Highly contiguous genomes of human clinical isolates of Giardia duodenalis reveal assemblage- and sub-assemblage-specific presence-absence variation in protein-coding genes
Language English Country England, Great Britain Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36976254
PubMed Central
PMC10132058
DOI
10.1099/mgen.0.000963
Knihovny.cz E-resources
- Keywords
- Giardia duodenalis, allelic sequence heterozygosity, comparative genomics, protozoa,
- MeSH
- Genomics MeSH
- Giardia lamblia * genetics MeSH
- Giardia genetics MeSH
- Giardiasis * parasitology MeSH
- Humans MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a widespread gastrointestinal protozoan parasite with debated taxonomic status. Currently, eight distinct genetic sub-groups, termed assemblages A-H, are defined based on a few genetic markers. Assemblages A and B may represent distinct species and are both of human public health relevance. Genomic studies are scarce and the few reference genomes available, in particular for assemblage B, are insufficient for adequate comparative genomics. Here, by combining long- and short-read sequences generated by PacBio and Illumina sequencing technologies, we provide nine annotated genome sequences for reference from new clinical isolates (four assemblage A and five assemblage B parasite isolates). Isolates chosen represent the currently accepted classification of sub-assemblages AI, AII, BIII and BIV. Synteny over the whole genome was generally high, but we report chromosome-level translocations as a feature that distinguishes assemblage A from B parasites. Orthologue gene group analysis was used to define gene content differences between assemblage A and B and to contribute a gene-set-based operational definition of respective taxonomic units. Giardia is tetraploid, and high allelic sequence heterogeneity (ASH) for assemblage B vs. assemblage A has been observed so far. Noteworthy, here we report an extremely low ASH (0.002%) for one of the assemblage B isolates (a value even lower than the reference assemblage A isolate WB-C6). This challenges the view of low ASH being a notable feature that distinguishes assemblage A from B parasites, and low ASH allowed assembly of the most contiguous assemblage B genome currently available for reference. In conclusion, the description of nine highly contiguous genome assemblies of new isolates of G. duodenalis assemblage A and B adds to our understanding of the genomics and species population structure of this widespread zoonotic parasite.
Bioinformatics Core Facility Robert Koch Institute Berlin Germany
Department of Microbiology and Molecular Genetics UC Davis Davis CA USA
See more in PubMed
Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. Infect Genet Evol. 2018;66:335–345. doi: 10.1016/j.meegid.2017.12.001. PubMed DOI
Klotz C, Aebischer T. The immunological enigma of human giardiasis. Curr Trop Med Rep. 2015;2:119–127. doi: 10.1007/s40475-015-0050-2. DOI
Lalle M, Hanevik K. Treatment-refractory giardiasis: challenges and solutions. Infect Drug Resist. 2018;11:1921–1933. doi: 10.2147/IDR.S141468. PubMed DOI PMC
Monis PT, Caccio SM, Thompson RCA. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol. 2009;25:93–100. doi: 10.1016/j.pt.2008.11.006. PubMed DOI
Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H, et al. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. Infect Genet Evol. 2018;60:7–16. doi: 10.1016/j.meegid.2018.02.012. PubMed DOI
Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev. 2011;24:110–140. doi: 10.1128/CMR.00033-10. PubMed DOI PMC
Ryan U, Cacciò SM. Zoonotic potential of Giardia . Int J Parasitol. 2013;43:943–956. doi: 10.1016/j.ijpara.2013.06.001. PubMed DOI
Adam RD, Dahlstrom EW, Martens CA, Bruno DP, Barbian KD, et al. Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig) Genome Biol Evol. 2013;5:2498–2511. doi: 10.1093/gbe/evt197. PubMed DOI PMC
Ankarklev J, Franzén O, Peirasmaki D, Jerlström-Hultqvist J, Lebbad M, et al. Comparative genomic analyses of freshly isolated Giardia intestinalis assemblage A isolates. BMC Genomics. 2015;16:697. doi: 10.1186/s12864-015-1893-6. PubMed DOI PMC
Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, et al. Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 2009;5:e1000560. doi: 10.1371/journal.ppat.1000560. PubMed DOI PMC
Jerlström-Hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E, et al. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics. 2010;11:543. doi: 10.1186/1471-2164-11-543. PubMed DOI PMC
