrichment of LINE-1 retrotransposons and its significance for the chromosome evolution of Phyllostomid bats. Chromosome Res. 2017:25(3-4):313–325. 10.1007/s10577-017-9565-9 PubMed DOI
Edgar RC. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics. 2004:5(1):113. 10.1186/1471-2105-5-113 PubMed DOI PMC
Gao X, Hou Y, Ebina H, Levin HL, Voytas DF. Chromodomains direct integration of retrotransposons to heterochromatin. Genome Res. 2008:18(3):359–369. 10.1101/gr.7146408 PubMed DOI PMC
Gong ZY, Wu YF, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang WL, Novak P, Buell CR, et al. . Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell. 2012:24(9):3559–3574. 10.1105/tpc.112.100511 PubMed DOI PMC
Gorinsek B, Gubensek F, Kordis D. Evolutionary genomics of chromoviruses in eukaryotes. Mol Biol Evol. 2004:21(5):781–798. 10.1093/molbev/msh057 PubMed DOI
Gupta A, Bansal M. RNA-mediated translation regulation in viral genomes: computational advances in the recognition of sequences and structures. Brief Bioinform. 2020:21(4):1151–1163. 10.1093/bib/bbz054 PubMed DOI PMC
Hancks DC, Kazazian HH. Roles for retrotransposon insertions in human disease. Mob DNA. 2016:7(1):9. 10.1186/s13100-016-0065-9 PubMed DOI PMC
Hasson D, Panchenko T, Salimian KJ, Salman MU, Sekulic N, Alonso A, Warburton PE, Black BE. The octamer is the major form of CENP-A nucleosomes at human centromeres. Nat Struct Mol Biol. 2013:20(6):687–695. 10.1038/nsmb.2562 PubMed DOI PMC
Heitkam T, Holtgrawe D, Dohm JC, Minoche AE, Himmelbauer H, Weisshaar B, Schmidt T. Profiling of extensively diversified plant LINEs reveals distinct plant-specific subclades. Plant J. 2014:79(3):385–397. 10.1111/tpj.12565 PubMed DOI
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science 2001:293(5532):1098–1102. 10.1126/science.1062939 PubMed DOI
Jackson SA, Wang ML, Goodman HM, Jiang JM. Application of fiber-FISH in physical mapping of Arabidopsis thaliana. Genome 1998:41(4):566–572. 10.1139/g98-093 PubMed DOI
Jiang JM, Birchler JA, Parrott WA, Dawe RK. A molecular view of plant centromeres. Trends Plant Sci. 2003:8(12):570–575. 10.1016/j.tplants.2003.10.011 PubMed DOI
Jiang JM, Nasuda S, Dong FG, Scherrer CW, Woo SS, Wing RA, Gill BS, Ward DC. A conserved repetitive DNA element located in the centromeres of cereal chromosomes. Proc. Nat. Acad. Sci. USA. 1996:93(24):14210–14213. 10.1073/pnas.93.24.14210 PubMed DOI PMC
Jin WW, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang JM. Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell. 2004:16(3):571–581. 10.1105/tpc.018937 PubMed DOI PMC
Jurka J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci U S A. 1997:94(5):1872–1877. 10.1073/pnas.94.5.1872 PubMed DOI PMC
Jurka J. L1 elements from black cottonwood. Repbase Rep. 2010:10:157–157.
