• This record comes from PubMed

Highly contiguous genomes of human clinical isolates of Giardia duodenalis reveal assemblage- and sub-assemblage-specific presence-absence variation in protein-coding genes

. 2023 Mar ; 9 (3) : .

Language English Country England, Great Britain Media print

Document type Journal Article, Research Support, Non-U.S. Gov't

Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a widespread gastrointestinal protozoan parasite with debated taxonomic status. Currently, eight distinct genetic sub-groups, termed assemblages A-H, are defined based on a few genetic markers. Assemblages A and B may represent distinct species and are both of human public health relevance. Genomic studies are scarce and the few reference genomes available, in particular for assemblage B, are insufficient for adequate comparative genomics. Here, by combining long- and short-read sequences generated by PacBio and Illumina sequencing technologies, we provide nine annotated genome sequences for reference from new clinical isolates (four assemblage A and five assemblage B parasite isolates). Isolates chosen represent the currently accepted classification of sub-assemblages AI, AII, BIII and BIV. Synteny over the whole genome was generally high, but we report chromosome-level translocations as a feature that distinguishes assemblage A from B parasites. Orthologue gene group analysis was used to define gene content differences between assemblage A and B and to contribute a gene-set-based operational definition of respective taxonomic units. Giardia is tetraploid, and high allelic sequence heterogeneity (ASH) for assemblage B vs. assemblage A has been observed so far. Noteworthy, here we report an extremely low ASH (0.002%) for one of the assemblage B isolates (a value even lower than the reference assemblage A isolate WB-C6). This challenges the view of low ASH being a notable feature that distinguishes assemblage A from B parasites, and low ASH allowed assembly of the most contiguous assemblage B genome currently available for reference. In conclusion, the description of nine highly contiguous genome assemblies of new isolates of G. duodenalis assemblage A and B adds to our understanding of the genomics and species population structure of this widespread zoonotic parasite.

See more in PubMed

Cacciò SM, Lalle M, Svärd SG. Host specificity in the Giardia duodenalis species complex. Infect Genet Evol. 2018;66:335–345. doi: 10.1016/j.meegid.2017.12.001. PubMed DOI

Klotz C, Aebischer T. The immunological enigma of human giardiasis. Curr Trop Med Rep. 2015;2:119–127. doi: 10.1007/s40475-015-0050-2. DOI

Lalle M, Hanevik K. Treatment-refractory giardiasis: challenges and solutions. Infect Drug Resist. 2018;11:1921–1933. doi: 10.2147/IDR.S141468. PubMed DOI PMC

Monis PT, Caccio SM, Thompson RCA. Variation in Giardia: towards a taxonomic revision of the genus. Trends Parasitol. 2009;25:93–100. doi: 10.1016/j.pt.2008.11.006. PubMed DOI

Ankarklev J, Lebbad M, Einarsson E, Franzén O, Ahola H, et al. A novel high-resolution multilocus sequence typing of Giardia intestinalis Assemblage A isolates reveals zoonotic transmission, clonal outbreaks and recombination. Infect Genet Evol. 2018;60:7–16. doi: 10.1016/j.meegid.2018.02.012. PubMed DOI

Feng Y, Xiao L. Zoonotic potential and molecular epidemiology of Giardia species and giardiasis. Clin Microbiol Rev. 2011;24:110–140. doi: 10.1128/CMR.00033-10. PubMed DOI PMC

Ryan U, Cacciò SM. Zoonotic potential of Giardia . Int J Parasitol. 2013;43:943–956. doi: 10.1016/j.ijpara.2013.06.001. PubMed DOI

Adam RD, Dahlstrom EW, Martens CA, Bruno DP, Barbian KD, et al. Genome sequencing of Giardia lamblia genotypes A2 and B isolates (DH and GS) and comparative analysis with the genomes of genotypes A1 and E (WB and Pig) Genome Biol Evol. 2013;5:2498–2511. doi: 10.1093/gbe/evt197. PubMed DOI PMC

Ankarklev J, Franzén O, Peirasmaki D, Jerlström-Hultqvist J, Lebbad M, et al. Comparative genomic analyses of freshly isolated Giardia intestinalis assemblage A isolates. BMC Genomics. 2015;16:697. doi: 10.1186/s12864-015-1893-6. PubMed DOI PMC

Franzén O, Jerlström-Hultqvist J, Castro E, Sherwood E, Ankarklev J, et al. Draft genome sequencing of Giardia intestinalis assemblage B isolate GS: is human giardiasis caused by two different species? PLoS Pathog. 2009;5:e1000560. doi: 10.1371/journal.ppat.1000560. PubMed DOI PMC

