Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
PID2021-122715NB-I00
Agencia Estatal de Investigación
23-06455S
Grantová Agentura České Republiky
310030_184934
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
PCEFP3_202869
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
UJAR10MS
Spanish Ministry of Universities - European Union's NextGenerationEU
PubMed
37577951
PubMed Central
PMC11628661
DOI
10.1111/mec.17100
Knihovny.cz E-zdroje
- Klíčová slova
- Carex, Erebia, Lepidoptera, speciation, transposable elements,
- MeSH
- biologická evoluce MeSH
- Carex (rostlina) genetika MeSH
- fylogeneze * MeSH
- karyotyp * MeSH
- molekulární evoluce MeSH
- motýli * genetika MeSH
- populační genetika MeSH
- repetitivní sekvence nukleových kyselin genetika MeSH
- vznik druhů (genetika) MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Repetitive elements can cause large-scale chromosomal rearrangements, for example through ectopic recombination, potentially promoting reproductive isolation and speciation. Species with holocentric chromosomes, that lack a localized centromere, might be more likely to retain chromosomal rearrangements that lead to karyotype changes such as fusions and fissions. This is because chromosome segregation during cell division should be less affected than in organisms with a localized centromere. The relationships between repetitive elements and chromosomal rearrangements and how they may translate to patterns of speciation in holocentric organisms are though poorly understood. Here, we use a reference-free approach based on low-coverage short-read sequencing data to characterize the repeat landscape of two independently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider both micro- and macro-evolutionary scales to investigate the repeat landscape differentiation between Erebia populations and the association between repeats and karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro-evolutionary scale, we found population differentiation in repeat landscape that increases with overall intraspecific genetic differentiation among four Erebia species. At a macro-evolutionary scale, we found indications for an association between repetitive elements and karyotype changes along both Erebia and Carex phylogenies. Altogether, our results suggest that repetitive elements are associated with the level of population differentiation and chromosomal rearrangements in holocentric clades and therefore likely play a role in adaptation and potentially species diversification.
Biodiversity Genomics Laboratory Institute of Biology University of Neuchâtel Neuchâtel Switzerland
Department of Environmental Sciences University of Basel Basel Switzerland
Department of Experimental Biology Genetics Area University of Jaén Jaén Spain
Department of Plant Biology and Ecology University of Seville Seville Spain
University of South Bohemia Faculty of Science České Budějovice Czech Republic
Zobrazit více v PubMed
Ahola, V. , Lehtonen, R. , Somervuo, P. , Salmela, L. , Koskinen, P. , Rastas, P. , Välimäki, N. , Paulin, L. , Kvist, J. , Wahlberg, N. , Tanskanen, J. , Hornett, E. A. , Ferguson, L. C. , Luo, S. , Cao, Z. , de Jong, M. A. , Duplouy, A. , Smolander, O.‐P. , Vogel, H. , … Hanski, I. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature . Communications, 5(1), 4737. 10.1038/ncomms5737 PubMed DOI PMC
Alioto, T. , Alexiou, K. G. , Bardil, A. , Barteri, F. , Castanera, R. , Cruz, F. , Dhingra, A. , Duval, H. , Fernández I Martí, Á. , Frias, L. , Galán, B. , García, J. L. , Howad, W. , Gómez‐Garrido, J. , Gut, M. , Julca, I. , Morata, J. , Puigdomènech, P. , Ribeca, P. , … Arús, P. (2020). Transposons played a major role in the diversification between the closely related almond and peach genomes: Results from the almond genome sequence. The Plant Journal, 101(2), 455–472. 10.1111/tpj.14538 PubMed DOI PMC
