Angiosperms Are Unique among Land Plant Lineages in the Occurrence of Key Genes in the RNA-Directed DNA Methylation (RdDM) Pathway
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26338185
PubMed Central
PMC4607528
DOI
10.1093/gbe/evv171
PII: evv171
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, RNA-directed DNA methylation, chromatin modification, evolution, seed plants,
- MeSH
- Arabidopsis genetika MeSH
- chromatin metabolismus MeSH
- cykasy genetika metabolismus MeSH
- cytosin metabolismus MeSH
- DNA řízené RNA-polymerasy metabolismus MeSH
- epigeneze genetická MeSH
- fylogeneze MeSH
- genom rostlinný MeSH
- Magnoliopsida enzymologie genetika metabolismus MeSH
- malá interferující RNA metabolismus MeSH
- malá nekódující RNA chemie MeSH
- metylace DNA * MeSH
- metylace MeSH
- ribonukleasa III klasifikace genetika MeSH
- RNA rostlin chemie metabolismus MeSH
- rostlinné geny * MeSH
- rostlinné proteiny klasifikace genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- cytosin MeSH
- DNA řízené RNA-polymerasy MeSH
- malá interferující RNA MeSH
- malá nekódující RNA MeSH
- ribonukleasa III MeSH
- RNA rostlin MeSH
- rostlinné proteiny MeSH
The RNA-directed DNA methylation (RdDM) pathway can be divided into three phases: 1) small interfering RNA biogenesis, 2) de novo methylation, and 3) chromatin modification. To determine the degree of conservation of this pathway we searched for key genes among land plants. We used OrthoMCL and the OrthoMCL Viridiplantae database to analyze proteomes of species in bryophytes, lycophytes, monilophytes, gymnosperms, and angiosperms. We also analyzed small RNA size categories and, in two gymnosperms, cytosine methylation in ribosomal DNA. Six proteins were restricted to angiosperms, these being NRPD4/NRPE4, RDM1, DMS3 (defective in meristem silencing 3), SHH1 (SAWADEE homeodomain homolog 1), KTF1, and SUVR2, although we failed to find the latter three proteins in Fritillaria persica, a species with a giant genome. Small RNAs of 24 nt in length were abundant only in angiosperms. Phylogenetic analyses of Dicer-like (DCL) proteins showed that DCL2 was restricted to seed plants, although it was absent in Gnetum gnemon and Welwitschia mirabilis. The data suggest that phases (1) and (2) of the RdDM pathway, described for model angiosperms, evolved with angiosperms. The absence of some features of RdDM in F. persica may be associated with its large genome. Phase (3) is probably the most conserved part of the pathway across land plants. DCL2, involved in virus defense and interaction with the canonical RdDM pathway to facilitate methylation of CHH, is absent outside seed plants. Its absence in G. gnemon, and W. mirabilis coupled with distinctive patterns of CHH methylation, suggest a secondary loss of DCL2 following the divergence of Gnetales.
Zobrazit více v PubMed
Andika IB, et al. 2015. Differential contributions of plant Dicer-like proteins to antiviral defences against potato virus X in leaves and roots. Plant J. 81:781–793. PubMed
Becher H, et al. 2014. Endogenous pararetrovirus sequences associated with 24 nt small RNAs at the centromeres of Fritillaria imperialis L. (Liliaceae), a species with a giant genome. Plant J. 80:823–833. PubMed
Bennetzen JL, Wang H. 2014. The contributions of transposable elements to the structure, function, and evolution of plant genomes. Annu Rev Plant Biol. 65:505–530. PubMed
Bernstein E, Caudy AA, Hammond SM, Hannon GJ. 2001. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366. PubMed
Böhmdorfer G, et al. 2011. GMI1, a structural-maintenance-of-chromosomes-hinge domain-containing protein, is involved in somatic homologous recombination in Arabidopsis. Plant J. 67:420-433. PubMed
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25:1972–1973. PubMed PMC
Chang J-M, Di Tommaso P, Lefort V, Gascuel O, Notredame C. 2015. TCS: a web server for multiple sequence alignment evaluation and phylogenetic reconstruction. Nucleic Acids Res. 43:W3–W6. PubMed PMC
Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165. PubMed PMC
Dolgosheina EV, et al. 2008. Conifers have a unique small RNA silencing signature. RNA 14:1508–1515. PubMed PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32:1792–1797. PubMed PMC
Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 25:2400–2415. PubMed PMC
Fischer S, et al. 2011. Using OrthoMCL to assign proteins to OrthoMCL-DB groups or to cluster proteomes into new ortholog groups. Curr Protoc Bioinformatics. Chapter 6:Unit 6.12.1–6.12.19. PubMed PMC
Fuchs J, Jovtchev G, Schubert I. 2008. The chromosomal distribution of histone methylation marks in gymnosperms differs from that of angiosperms. Chromosom Res. 16:891–898. PubMed
Gao Z, et al. 2010. An RNA polymerase II- and AGO4-associated protein acts in RNA-directed DNA methylation. Nature 465:106–109. PubMed PMC
Grabherr MG, et al. 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 29:644–652. PubMed PMC
Grover CE, Wendel JF. 2010. Recent insights into mechanisms of genome size change in plants. J Bot. 2010:1–8.