Kaul S, Koo HL, Jenkins J, Rizzo M, Rooney T, Tallon LJ, Feldblyum T, Nierman W, Benito MI, Lin XY, et al. . Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000:408(6814):796–815. 10.1038/35048692 PubMed DOI
Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S, Schwartz DC, Tanaka T, Wu JZ, Zhou SG, et al. . Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 2013:6(1):4. 10.1186/1939-8433-6-4 PubMed DOI PMC
Kent WJ. BLAT—the BLAST-like alignment tool. Genome Res. 2002:12(4):656–664. 10.1101/gr.229202 PubMed DOI PMC
Kordis D. A genomic perspective on the chromodomain-containing retrotransposons: Chromoviruses. Gene 2005:347(2):161–173. 10.1016/j.gene.2004.12.017 PubMed DOI
Kumar A, Bennetzen JL. Plant retrotransposons. Ann Rev of Genet. 1999:33(1):479–532. 10.1146/annurev.genet.33.1.479 PubMed DOI
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018:35(6):1547–1549. 10.1093/molbev/msy096 PubMed DOI PMC
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh Wet al. . Initial sequencing and analysis of the human genome. Nature 2001:409(6822):860–921. 10.1038/35057062 PubMed DOI
Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009:10(3):R25. 10.1186/gb-2009-10-3-r25 PubMed DOI PMC
Li BC, Choulet F, Heng YF, Hao WW, Paux E, Liu Z, Yue W, Jin WW, Feuillet C, Zhang XY. Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J. 2013:73(6):952–965. 10.1111/tpj.12086 PubMed DOI
Li PWL, Li JF, Timmerman SL, Krushel LA, Martin SL. The dicistronic RNA from the mouse LINE-1 retrotransposon contains an internal ribosome entry site upstream of each ORF: implications for retrotransposition. Nucleic Acids Res. 2006:34(3):853–864. 10.1093/nar/gkj490 PubMed DOI PMC
Liu P, Cuerda-Gil D, Shahid S, Slotkin RK. The epigenetic control of the transposable element life cycle in plant genomes and beyond. Ann Rev Genet. 2022:56(1):63–87. 10.1146/annurev-genet-072920-015534 PubMed DOI
Liu Z, Yue W, Li DY, Wang RRC, Kong XY, Lu K, Wang GX, Dong YS, Jin WW, Zhang XY. Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma 2008:117(5):445–456. 10.1007/s00412-008-0161-9 PubMed DOI
Ma JX, Bennetzen JL. Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci U S A. 2004:101(34):12404–12410. 10.1073/pnas.0403715101 PubMed DOI PMC
Miller JT, Dong FG, Jackson SA, Song J, Jiang JM. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics 1998:150(4):1615–1623. 10.1093/genetics/150.4.1615 PubMed DOI PMC
Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE. Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci U S A. 2010:107(10):4623–4628. 10.1073/pnas.0907801107 PubMed DOI PMC
Nagaki K, Cheng ZK, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang JM. Sequencing of a rice centromere uncovers active genes. Nat Genet. 2004:36(2):138–145. 10.1038/ng1289 PubMed DOI
Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng ZK, Jiang JM. Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol. 2005:22(4):845–855. 10.1093/molbev/msi069 PubMed DOI
Nagaki K, Talbert PB, Zhong CX, Dawe RK, Henikoff S, Jiang JM. Chromatin immunoprecipitation reveals that the 180-bp satellite repeat is the key functional DNA element of Arabidopsis thaliana centromeres. Genetics 2003:163(3):1221–1225. 10.1093/genetics/163.3.1221 PubMed DOI PMC
Nagaki K, Tanaka K, Yamaji N, Kobayashi H, Murata M. Sunflower centromeres consist of a centromere-specific LINE and a chromosome-specific tandem repeat. Front Plant Sci. 2015:6:912. 10.3389/fpls.2015.00912 PubMed DOI PMC
Neumann P, Navratilova A, Koblizkova A, Kejnovsky E, Hribova E, Hobza R, Widmer A, Dolezel J, Macas J. Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA. 2011:2(1):4. 10.1186/1759-8753-2-4 PubMed DOI PMC
Neumann P, Novak P, Hostakova N, Macas J. Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA. 2019:10(1):1. 10.1186/s13100-018-0144-1 PubMed DOI PMC
Novak P, Neumann P, Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics. 2010:11(1):378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Novak P, Neumann P, Pech J, Steinhaisl J, Macas J. RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics. 2013:29(6):792–793. 10.1093/bioinformatics/btt054 PubMed DOI