Ansai, S. , & Kitano, J. (2022). Speciation and adaptation research meets genome editing. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1855), 20200516. 10.1098/rstb.2020.0516 PubMed DOI PMC
Antonarakis, S. E. (2022). Short arms of human acrocentric chromosomes and the completion of the human genome sequence. Genome Research, 32, 599–607. 10.1101/gr.275350.121 PubMed DOI PMC
Augustijnen, H. , Baetscher, L. , Cesanek, M. , Chkhartishvili, T. , Dinca, V. , Iankoshvili, G. , Ogawa, K. , Vila, R. , Klopfstein, S. , de Vos, J. , & Lucek, K. (2023). A macro‐evolutionary role for chromosomal fusion and fission in Erebia butterflies (p. 2023.01.16.524200). bioRxiv. 10.1101/2023.01.16.524200 PubMed DOI PMC
Augustijnen, H. , Patsiou, T. , & Lucek, K. (2022). Secondary contact rather than coexistence—Erebia butterflies in the Alps. Evolution, 76(11), 2669–2686. 10.1111/evo.14615 PubMed DOI PMC
Baril, T. , Imrie, R. M. , & Hayward, A. (2022). Earl Grey: A fully automated user‐friendly transposable element annotation and analysis pipeline. bioRxiv. 10.1101/2022.06.30.498289 PubMed DOI PMC
Bartolomé, C. , Bello, X. , & Maside, X. (2009). Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biology, 10(2), R22. 10.1186/gb-2009-10-2-r22 PubMed DOI PMC
Benestan, L. M. , Rougemont, Q. , Senay, C. , Normandeau, E. , Parent, E. , Rideout, R. , Bernatchez, L. , Lambert, Y. , Audet, C. , & Parent, G. J. (2021). Population genomics and history of speciation reveal fishery management gaps in two related redfish species (Sebastes mentella and Sebastes fasciatus). Evolutionary Applications, 14(2), 588–606. 10.1111/eva.13143 PubMed DOI PMC
Biémont, C. , & Vieira, C. (2006). Junk DNA as an evolutionary force. Nature, 443(7111), 521–524. 10.1038/443521a PubMed DOI
Bourgeois, Y. , & Boissinot, S. (2019). On the population dynamics of junk: A review on the population genomics of transposable elements. Genes, 10(6), 419. 10.3390/genes10060419 PubMed DOI PMC
Cabral‐de‐Mello, D. C. , Zrzavá, M. , Kubíčková, S. , Rendón, P. , & Marec, F. (2021). The role of satellite DNAs in genome architecture and sex chromosome evolution in Crambidae moths. Frontiers in Genetics, 12, 661417. 10.3389/fgene.2021.661417 PubMed DOI PMC
Cáceres, M. , Ranz, J. M. , Barbadilla, A. , Long, M. , & Ruiz, A. (1999). Generation of a widespread Drosophila inversion by a transposable element. Science (New York, N.Y.), 285(5426), 415–418. 10.1126/science.285.5426.415 PubMed DOI
Carta, A. , & Escudero, M. (2023). Karyotypic diversity: A neglected trait to explain angiosperm diversification? Evolution, 77(4), 1158–1164. 10.1093/evolut/qpad014 PubMed DOI
Chang, C. C. , Chow, C. C. , Tellier, L. C. , Vattikuti, S. , Purcell, S. M. , & Lee, J. J. (2015). Second‐generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), s13742‐015‐0047–0048. 10.1186/s13742-015-0047-8 PubMed DOI PMC
Charlesworth, B. , & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetics Research, 42(1), 1–27. 10.1017/S0016672300021455 DOI
Chen, S. , Zhou, Y. , Chen, Y. , & Gu, J. (2018). fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. 10.1093/bioinformatics/bty560 PubMed DOI PMC
Costa, L. , Marques, A. , Buddenhagen, C. , Thomas, W. W. , Huettel, B. , Schubert, V. , Dodsworth, S. , Houben, A. , Souza, G. , & Pedrosa‐Harand, A. (2021). Aiming off the target: Recycling target capture sequencing reads for investigating repetitive DNA. Annals of Botany, 128(7), 835–848. 10.1093/aob/mcab063 PubMed DOI PMC
Coyne, J. A. , & Orr, H. A. (2004). Speciation. Oxford University Press.