Kooyman FNJ, Wagenaar JA, Zomer A. Whole-genome sequencing of dog-specific assemblages C and D of Giardia duodenalis from single and pooled cysts indicates host-associated genes. Microb Genom. 2019;5:12. doi: 10.1099/mgen.0.000302. PubMed DOI PMC
Maloney JG, Molokin A, Solano-Aguilar G, Dubey JP, Santin M. A hybrid sequencing and assembly strategy for generating culture free Giardia genomes. Curr Res Microb Sci. 2022;3:100114. doi: 10.1016/j.crmicr.2022.100114. PubMed DOI PMC
Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia . Science. 2007;317:1921–1926. doi: 10.1126/science.1143837. PubMed DOI
Pollo SMJ, Reiling SJ, Wit J, Workentine ML, Guy RA, et al. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation. Parasit Vectors. 2020;13:108. doi: 10.1186/s13071-020-3968-8. PubMed DOI PMC
Prystajecky N, Tsui CK-M, Hsiao WWL, Uyaguari-Diaz MI, Ho J, et al. Giardia spp. are commonly found in mixed assemblages in surface water, as revealed by molecular and whole-genome characterization. Appl Environ Microbiol. 2015;81:4827–4834. doi: 10.1128/AEM.00524-15. PubMed DOI PMC
Radunovic M, Klotz C, Saghaug CS, Brattbakk H-R, Aebischer T, et al. Genetic variation in potential Giardia vaccine candidates cyst wall protein 2 and α1-giardin. Parasitol Res. 2017;116:2151–2158. doi: 10.1007/s00436-017-5516-9. PubMed DOI
Tsui C-M, Miller R, Uyaguari-Diaz M, Tang P, Chauve C, et al. Beaver fever: whole-genome characterization of waterborne outbreak and sporadic isolates to study the zoonotic transmission of giardiasis. mSphere. 2018;3:00090–18. doi: 10.1128/mSphere.00090-18. PubMed DOI PMC
Weisz F, Lalle M, Nohynkova E, Sannella AR, Dluhošová J, et al. Testing the impact of whole genome amplification on genome comparison using the polyploid flagellated Giardia duodenalis as a model. Exp Parasitol. 2019;207:107776. doi: 10.1016/j.exppara.2019.107776. PubMed DOI
Wielinga C, Thompson RCA, Monis P, Ryan U. Identification of polymorphic genes for use in assemblage B genotyping assays through comparative genomics of multiple assemblage B Giardia duodenalis isolates. Mol Biochem Parasitol. 2015;201:1–4. doi: 10.1016/j.molbiopara.2015.05.002. PubMed DOI
Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data. 2020;7:38. doi: 10.1038/s41597-020-0377-y. PubMed DOI PMC
Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom. 2020;6:mgen000402. doi: 10.1099/mgen.0.000402. PubMed DOI PMC
Tůmová P, Dluhošová J, Weisz F, Nohýnková E. Unequal distribution of genes and chromosomes refers to nuclear diversification in the binucleated Giardia intestinalis. Int J Parasitol. 2019;49:463–470. doi: 10.1016/j.ijpara.2019.01.003. PubMed DOI
National Center for Biotechnology Information (NCBI) Genome Information by Organism. https://www.ncbi.nlm.nih.gov/genome/browse#!/eukaryotes/26/ n.d.
Giardiadb.org. https://giardiadb.org/giardiadb/ n.d.
Helmy YA, Klotz C, Wilking H, Krücken J, Nöckler K, et al. Epidemiology of Giardia duodenalis infection in ruminant livestock and children in the Ismailia province of Egypt: insights by genetic characterization. Parasit Vectors. 2014;7:321. doi: 10.1186/1756-3305-7-321. PubMed DOI PMC
Ignatius R, Gahutu JB, Klotz C, Steininger C, Shyirambere C, et al. High prevalence of Giardia duodenalis assemblage B infection and association with underweight in Rwandan children. PLoS Negl Trop Dis. 2012;6:e1677. doi: 10.1371/journal.pntd.0001677. PubMed DOI PMC
Sprong H, Cacciò SM, van der Giessen JWB, ZOOPNET network and partners Identification of zoonotic genotypes of Giardia duodenalis . PLoS Negl Trop Dis. 2009;3:e558. doi: 10.1371/journal.pntd.0000558. PubMed DOI PMC
Woschke A, Faber M, Stark K, Holtfreter M, Mockenhaupt F, et al. Suitability of current typing procedures to identify epidemiologically linked human Giardia duodenalis isolates. PLoS Negl Trop Dis. 2021;15:e0009277. doi: 10.1371/journal.pntd.0009277. PubMed DOI PMC
Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 1983;77:487–488. doi: 10.1016/0035-9203(83)90120-7. PubMed DOI
Hahn J, Seeber F, Kolodziej H, Ignatius R, Laue M, et al. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro. PLoS One. 2013;8:e71597. doi: 10.1371/journal.pone.0071597. PubMed DOI PMC
Saghaug CS, Klotz C, Kallio JP, Brattbakk H-R, Stokowy T, et al. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect Drug Resist. 2019;12:1221–1235. doi: 10.2147/IDR.S177997. PubMed DOI PMC
Sedinová J, Flegr J, Ey PL, Kulda J. Use of random amplified polymorphic DNA (RAPD) analysis for the identification of Giardia intestinalis subtypes and phylogenetic tree construction. J Eukaryot Microbiol. 2003;50:198–203. doi: 10.1111/j.1550-7408.2003.tb00117.x. PubMed DOI
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Miniasm. https://github.com/lh3/miniasm n.d.
Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Kolmogorov M, Armstrong J, Raney BJ, Streeter I, Dunn M, et al. Chromosome assembly of large and complex genomes using multiple references. Genome Res. 2018;28:1720–1732. doi: 10.1101/gr.236273.118. PubMed DOI PMC
Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC
Smit A, Hubley R. RepeatModeler Open-1.0. 2008-2015. http://www.repeatmasker.org n.d.
Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015. http://www.repeatmasker.org n.d.
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and Augustus. Bioinformatics. 2016;32:767–769. doi: 10.1093/bioinformatics/btv661. PubMed DOI PMC
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637–644. doi: 10.1093/bioinformatics/btn013. PubMed DOI
Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7:62. doi: 10.1186/1471-2105-7-62. PubMed DOI PMC
Nachtweide S, Stanke M. Multi-genome annotation with Augustus. Methods Protoc. 2019;1962:139–160. doi: 10.1007/978-1-4939-9173-0. PubMed DOI
Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 2011;21:1512–1528. doi: 10.1101/gr.123356.111. PubMed DOI PMC
Yi H, Jin L. Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids Res. 2013;41:e75. doi: 10.1093/nar/gkt003. PubMed DOI PMC
Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 2018;46:W84–W88. doi: 10.1093/nar/gky350. PubMed DOI PMC
Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI
Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC
Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS, et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun. 2016;7:10147. doi: 10.1038/ncomms10147. PubMed DOI PMC
Picard. https://github.com/broadinstitute/picard n.d.
Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. https://arxiv.org/abs/1207.3907v2
Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, et al. Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol. 2005;35:207–213. doi: 10.1016/j.ijpara.2004.10.022. PubMed DOI
Read CM, Monis PT, Thompson RCA. Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol. 2004;4:125–130. doi: 10.1016/j.meegid.2004.02.001. PubMed DOI
Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, et al. Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis . Emerg Infect Dis. 2003;9:1444–1452. doi: 10.3201/eid0911.030084. PubMed DOI PMC
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC
Seabolt MH, Konstantinidis KT, Roellig DM. Hidden diversity within common protozoan parasites as revealed by a novel genomotyping scheme. Appl Environ Microbiol. 2021;87:e02275-20. doi: 10.1128/AEM.02275-20. PubMed DOI PMC
Saghaug CS, Gamlem AL, Hauge KB, Vahokoski J, Klotz C, et al. Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia . Int J Parasitol Drugs Drug Resist. 2022;21:51–60. doi: 10.1016/j.ijpddr.2022.12.003. PubMed DOI PMC
Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, et al. Genomic repeat abundances contain phylogenetic signal. Syst Biol. 2015;64:112–126. doi: 10.1093/sysbio/syu080. PubMed DOI PMC
Drillon G, Champeimont R, Oteri F, Fischer G, Carbone A. Phylogenetic reconstruction based on synteny block and gene adjacencies. Mol Biol Evol. 2020;37:2747–2762. doi: 10.1093/molbev/msaa114. PubMed DOI PMC
De Queiroz K. Species concepts and species delimitation. Syst Biol. 2007;56:879–886. doi: 10.1080/10635150701701083. PubMed DOI
Zachos FE. (New) species concepts, species delimitation and the inherent limitations of taxonomy. J Genet. 2018;97:811–815. doi: 10.1007/s12041-018-0965-1. PubMed DOI
Zallot R, Harrison KJ, Kolaczkowski B, de Crécy-Lagard V. Functional annotations of paralogs: a blessing and a curse. Life. 2016;6:39. doi: 10.3390/life6030039. PubMed DOI PMC
Bénéré E, VAN Assche T, Cos P, Maes L. Variation in growth and drug susceptibility among Giardia duodenalis assemblages A, B and E in axenic in vitro culture and in the gerbil model. Parasitology. 2011;138:1354–1361. doi: 10.1017/S0031182011001223. PubMed DOI
Rice EW, Schaefer FW. Improved in vitro excystation procedure for Giardia lamblia cysts. J Clin Microbiol. 1981;14:709–710. doi: 10.1128/jcm.14.6.709-710.1981. PubMed DOI PMC
Wallis PM, Wallis HM. Excystation and culturing of human and animal Giardia spp. by using gerbils and TYI-S-33 medium. Appl Environ Microbiol. 1986;51:647–651. doi: 10.1128/aem.51.3.647-651.1986. PubMed DOI PMC
Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 2011;12:R66. doi: 10.1186/gb-2011-12-7-r66. PubMed DOI PMC
Birky CW. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics. 1996;144:427–437. doi: 10.1093/genetics/144.1.427. PubMed DOI PMC
Birky CW. Giardia sex? Yes, but how and how much? Trends Parasitol. 2010;26:70–74. doi: 10.1016/j.pt.2009.11.007. PubMed DOI
Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, et al. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia . Mol Biol Cell. 2020;31:1611–1622. doi: 10.1091/mbc.E19-07-0406. PubMed DOI PMC
Nash TE. In: Giardia: A Model Organism. Luján HD, Svärd S, editors. Wien ; New York: Springer; 2011. Antigenic Variation in Giardia ; pp. 245–257.