He XJ, Hsu YF, Pontes O, et al. 2009. NRPD4, a protein related to the RPB4 subunit of RNA polymerase II, is a component of RNA polymerases IV and V and is required for RNA-directed DNA methylation. Genes Dev. 23:318–330. PubMed PMC
He XJ, Hsu YF, Zhu S, et al. 2009. An effector of RNA-directed DNA methylation in Arabidopsis is an ARGONAUTE 4- and RNA-binding protein. Cell 137:498–508. PubMed PMC
Hetzl J, Foerster AM, Raidl G, Mittelsten Scheid O. 2007. CyMATE: a new tool for methylation analysis of plant genomic DNA after bisulphite sequencing. Plant J. 51:526–536. PubMed
Kelly LJ, et al. 2015. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size. New Phytol: doi: 10.1111/nph.13471. PubMed PMC
Kenrick P, Crane PR. 1997. The origin and early evolution of plants on land. Nature 389:33–39.
Kovarik A, et al. 2005. Rapid concerted evolution of nuclear ribosomal DNA in two Tragopogon allopolyploids of recent and recurrent origin. Genetics 169:931–944. PubMed PMC
Kovach A, et al. 2010. The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences. BMC Genomics 11:420. PubMed PMC
Law J, et al. 2010. A protein complex required for polymerase V transcripts and RNA- directed DNA methylation in Arabidopsis. Curr Biol. 20:951–956. PubMed PMC
Law J, et al. 2013. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 498:385–389. PubMed PMC
Leitch AR, Leitch IJ. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol. 194:629–646. PubMed
Leitch IJ, Leitch AR. 2013. Genome size diversity and evolution in land plants. In: Leitch IJ, Greilhuber J, Dolezel J, Wendel JF, editors. Plant genome diversity. Vol. 2 Vienna: Springer; p. 307–322.
Li FW, et al. 2014. Horizontal transfer of an adaptive chimeric photoreceptor from bryophytes to ferns. Proc Natl Acad Sci U S A. 111:6672–6677. PubMed PMC
Li L, Stoeckert CJ, Roos DS. 2003. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 13:2178–2189. PubMed PMC
Lim KY, et al. 2000. Gene conversion of ribosomal DNA in Nicotiana tabacum is associated with undermethylated, decondensed and probably active gene units. Chromosoma 109:161–172. PubMed
Lisch D. 2013. How important are transposons in plant evolution? Nat Rev Genet. 14:49-61. PubMed
Liu Q, Feng Y, Zhu Z. 2009. Dicer-like (DCL) proteins in plants. Funct Integr Genomics. 9:277–286. PubMed
Margis R, et al. 2006. The evolution and diversification of Dicers in plants. FEBS Lett. 580:2442–2450. PubMed
Mathews S. 2009. Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data. Am. J. Bot. 96:228–236. PubMed
Matzke MA, Kanno T, Matzke AJM. 2015. RNA-directed DNA methylation: the evolution of a complex epigenetic pathway in flowering plants. Annu Rev Plant Biol. 66:243–267. PubMed
Matzke MA, Mosher RA. 2014. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat Rev Genet. 15:394–408. PubMed
Metcalfe CJ, Casane D. 2013. Accommodating the load: the transposable element content of very large genomes. Mob Genet Elements. 3:e24775. PubMed PMC
Morse AM, et al. 2009. Evolution of genome size and complexity in Pinus. PLoS One 4:e4332. PubMed PMC
Notredame C, Higgins DG, Heringa J. 2000. T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 302:205–217. PubMed
Nuthikattu S, et al. 2013. The initiation of epigenetic silencing of active transposable elements is triggered by RDR6 and 21-22 nucleotide small interfering RNAs. Plant Physiol. 162:116–131. PubMed PMC
Nystedt B, et al. 2013. The Norway spruce genome sequence and conifer genome evolution. Nature 497:579–584. PubMed
Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA. 2010. Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180. PubMed PMC
Ream TS, et al. 2009. Subunit compositions of the RNA-silencing enzymes Pol IV and Pol V reveal their origins as specialized forms of RNA Polymerase II. Mol Cell. 33:192–203. PubMed PMC
Sasaki T, Lorković ZJ, Liang SC, Matzke AJM, Matzke MA. 2014. The ability to form homodimers is essential for RDM1 to function in RNA-directed DNA methylation. PLoS One 9:e88190. PubMed PMC
Schauer SE, Jacobsen SE, Meinke DW, Ray A. 2002. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7:487–491. PubMed
Song X, et al. 2012. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J. 69:462–474. PubMed
Stamatakis A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. PubMed
Stroud H, Greenberg MVC, Feng S, Bernatavichute YV, Jacobsen SE. 2013. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364. PubMed PMC
Tucker SL, Reece J, Ream TS, Pikaard CS. 2010. Evolutionary history of plant multisubunit RNA polymerases IV and V: subunit origins via genome-wide and segmental gene duplications, retrotransposition, and lineage-specific subfunctionalization. Cold Spring Harb Symp Quant Biol. 75:285–297. PubMed
Wan L-C, et al. 2012. Identification and characterization of small non-coding RNAs from Chinese fir by high throughput sequencing. BMC Plant Biol. 12:146. PubMed PMC
Wellman CH, Osterloff PL, Mohiuddin U. 2003. Fragments of the earliest land plants. Nature 425:282–285. PubMed
Woodhouse MR, Freeling M, Lisch D. 2006. Initiation, establishment, and maintenance of heritable MuDR transposon silencing in maize are mediated by distinct factors. PLoS Biol. 4:e339. PubMed PMC
Zhang H, Ma ZY, et al. 2013. DTF1 is a core component of RNA-directed DNA methylation and may assist in the recruitment of Pol IV. Proc Natl Acad Sci U S A. 110:8290–8295. PubMed PMC
Zhang J, Wu T, et al. 2013. Dynamic expression of small RNA populations in larch (Larix leptolepis). Planta 237:89–101. PubMed
Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W. 2004. GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 136:2621–2632 PubMed PMC