Cupedo, F. (2014). Reproductive isolation and intraspecific structure in Alpine populations of Erebia euryale (Esper, 1805) (Lepidoptera, Nymphalidae, Satyrinae). Nota Lepidopterologica, 37(1), 19. 10.3897/nl.37.7960 DOI
de Vos, J. M. , Augustijnen, H. , Bätscher, L. , & Lucek, K. (2020). Speciation through chromosomal fusion and fission in Lepidoptera. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1806), 20190539. 10.1098/rstb.2019.0539 PubMed DOI PMC
Delprat, A. , Negre, B. , Puig, M. , & Ruiz, A. (2009). The transposon Galileo generates natural chromosomal inversions in drosophila by ectopic recombination. PLoS One, 4(11), e7883. 10.1371/journal.pone.0007883 PubMed DOI PMC
Dodsworth, S. , Chase, M. W. , Kelly, L. J. , Leitch, I. J. , Macas, J. , Novák, P. , Piednoël, M. , Weiss‐Schneeweiss, H. , & Leitch, A. R. (2015). Genomic repeat abundances contain phylogenetic signal. Systematic Biology, 64(1), 112–126. 10.1093/sysbio/syu080 PubMed DOI PMC
Escudero, M. , Hahn, M. , Brown, B. H. , Lueders, K. , & Hipp, A. L. (2016). Chromosomal rearrangements in holocentric organisms lead to reproductive isolation by hybrid dysfunction: The correlation between karyotype rearrangements and germination rates in sedges. American Journal of Botany, 103(8), 1529–1536. 10.3732/ajb.1600051 PubMed DOI
Escudero, M. , Hipp, A. L. , Waterway, M. J. , & Valente, L. M. (2012). Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Molecular Phylogenetics and Evolution, 63(3), 650–655. 10.1016/j.ympev.2012.02.005 PubMed DOI
Escudero, M. , Marques, A. , Lucek, K. , & Hipp, A. (2023). Highly conserved synteny despite massive chromosome fusion and fission suggest fragile sites in holocentric plants. Molecular Ecology , 10.22541/au.167593554.47685772/v1 . DOI
Escudero, M. , Márquez‐Corro, J. I. , & Hipp, A. L. (2016). The phylogenetic origins and evolutionary history of holocentric chromosomes. Systematic Botany, 41(3), 580–585. 10.1600/036364416X692442 DOI
Faria, R. , & Navarro, A. (2010). Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends in Ecology & Evolution, 25(11), 660–669. 10.1016/j.tree.2010.07.008 PubMed DOI
Fedoroff, N. V. (2012). Transposable elements, epigenetics, and genome evolution. Science, 338(6108), 758–767. 10.1126/science.338.6108.758 PubMed DOI
Feiner, N. (2016). Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards. Proceedings of the Royal Society B: Biological Sciences, 283(1840), 20161555. 10.1098/rspb.2016.1555 PubMed DOI PMC
Feliciello, I. , Akrap, I. , Brajković, J. , Zlatar, I. , & Ugarković, Đ. (2015). Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum . Genome Biology and Evolution, 7(1), 228–239. 10.1093/gbe/evu280 PubMed DOI PMC
Fry, K. , & Salser, W. (1977). Nucleotide sequences of HS‐α satellite DNA from kangaroo rat dipodomys ordii and characterization of similar sequences in other rodents. Cell, 12(4), 1069–1084. 10.1016/0092-8674(77)90170-2 PubMed DOI
Galili, T. (2015). dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics (Oxford, England), 31, 3718–3720. 10.1093/bioinformatics/btv428 PubMed DOI PMC
Global Carex Group , Roalson, E. H. , Jiménez‐Mejías, P. , Hipp, A. L. , Benítez‐Benítez, C. , Bruederle, L. P. , Chung, K.‐S. , Escudero, M. , Ford, B. A. , Ford, K. , Gebauer, S. , Gehrke, B. , Hahn, M. , Hayat, M. Q. , Hoffmann, M. H. , Jin, X.‐F. , Kim, S. , Larridon, I. , Léveillé‐Bourret, É. , … Zhang, S.‐R. (2021). A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles. Journal of Systematics and Evolution, 59(4), 726–762. 10.1111/jse.12722 DOI
