The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/S019669/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
35717562
PubMed Central
PMC9796251
DOI
10.1111/nph.18323
Knihovny.cz E-zdroje
- Klíčová slova
- Arecaceae (palms), adaptation, ecology, genome size, phylogenetic regression, plant evolution, trait evolution, transposable elements,
- MeSH
- Arecaceae * genetika MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- molekulární evoluce MeSH
- retroelementy * MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- retroelementy * MeSH
Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.
Department of Biology West Virginia University Morgantown WV 26506 USA
Institut Botànic de Barcelona Passeig del Migdia sn 08038 Barcelona Spain
Queen Mary University of London Mile End Road London E1 4NS UK
Royal Botanic Gardens Kew Surrey TW9 3AB UK
School of Biological Sciences University of Portsmouth Portsmouth Hampshire PO1 2DY UK
University of Exeter Laver Building North Park Road Exeter Devon EX4 4QE UK
Zobrazit více v PubMed
Andrews S. 2010. Fastqc: a quality control tool for high throughput sequence data. v.0.11.9 . Cambridge, UK. [WWW document] URL http://www.bioinformatics.babraham.ac.uk/projects/fastqc [accessed 1 January 2020].
Baker WJ, Dransfield J. 2016. Beyond genera Palmarum: progress and prospects in palm systematics. Botanical Journal of the Linnean Society 182: 207–233.
Barrett CF, McKain MR, Sinn BT, Ge X, Zhang Y, Antonelli A, Bacon CD. 2019. Ancient polyploidy and genome evolution in palms. Genome Biology and Evolution 11: 1501–1511. PubMed PMC
Barton K, Barton MK. 2015. Package ‘mumin’. v.1 . [WWW document] URL https://cran.r‐project.org/web/packages/MuMIn/index.html [accessed 1 January 2020].
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975–986. PubMed
Bennetzen JL, Wang H. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annual Review of Plant Biology 65: 505–530. PubMed
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114–2120. PubMed PMC
Brookfield JF. 2005. The ecology of the genome—mobile DNA elements and their hosts. Nature Reviews Genetics 6: 128–136. PubMed
Casacuberta E, González J. 2013. The impact of transposable elements in environmental adaptation. Molecular Ecology 22: 1503–1517. PubMed
Cavalier‐Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147–175. PubMed PMC
Cavrak VV, Lettner N, Jamge S, Kosarewicz A, Bayer LM, Scheid OM. 2014. How a retrotransposon exploits the plant's heat stress response for its activation. PLoS Genetics 10: e1004115. PubMed PMC
Couvreur TL, Baker WJ. 2013. Tropical rain forest evolution: palms as a model group. BMC Biology 11: 1–4. PubMed PMC
Dodsworth S. 2015. Genome skimming for next‐generation biodiversity analysis. Trends in Plant Science 20: 525–527. PubMed
Doyle JJ, Coate JE. 2019. Polyploidy, the nucleotype, and novelty: the impact of genome doubling on the biology of the cell. International Journal of Plant Sciences 180: 1–52.
Doyle JJ, Doyle JL. 1987. Genomic plant DNA preparation from fresh tissue‐CTAB method. Phytochemical Bulletin 19: 11–15.
Drake PL, Froend RH, Franks PJ. 2013. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64: 495–505. PubMed PMC
Dransfield J, Uhl NW, Asmussen CB, Baker WJ, Harley MM, Lewis CE. 2008. Genera palmarum: the evolution and classification of palms. Richmond, Surrey, UK: Royal Botanic Gardens, Kew.
Dunson WA, Travis J. 1991. The role of abiotic factors in community organization. The American Naturalist 138: 1067–1091.
Faizullah L, Morton JA, Hersch‐Green EI, Walczyk AM, Leitch AR, Leitch IJ. 2021. Exploring environmental selection on genome size in angiosperms. Trends in Plant Science 26: 1039–1049. PubMed
Faurby S, Eiserhardt WL, Baker WJ, Svenning J. 2016. An all‐evidence species‐level supertree for the palms (Arecaceae). Molecular Phylogenetics and Evolution 100: 57–69. PubMed
Fox J, Weisberg S. 2018. An R companion to applied regression. Thousand Oaks, CA, USA: Sage.
Francis D, Davies MS, Barlow PW. 2008. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Annals of Botany 101: 747–757. PubMed PMC
Franks PJ, Beerling DJ. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, USA 106: 10343–10347. PubMed PMC
Galindo‐González L, Deyholos MK. 2012. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genomics 13: 1–17. PubMed PMC
Galindo‐González L, Mhiri C, Deyholos MK, Grandbastien M. 2017. LTR‐retrotransposons in plants: engines of evolution. Gene 626: 14–25. PubMed
Grafen A. 1989. The phylogenetic regression. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 326: 119–157. PubMed
Guignard MS, Leitch AR, Acquisti C, Eizaguirre C, Elser JJ, Hessen DO, Jeyasingh PD, Neiman M, Richardson AE, Soltis PS. 2017. Impacts of nitrogen and phosphorus: from genomes to natural ecosystems and agriculture. Frontiers in Ecology and Evolution 5: 70.