Jerlström-Hultqvist J, Franzén O, Ankarklev J, Xu F, Nohýnková E, et al. Genome analysis and comparative genomics of a Giardia intestinalis assemblage E isolate. BMC Genomics. 2010;11:543. doi: 10.1186/1471-2164-11-543. PubMed DOI PMC

Kooyman FNJ, Wagenaar JA, Zomer A. Whole-genome sequencing of dog-specific assemblages C and D of Giardia duodenalis from single and pooled cysts indicates host-associated genes. Microb Genom. 2019;5:12. doi: 10.1099/mgen.0.000302. PubMed DOI PMC

Maloney JG, Molokin A, Solano-Aguilar G, Dubey JP, Santin M. A hybrid sequencing and assembly strategy for generating culture free Giardia genomes. Curr Res Microb Sci. 2022;3:100114. doi: 10.1016/j.crmicr.2022.100114. PubMed DOI PMC

Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, et al. Genomic minimalism in the early diverging intestinal parasite Giardia lamblia . Science. 2007;317:1921–1926. doi: 10.1126/science.1143837. PubMed DOI

Pollo SMJ, Reiling SJ, Wit J, Workentine ML, Guy RA, et al. Benchmarking hybrid assemblies of Giardia and prediction of widespread intra-isolate structural variation. Parasit Vectors. 2020;13:108. doi: 10.1186/s13071-020-3968-8. PubMed DOI PMC

Prystajecky N, Tsui CK-M, Hsiao WWL, Uyaguari-Diaz MI, Ho J, et al. Giardia spp. are commonly found in mixed assemblages in surface water, as revealed by molecular and whole-genome characterization. Appl Environ Microbiol. 2015;81:4827–4834. doi: 10.1128/AEM.00524-15. PubMed DOI PMC

Radunovic M, Klotz C, Saghaug CS, Brattbakk H-R, Aebischer T, et al. Genetic variation in potential Giardia vaccine candidates cyst wall protein 2 and α1-giardin. Parasitol Res. 2017;116:2151–2158. doi: 10.1007/s00436-017-5516-9. PubMed DOI

Tsui C-M, Miller R, Uyaguari-Diaz M, Tang P, Chauve C, et al. Beaver fever: whole-genome characterization of waterborne outbreak and sporadic isolates to study the zoonotic transmission of giardiasis. mSphere. 2018;3:00090–18. doi: 10.1128/mSphere.00090-18. PubMed DOI PMC

Weisz F, Lalle M, Nohynkova E, Sannella AR, Dluhošová J, et al. Testing the impact of whole genome amplification on genome comparison using the polyploid flagellated Giardia duodenalis as a model. Exp Parasitol. 2019;207:107776. doi: 10.1016/j.exppara.2019.107776. PubMed DOI

Wielinga C, Thompson RCA, Monis P, Ryan U. Identification of polymorphic genes for use in assemblage B genotyping assays through comparative genomics of multiple assemblage B Giardia duodenalis isolates. Mol Biochem Parasitol. 2015;201:1–4. doi: 10.1016/j.molbiopara.2015.05.002. PubMed DOI

Xu F, Jex A, Svärd SG. A chromosome-scale reference genome for Giardia intestinalis WB. Sci Data. 2020;7:38. doi: 10.1038/s41597-020-0377-y. PubMed DOI PMC

Xu F, Jiménez-González A, Einarsson E, Ástvaldsson Á, Peirasmaki D, et al. The compact genome of Giardia muris reveals important steps in the evolution of intestinal protozoan parasites. Microb Genom. 2020;6:mgen000402. doi: 10.1099/mgen.0.000402. PubMed DOI PMC

Tůmová P, Dluhošová J, Weisz F, Nohýnková E. Unequal distribution of genes and chromosomes refers to nuclear diversification in the binucleated Giardia intestinalis. Int J Parasitol. 2019;49:463–470. doi: 10.1016/j.ijpara.2019.01.003. PubMed DOI

National Center for Biotechnology Information (NCBI) Genome Information by Organism. https://www.ncbi.nlm.nih.gov/genome/browse#!/eukaryotes/26/ n.d.

Giardiadb.org. https://giardiadb.org/giardiadb/ n.d.