Goldman, A. S. H. , & Lichten, M. (1996). The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics, 144(1), 43–55. PubMed PMC
Goubert, C. , Craig, R. J. , Bilat, A. F. , Peona, V. , Vogan, A. A. , & Protasio, A. V. (2022). A beginner's guide to manual curation of transposable elements. Mobile DNA, 13(1), 7. 10.1186/s13100-021-00259-7 PubMed DOI PMC
Gratton, P. , Trucchi, E. , Trasatti, A. , Riccarducci, G. , Marta, S. , Allegrucci, G. , Cesaroni, D. , & Sbordoni, V. (2016). Testing classical species properties with contemporary data: How “bad species” in the brassy ringlets (Erebia tyndarus complex, Lepidoptera) turned good. Systematic Biology, 65(2), 292–303. 10.1093/sysbio/syv087 PubMed DOI
Haley, A. L. , & Mueller, R. L. (2022). Transposable element diversity remains high in gigantic genomes. Journal of Molecular Evolution, 90(5), 332–341. 10.1007/s00239-022-10063-3 PubMed DOI
Hansen, T. F. , Pienaar, J. , & Orzack, S. H. (2008). A comparative method for studying adaptation to a randomly evolving environment. Evolution, 62(8), 1965–1977. 10.1111/j.1558-5646.2008.00412.x PubMed DOI
Haubold, B. , Pfaffelhuber, P. , & Lynch, M. (2010). MlRho – A program for estimating the population mutation and recombination rates from shotgun‐sequenced diploid genomes. Molecular Ecology, 19(s1), 277–284. 10.1111/j.1365-294X.2009.04482.x PubMed DOI PMC
Hipp, A. L. , Rothrock, P. E. , & Roalson, E. H. (2009). The evolution of chromosome arrangements in Carex (Cyperaceae). The Botanical Review, 75(1), 96–109. 10.1007/s12229-008-9022-8 DOI
Hofstatter, P. G. , Thangavel, G. , Lux, T. , Neumann, P. , Vondrak, T. , Novak, P. , Zhang, M. , Costa, L. , Castellani, M. , Scott, A. , Toegelová, H. , Fuchs, J. , Mata‐Sucre, Y. , Dias, Y. , Vanzela, A. L. L. , Huettel, B. , Almeida, C. C. S. , Šimková, H. , Souza, G. , … Marques, A. (2022). Repeat‐based holocentromeres influence genome architecture and karyotype evolution. Cell, 185(17), 3153–3168.e18. 10.1016/j.cell.2022.06.045 PubMed DOI
Höök, L. , Näsvall, K. , Vila, R. , Wiklund, C. , & Backström, N. (2023). High‐density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Research, 31(1), 2. 10.1007/s10577-023-09713-z PubMed DOI PMC
Huang, C. , Sun, H. , Xu, D. , Chen, Q. , Liang, Y. , Wang, X. , Xu, G. , Tian, J. , Wang, C. , Li, D. , Wu, L. , Yang, X. , Jin, W. , Doebley, J. F. , & Tian, F. (2018). ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences, 115(2), E334–E341. 10.1073/pnas.1718058115 PubMed DOI PMC
Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. 10.1093/bioinformatics/btn129 PubMed DOI
Keck, F. , Rimet, F. , Bouchez, A. , & Franc, A. (2016). phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution, 6(9), 2774–2780. 10.1002/ece3.2051 PubMed DOI PMC
Kent, T. V. , Uzunović, J. , & Wright, S. I. (2017). Coevolution between transposable elements and recombination. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1736), 20160458. 10.1098/rstb.2016.0458 PubMed DOI PMC
Kopperud, B. T. , Pienaar, J. , Voje, K. L. , Orzack, S. H. , Hansen, T. F. , & Grabowski, M. (2020). slouch: Stochastic linear Ornstein‐Uhlenbeck comparative hypotheses (2.1.4). https://CRAN.R‐project.org/package=slouch
Kulmuni, J. , Butlin, R. K. , Lucek, K. , Savolainen, V. , & Westram, A. M. (2020). Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1806), 20190528. 10.1098/rstb.2019.0528 PubMed DOI PMC