Hidalgo O, Pellicer J, Christenhusz M, Schneider H, Leitch AR, Leitch IJ. 2017. Is there an upper limit to genome size? Trends in Plant Science 22: 567–573. PubMed
Hijmans RJ, van Etten J. 2012. raster: geographic analysis and modeling with raster data. v.2.0‐12 . [WWW document] URL https://cran.r‐project.org/web/packages/raster/raster.pdf [accessed 1 January 2020].
Hloušková P, Mandáková T, Pouch M, Trávníček P, Lysak MA. 2019. The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing. Annals of Botany 124: 103–120. PubMed PMC
Hubbell SP. 2001. The unified neutral theory of biodiversity and biogeography (MPB‐32). Princeton, NJ, USA: Princeton University Press.
Ibarra‐Laclette E, Lyons E, Hernández‐Guzmán G, Pérez‐Torres CA, Carretero‐Paulet L, Chang T, Lan T, Welch AJ, Juárez MJA, Simpson J. 2013. Architecture and evolution of a minute plant genome. Nature 498: 94–98. PubMed PMC
Jangam D, Feschotte C, Betrán E. 2017. Transposable element domestication as an adaptation to evolutionary conflicts. Trends in Genetics 33: 817–831. PubMed PMC
Johnson M, Kenton AY, Bennett MD, Brandham PE. 1989. Voanioala gerardii has the highest known chromosome number in the monocotyledons. Genome 32: 328–333.
Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH. 2000. Genome evolution of wild barley (Hordeum spontaneum) by BARE‐1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences, USA 97: 6603–6607. PubMed PMC
Kang M, Wang J, Huang H. 2015. Nitrogen limitation as a driver of genome size evolution in a group of karst plants. Scientific Reports 5: 1–8. PubMed PMC
Kelley JL, Peyton JT, Fiston‐Lavier A, Teets NM, Yee M, Johnston JS, Bustamante CD, Lee RE, Denlinger DL. 2014. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nature Communications 5: 1–8. PubMed PMC
Kelly LJ, Renny‐Byfield S, Pellicer J, Macas J, Novák P, Neumann P, Lysak MA, Day PD, Berger M, Fay MF. 2015. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytologist 208: 596–607. PubMed PMC
Kissling WD, Baker WJ, Balslev H, Barfod AS, Borchsenius F, Dransfield J, Govaerts R, Svenning J. 2012. Quaternary and pre‐Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology and Biogeography 21: 909–921.
Kissling WD, Balslev H, Baker WJ, Dransfield J, Göldel B, Lim JY, Onstein RE, Svenning J. 2019. PalmTraits 1.0, a species‐level functional trait database of palms worldwide. Scientific Data 6: 1–13. PubMed PMC
Knight CA, Ackerly DD. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66–76.
Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177–190. PubMed PMC
Koenker R, Bassett G. 1978. Regression quantiles. Econometrica: Journal of the Econometric Society 46: 33–50.
Koenker R, Chernozhukov V, He X, Peng L. 2017. Handbook of quantile regression. Boca Raton, FL, USA: CRC Press.
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164: 1556–1570. PubMed PMC
Lisch D. 2013. How important are transposons for plant evolution? Nature Reviews Genetics 14: 49–61. PubMed
Lockton S, Gaut BS. 2009. The contribution of transposable elements to expressed coding sequence in Arabidopsis thaliana . Journal of Molecular Evolution 68: 80–89. PubMed
Lynch M, Walsh B. 2007. The origins of genome architecture. Sunderland, MA, USA: Sinauer Associates.
Lyu H, He Z, Wu C, Shi S. 2018. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytologist 217: 428–438. PubMed
Macas J, Novák P, Pellicer J, Čížková J, Koblížková A, Neumann P, Fukova I, Doležel J, Kelly LJ, Leitch IJ. 2015. In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS ONE 10: e0143424. PubMed PMC
Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross‐Ibarra J, Springer NM. 2015. Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genetics 11: e1004915. PubMed PMC
Mauricio R. 2005. Can ecology help genomics: the genome as ecosystem? In: Maurico R, ed. Genetics of adaptation. Dordrecht, the Netherlands: Springer, 205. PubMed
Neumann P, Novák P, Hoštáková N, Macas J. 2019. Systematic survey of plant LTR‐retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mobile DNA 10: 1–17. PubMed PMC
Novák P, Guignard MS, Neumann P, Kelly LJ, Mlinarec J, Koblížková A, Dodsworth S, Kovařík A, Pellicer J, Wang W. 2020a. Repeat‐sequence turnover shifts fundamentally in species with large genomes. Nature Plants 6: 1325–1329. PubMed
Novák P, Neumann P, Macas J. 2020b. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols 15: 3745–3776. PubMed
Novák P, Neumann P, Pech J, Steinhaisl J, Macas J. 2013. RepeatExplorer: a Galaxy‐based web server for genome‐wide characterization of eukaryotic repetitive elements from next‐generation sequence reads. Bioinformatics 29: 792–793. PubMed
Orme D, Freckleton R, Thomas G, Petzoldt T, Fritz S, Isaac N, Pearse W. 2013. The caper package: comparative analysis of phylogenetics and evolution in R. v.5 . [WWW document] URL https://cran.r‐project.org/web/packages/caper/vignettes/caper.pdf [accessed 1 January 2020].