Oliveira L, Neumann P, Jang TS, Klemme S, Schubert V, Koblizkova A, Houben A, Macas J. Mitotic spindle attachment to the holocentric chromosomes of Cuscuta europaea does not correlate with the distribution of CENH3 chromatin. Front Plant Sci. 2020:10:1799. 10.3389/fpls.2019.01799 PubMed DOI PMC
Ou SJ, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of LTR retrotransposons. Plant Physiol. 2018:176(2):1410–1422. 10.1104/pp.17.01310 PubMed DOI PMC
Presting GG, Malysheva L, Fuchs J, Schubert I. A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998:16(6):721–728. 10.1046/j.1365-313x.1998.00341.x PubMed DOI
Robledillo LA, Neumann P, Koblizkova A, Novak P, Vrbova I, Macas J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol. 2020:37(8):2341–2356. 10.1093/molbev/msaa090 PubMed DOI PMC
Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020:17(2):155–158. 10.1038/s41592-019-0669-3 PubMed DOI PMC
SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998:20(1):43–45. 10.1038/1695 PubMed DOI
Su HD, Liu YL, Liu C, Shi QH, Huang YH, Han FP. Centromere satellite repeats have undergone rapid changes in polyploid wheat subgenomes. Plant Cell. 2019:31(9):2035–2051. 10.1105/tpc.19.00133 PubMed DOI PMC
Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, et al. . The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006:313(5793):1596–1604. 10.1126/science.1128691 PubMed DOI
Vondrak T, Oliveira L, Novak P, Koblizkova A, Neumann P, Macas J. Complex sequence organization of heterochromatin in the holocentric plant Cuscuta europaea elucidated by the computational analysis of nanopore reads. Comput Struct Biotechnol J. 2021:19:2179–2189. 10.1016/j.csbj.2021.04.011 PubMed DOI PMC
Wolfgruber TK, Sharma A, Schneider KL, Albert PS, Koo DH, Shi JH, Gao Z, Han FP, Lee H, Xu RH, et al. . Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals dynamic loci shaped primarily by retrotransposons. PLoS Genet. 2009:5(11):e1000743. 10.1371/journal.pgen.1000743 PubMed DOI PMC
Wu HN, Yao D, Chen YH, Yang WG, Zhao W, Gao H, Tong CF. De novo genome assembly of Populus simonii further supports that Populus simonii and Populus trichocarpa belong to different sections. G3 (Bethesda). 2020:10(2):455–466. 10.1534/g3.119.400913 PubMed DOI PMC
Xin HY, Zhang T, Han YH, Wu YF, Shi JS, Xi ML, Jiang JM. Chromosome painting and comparative physical mapping of the sex chromosomes in Populus tomentosa and Populus deltoides. Chromosoma 2018:127(3):313–321. 10.1007/s00412-018-0664-y PubMed DOI
Xin HY, Zhang T, Wu YF, Zhang WL, Zhang PD, Xi ML, Jiang JM. An extraordinarily stable karyotype of the woody Populus species revealed by chromosome painting. Plant J. 2020:101(2):253–264. 10.1111/tpj.14536 PubMed DOI
Yang XM, Zhao HN, Zhang T, Zeng ZX, Zhang PD, Zhu B, Han YH, Braz GT, Casler MD, Schmutz J, et al. . Amplification and adaptation of centromeric repeats in polyploid switchgrass species. New Phytol. 2018:218(4):1645–1657. 10.1111/nph.15098 PubMed DOI
Zang CZ, Schones DE, Zeng C, Cui KR, Zhao KJ, Peng WQ. A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics. 2009:25(15):1952–1958. 10.1093/bioinformatics/btp340 PubMed DOI PMC
Zeng LP, Zhang N, Zhang QA, Endress PK, Huang J, Ma H. Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets. New Phytol. 2017:214(3):1338–1354. 10.1111/nph.14503 PubMed DOI
Zhang HQ, Koblizkova A, Wang K, Gong ZY, Oliveira L, Torres GA, Wu YF, Zhang WL, Novak P, Buell CR, et al. . Boom-bust turnovers of megabase-sized centromeric DNA in Solanum Species: rapid evolution of DNA sequences associated with centromeres. Plant Cell. 2014:26(4):1436–1447. 10.1105/tpc.114.123877 PubMed DOI PMC
Zhang T, Talbert PB, Zhang WL, Wu YF, Yang ZJ, Henikoff JG, Henikoff S, Jiang JM. The CentO satellite confers translational and rotational phasing on cenH3 nucleosomes in rice centromeres. Proc. Nail. Acad. Sci. USA. 2013:110(50):E4875–E4883. 10.1073/pnas.1319548110 PubMed DOI PMC
Zhang WL, Yi CD, Bao WD, Liu B, Cui JJ, Yu HX, Cao XF, Gu MH, Liu M, Cheng ZK. The transcribed 165-bp CentO satellite is the major functional centromeric element in the wild rice species Oryza punctata. Plant Physiol. 2005:139(1):306–315. 10.1104/pp.105.064147 PubMed DOI PMC
Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang JM, Dawe RK. Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell. 2002:14(11):2825–2836. 10.1105/tpc.006106 PubMed DOI PMC