Larridon, I. , Galán Díaz, J. , Bauters, K. , & Escudero, M. (2021). What drives diversification in a pantropical plant lineage with extraordinary capacity for long‐distance dispersal and colonization? Journal of Biogeography, 48(1), 64–77. 10.1111/jbi.13982 DOI
Li, L. , Jean, M. , & Belzile, F. (2006). The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis . The Plant Journal, 45(6), 908–916. 10.1111/j.1365-313X.2006.02657.x PubMed DOI
Li, Y. , Wang, S. , Zhang, Z. , Luo, J. , Lin, G. L. , Deng, W.‐D. , Guo, Z. , Han, F. M. , Wang, L.‐L. , Li, J. , Wu, S.‐F. , Liu, H.‐Q. , He, S. , Murphy, R. W. , Zhang, Z.‐J. , Cooper, D. N. , Wu, D.‐D. , & Zhang, Y.‐P. (2023). Large‐scale chromosomal changes Lead to genome‐level expression alterations, environmental adaptation, and speciation in the Gayal (Bos frontalis). Molecular Biology and Evolution, 40(1), msad006. 10.1093/molbev/msad006 PubMed DOI PMC
Lohse, K. , Hayward, A. , Laetsch, D. R. , Vila, R. , Lucek, K. , & Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, & Darwin Tree of Life Consortium . (2022). The genome sequence of the arran brown, Erebia ligea (Linnaeus, 1758). Wellcome Open Research, 7, 259. 10.12688/wellcomeopenres.18115.1 PubMed DOI PMC
Lohse, O. , Lohse, K. , Augustijnen, H. , & Lucek, K. (2022). The genome sequence of the scotch argus butterfly, Erebia aethiops (Esper, 1777). Wellcome Open Research, 7, 217. 10.12688/wellcomeopenres.17927.1 PubMed DOI PMC
Lönnig, W.‐E. , & Saedler, H. (2002). Chromosome rearrangements and transposable elements. Annual Review of Genetics, 36(1), 389–410. 10.1146/annurev.genet.36.040202.092802 PubMed DOI
Lucek, K. , Augustijnen, H. , & Escudero, M. (2022). A holocentric twist to chromosomal speciation? Trends in Ecology & Evolution, 37(8), 655–662. 10.1016/j.tree.2022.04.002 PubMed DOI
Lucek, K. , Butlin, R. K. , & Patsiou, T. (2020). Secondary contact zones of closely‐related Erebia butterflies overlap with narrow phenotypic and parasitic clines. Journal of Evolutionary Biology, 33(9), 1152–1163. 10.1111/jeb.13669 PubMed DOI
Lukhtanov, V. A. , Dincă, V. , Friberg, M. , Šíchová, J. , Olofsson, M. , Vila, R. , Marec, F. , & Wiklund, C. (2018). Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proceedings of the National Academy of Sciences, 115(41), E9610–E9619. 10.1073/pnas.1802610115 PubMed DOI PMC
Macas, J. , Novák, P. , Pellicer, J. , Čížková, J. , Koblížková, A. , Neumann, P. , Fuková, I. , Doležel, J. , Kelly, L. J. , & Leitch, I. J. (2015). In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One, 10(11), e0143424. 10.1371/journal.pone.0143424 PubMed DOI PMC
Mackintosh, A. , Vila, R. , Laetsch, D. R. , Hayward, A. , Martin, S. H. , & Lohse, K. (2023). Chromosome fissions and fusions act as barriers to gene flow between Brenthis fritillary butterflies. Molecular Biology and Evolution, 40(3), msad043. 10.1093/molbev/msad043 PubMed DOI PMC
Mandrioli, M. , & Manicardi, G. C. (2020). Holocentric chromosomes. PLOS Genetics, 16(7), e1008918. 10.1371/journal.pgen.1008918 PubMed DOI PMC
Márquez‐Corro, J. I. , Martín‐Bravo, S. , Jiménez‐Mejías, P. , Hipp, A. L. , Spalink, D. , Naczi, R. F. C. , Roalson, E. H. , Luceño, M. , & Escudero, M. (2021). Macro‐evolutionary insights into sedges (Carex: Cyperaceae): The effects of rapid chromosome number evolution on lineage diversification. Journal of Systematics and Evolution, 59(4), 776–790. 10.1111/jse.12730 DOI