Pellicer J, Fernández P, Fay MF, Michálková E, Leitch IJ. 2021. Genome size doubling arises from the differential repetitive DNA dynamics in the genus Heloniopsis (Melanthiaceae). Frontiers in Genetics 12: 1685. PubMed PMC
Pellicer J, Leitch IJ. 2020. The Plant DNA C‐values database (release 7.1): an updated online repository of plant genome size data for comparative studies. New Phytologist 226: 301–305. PubMed
Pellicer J, Powell RF, Leitch IJ. 2020. The application of flow cytometry for estimating genome size, ploidy level, endopolyploidy, and reproductive modes in plants. In: Besse P, ed. Molecular plant taxonomy. Methods in molecular biology. New York, NY, USA: Humana, Springer US, 325. PubMed
Petrov DA. 2002. Mutational equilibrium model of genome size evolution. Theoretical Population Biology 61: 531–544. PubMed
R Development Core Team . 2013. R: a language and environment for statistical computing. v.3.6. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL http://www.R‐project.org/ [accessed 20 February 2020].
Revell LJ. 2012. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3: 217–223.
Roddy AB, Théroux‐Rancourt G, Abbo T, Benedetti JW, Brodersen CR, Castro M, Castro S, Gilbride AB, Jensen B, Jiang G. 2020. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal of Plant Sciences 181: 75–87.
Röser M. 1994. Pathways of karyological differentiation in palms (Arecaceae). Plant Systematics and Evolution 189: 83–122.
Röser M. 1999. Chromosome structures and karyotype rearrangement in palms (Palmae). Memoirs of the New York Botanical Garden 83: 61–72.
Röser M, Johnson M, Hanson L. 1997. Nuclear DNA amounts in palms (Arecaceae). Botanica Acta 110: 79–89.
Royston JP. 1982. An extension of Shapiro and Wilk’s W test for normality to large samples. Journal of the Royal Statistical Society: Series C (Applied Statistics) 31: 115–124.
Schubert I, Vu GT. 2016. Genome stability and evolution: attempting a holistic view. Trends in Plant Science 21: 749–757. PubMed
Serra F, Becher V, Dopazo H. 2013. Neutral theory predicts the relative abundance and diversity of genetic elements in a broad array of eukaryotic genomes. PLoS ONE 8: e63915. PubMed PMC
Shannon CE. 1948. A mathematical theory of communication. The Bell System Technical Journal 27: 379–423.
Simonin KA, Roddy AB. 2018. Genome downsizing, physiological novelty, and the global dominance of flowering plants. PLoS Biology 16: e2003706. PubMed PMC
Stitzer MC, Anderson SN, Springer NM, Ross‐Ibarra J. 2021. The genomic ecosystem of transposable elements in maize. PLoS Genetics 17: e1009768. PubMed PMC
Trávníček P, Čertner M, Ponert J, Chumová Z, Jersáková J, Suda J. 2019. Diversity in genome size and GC content shows adaptive potential in orchids and is closely linked to partial endoreplication, plant life‐history traits and climatic conditions. New Phytologist 224: 1642–1656. PubMed
Venner S, Feschotte C, Biémont C. 2009. Dynamics of transposable elements: towards a community ecology of the genome. Trends in Genetics 25: 317–323. PubMed PMC
Veselý P, Bureš P, Šmarda P, Pavlíček T. 2012. Genome size and DNA base composition of geophytes: the mirror of phenology and ecology? Annals of Botany 109: 65–75. PubMed PMC
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR. 2021. Genome downsizing after polyploidy: mechanisms, rates and selection pressures. The Plant Journal 107: 1003–1015. PubMed
Warton DI, Hui FK. 2011. The arcsine is asinine: the analysis of proportions in ecology. Ecology 92: 3–10. PubMed
WCVP . 2020. World Checklist of Vascular Plants, v.2.0 . Facilitated by the Royal Botanic Gardens, Kew. [WWW document] URL http://wcvp.science.kew.org/ [accessed 31 January 2020].
White SE, Habera LF, Wessler SR. 1994. Retrotransposons in the flanking regions of normal plant genes: a role for copia‐like elements in the evolution of gene structure and expression. Proceedings of the National Academy of Sciences, USA 91: 11792–11796. PubMed PMC
Zizka A, Silvestro D, Andermann T, Azevedo J, Duarte Ritter C, Edler D, Farooq H, Herdean A, Ariza M, Scharn R. 2019. coordinatecleaner: standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution 10: 744–751.
Dryad
10.5061/dryad.4j0zpc8f4