Helmy YA, Klotz C, Wilking H, Krücken J, Nöckler K, et al. Epidemiology of Giardia duodenalis infection in ruminant livestock and children in the Ismailia province of Egypt: insights by genetic characterization. Parasit Vectors. 2014;7:321. doi: 10.1186/1756-3305-7-321. PubMed DOI PMC

Ignatius R, Gahutu JB, Klotz C, Steininger C, Shyirambere C, et al. High prevalence of Giardia duodenalis assemblage B infection and association with underweight in Rwandan children. PLoS Negl Trop Dis. 2012;6:e1677. doi: 10.1371/journal.pntd.0001677. PubMed DOI PMC

Sprong H, Cacciò SM, van der Giessen JWB, ZOOPNET network and partners Identification of zoonotic genotypes of Giardia duodenalis . PLoS Negl Trop Dis. 2009;3:e558. doi: 10.1371/journal.pntd.0000558. PubMed DOI PMC

Woschke A, Faber M, Stark K, Holtfreter M, Mockenhaupt F, et al. Suitability of current typing procedures to identify epidemiologically linked human Giardia duodenalis isolates. PLoS Negl Trop Dis. 2021;15:e0009277. doi: 10.1371/journal.pntd.0009277. PubMed DOI PMC

Keister DB. Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg. 1983;77:487–488. doi: 10.1016/0035-9203(83)90120-7. PubMed DOI

Hahn J, Seeber F, Kolodziej H, Ignatius R, Laue M, et al. High sensitivity of Giardia duodenalis to tetrahydrolipstatin (orlistat) in vitro. PLoS One. 2013;8:e71597. doi: 10.1371/journal.pone.0071597. PubMed DOI PMC

Saghaug CS, Klotz C, Kallio JP, Brattbakk H-R, Stokowy T, et al. Genetic variation in metronidazole metabolism and oxidative stress pathways in clinical Giardia lamblia assemblage A and B isolates. Infect Drug Resist. 2019;12:1221–1235. doi: 10.2147/IDR.S177997. PubMed DOI PMC

Sedinová J, Flegr J, Ey PL, Kulda J. Use of random amplified polymorphic DNA (RAPD) analysis for the identification of Giardia intestinalis subtypes and phylogenetic tree construction. J Eukaryot Microbiol. 2003;50:198–203. doi: 10.1111/j.1550-7408.2003.tb00117.x. PubMed DOI

Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC

Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC

Miniasm. https://github.com/lh3/miniasm n.d.

Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27:737–746. doi: 10.1101/gr.214270.116. PubMed DOI PMC

Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC

Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Kolmogorov M, Armstrong J, Raney BJ, Streeter I, Dunn M, et al. Chromosome assembly of large and complex genomes using multiple references. Genome Res. 2018;28:1720–1732. doi: 10.1101/gr.236273.118. PubMed DOI PMC

Darling ACE, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC

Smit A, Hubley R. RepeatModeler Open-1.0. 2008-2015. http://www.repeatmasker.org n.d.

Smit A, Hubley R, Green P. RepeatMasker Open-4.0. 2013-2015. http://www.repeatmasker.org n.d.

Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: unsupervised RNA-Seq-based genome annotation with GeneMark-ET and Augustus. Bioinformatics. 2016;32:767–769. doi: 10.1093/bioinformatics/btv661. PubMed DOI PMC

Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637–644. doi: 10.1093/bioinformatics/btn013. PubMed DOI

Stanke M, Schöffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics. 2006;7:62. doi: 10.1186/1471-2105-7-62. PubMed DOI PMC

Nachtweide S, Stanke M. Multi-genome annotation with Augustus. Methods Protoc. 2019;1962:139–160. doi: 10.1007/978-1-4939-9173-0. PubMed DOI

Paten B, Earl D, Nguyen N, Diekhans M, Zerbino D, et al. Cactus: algorithms for genome multiple sequence alignment. Genome Res. 2011;21:1512–1528. doi: 10.1101/gr.123356.111. PubMed DOI PMC

Yi H, Jin L. Co-phylog: an assembly-free phylogenomic approach for closely related organisms. Nucleic Acids Res. 2013;41:e75. doi: 10.1093/nar/gkt003. PubMed DOI PMC

Törönen P, Medlar A, Holm L. PANNZER2: a rapid functional annotation web server. Nucleic Acids Res. 2018;46:W84–W88. doi: 10.1093/nar/gky350. PubMed DOI PMC

Wang Y, Tang H, Debarry JD, Tan X, Li J, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012;40:e49. doi: 10.1093/nar/gkr1293. PubMed DOI PMC

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. doi: 10.1038/nmeth.3176. PubMed DOI

Li L, Stoeckert CJ, Roos DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res. 2003;13:2178–2189. doi: 10.1101/gr.1224503. PubMed DOI PMC

Lorenzi H, Khan A, Behnke MS, Namasivayam S, Swapna LS, et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun. 2016;7:10147. doi: 10.1038/ncomms10147. PubMed DOI PMC

Picard. https://github.com/broadinstitute/picard n.d.

Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. 2012. https://arxiv.org/abs/1207.3907v2

Lalle M, Pozio E, Capelli G, Bruschi F, Crotti D, et al. Genetic heterogeneity at the beta-giardin locus among human and animal isolates of Giardia duodenalis and identification of potentially zoonotic subgenotypes. Int J Parasitol. 2005;35:207–213. doi: 10.1016/j.ijpara.2004.10.022. PubMed DOI

Read CM, Monis PT, Thompson RCA. Discrimination of all genotypes of Giardia duodenalis at the glutamate dehydrogenase locus using PCR-RFLP. Infect Genet Evol. 2004;4:125–130. doi: 10.1016/j.meegid.2004.02.001. PubMed DOI

Sulaiman IM, Fayer R, Bern C, Gilman RH, Trout JM, et al. Triosephosphate isomerase gene characterization and potential zoonotic transmission of Giardia duodenalis . Emerg Infect Dis. 2003;9:1444–1452. doi: 10.3201/eid0911.030084. PubMed DOI PMC

Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–4455. doi: 10.1093/bioinformatics/btz305. PubMed DOI PMC

Seabolt MH, Konstantinidis KT, Roellig DM. Hidden diversity within common protozoan parasites as revealed by a novel genomotyping scheme. Appl Environ Microbiol. 2021;87:e02275-20. doi: 10.1128/AEM.02275-20. PubMed DOI PMC

Saghaug CS, Gamlem AL, Hauge KB, Vahokoski J, Klotz C, et al. Genetic diversity in the metronidazole metabolism genes nitroreductases and pyruvate ferredoxin oxidoreductases in susceptible and refractory clinical samples of Giardia lamblia . Int J Parasitol Drugs Drug Resist. 2022;21:51–60. doi: 10.1016/j.ijpddr.2022.12.003. PubMed DOI PMC

Dodsworth S, Chase MW, Kelly LJ, Leitch IJ, Macas J, et al. Genomic repeat abundances contain phylogenetic signal. Syst Biol. 2015;64:112–126. doi: 10.1093/sysbio/syu080. PubMed DOI PMC

Drillon G, Champeimont R, Oteri F, Fischer G, Carbone A. Phylogenetic reconstruction based on synteny block and gene adjacencies. Mol Biol Evol. 2020;37:2747–2762. doi: 10.1093/molbev/msaa114. PubMed DOI PMC

De Queiroz K. Species concepts and species delimitation. Syst Biol. 2007;56:879–886. doi: 10.1080/10635150701701083. PubMed DOI

Zachos FE. (New) species concepts, species delimitation and the inherent limitations of taxonomy. J Genet. 2018;97:811–815. doi: 10.1007/s12041-018-0965-1. PubMed DOI

Zallot R, Harrison KJ, Kolaczkowski B, de Crécy-Lagard V. Functional annotations of paralogs: a blessing and a curse. Life. 2016;6:39. doi: 10.3390/life6030039. PubMed DOI PMC

Bénéré E, VAN Assche T, Cos P, Maes L. Variation in growth and drug susceptibility among Giardia duodenalis assemblages A, B and E in axenic in vitro culture and in the gerbil model. Parasitology. 2011;138:1354–1361. doi: 10.1017/S0031182011001223. PubMed DOI

Rice EW, Schaefer FW. Improved in vitro excystation procedure for Giardia lamblia cysts. J Clin Microbiol. 1981;14:709–710. doi: 10.1128/jcm.14.6.709-710.1981. PubMed DOI PMC

Wallis PM, Wallis HM. Excystation and culturing of human and animal Giardia spp. by using gerbils and TYI-S-33 medium. Appl Environ Microbiol. 1986;51:647–651. doi: 10.1128/aem.51.3.647-651.1986. PubMed DOI PMC

Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, et al. The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol. 2011;12:R66. doi: 10.1186/gb-2011-12-7-r66. PubMed DOI PMC

Birky CW. Heterozygosity, heteromorphy, and phylogenetic trees in asexual eukaryotes. Genetics. 1996;144:427–437. doi: 10.1093/genetics/144.1.427. PubMed DOI PMC

Birky CW. Giardia sex? Yes, but how and how much? Trends Parasitol. 2010;26:70–74. doi: 10.1016/j.pt.2009.11.007. PubMed DOI

Hennessey KM, Alas GCM, Rogiers I, Li R, Merritt EA, et al. Nek8445, a protein kinase required for microtubule regulation and cytokinesis in Giardia lamblia . Mol Biol Cell. 2020;31:1611–1622. doi: 10.1091/mbc.E19-07-0406. PubMed DOI PMC

Nash TE. In: Giardia: A Model Organism. Luján HD, Svärd S, editors. Wien ; New York: Springer; 2011. Antigenic Variation in Giardia ; pp. 245–257.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...