Martín‐Bravo, S. , Jiménez‐Mejías, P. , Villaverde, T. , Escudero, M. , Hahn, M. , Spalink, D. , Roalson, E. H. , Hipp, A. L. , Group, the G. C , Benítez‐Benítez, C. P. , Bruederle, L. , Fitzek, E. A. , Ford, B. A. , Ford, K. , Garner, M. , Gebauer, S. H. , Hoffmann, M. , Jin, X.‐F. , Larridon, I. , … Starr, J. R. (2019). A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification. Journal of Systematics and Evolution, 57(6), 695–718. 10.1111/jse.12549 DOI
Mathers, T. C. , Wouters, R. H. M. , Mugford, S. T. , Swarbreck, D. , van Oosterhout, C. , & Hogenhout, S. A. (2021). Chromosome‐scale genome assemblies of aphids reveal extensively rearranged autosomes and long‐term conservation of the X chromosome. Molecular Biology and Evolution, 38(3), 856–875. 10.1093/molbev/msaa246 PubMed DOI PMC
Melters, D. P. , Paliulis, L. V. , Korf, I. F. , & Chan, S. W. L. (2012). Holocentric chromosomes: Convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research, 20(5), 579–593. 10.1007/s10577-012-9292-1 PubMed DOI
Molina‐Venegas, R. , & Rodríguez, M. Á. (2017). Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology, 17, 53. 10.1186/s12862-017-0898-y PubMed DOI PMC
Nguyen, L.‐T. , Schmidt, H. A. , von Haeseler, A. , & Minh, B. Q. (2015). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. 10.1093/molbev/msu300 PubMed DOI PMC
Nguyen, P. , & Carabajal Paladino, L. (2016). On the neo‐sex chromosomes of Lepidoptera. In Pontarotti P. (Ed.), Evolutionary biology: Convergent evolution, evolution of complex traits, concepts and methods (pp. 171–185). Springer International Publishing. 10.1007/978-3-319-41324-2_11 DOI
Novák, P. , Ávila Robledillo, L. , Koblížková, A. , Vrbová, I. , Neumann, P. , & Macas, J. (2017). TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 45(12), e111. 10.1093/nar/gkx257 PubMed DOI PMC
Novák, P. , Neumann, P. , & Macas, J. (2010). Graph‐based clustering and characterization of repetitive sequences in next‐generation sequencing data. BMC Bioinformatics, 11(1), 378. 10.1186/1471-2105-11-378 PubMed DOI PMC
Novák, P. , Neumann, P. , & Macas, J. (2020). Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols, 15(11), 3745–3776. 10.1038/s41596-020-0400-y PubMed DOI
Oggenfuss, U. , Badet, T. , Wicker, T. , Hartmann, F. E. , Singh, N. K. , Abraham, L. , Karisto, P. , Vonlanthen, T. , Mundt, C. , McDonald, B. A. , & Croll, D. (2021). A population‐level invasion by transposable elements triggers genome expansion in a fungal pathogen. eLife, 10, e69249. 10.7554/eLife.69249 PubMed DOI PMC
Oksanen, J. , Simpson, G. L. , Blanchet, F. G. , Kindt, R. , Legendre, P. , Minchin, P. R. , O'Hara, R. B. , Solymos, P. , Stevens, M. H. H. , Szoecs, E. , Wagner, H. , Barbour, M. , Bedward, M. , Bolker, B. , Borcard, D. , Carvalho, G. , Chirico, M. , Caceres, M. D. , Durand, S. , … Weedon, J. (2022). Vegan: Community ecology package (2.6‐4). https://CRAN.R‐project.org/package=vegan
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884. 10.1038/44766 PubMed DOI
Paradis, E. , & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics (Oxford, England), 35, 526–528. 10.1093/bioinformatics/bty633 PubMed DOI
Pellicer, J. , & Leitch, I. J. (2020). The plant DNA C‐values database (release 7.1): An updated online repository of plant genome size data for comparative studies. New Phytologist, 226(2), 301–305. 10.1111/nph.16261 PubMed DOI
Peña, C. , Witthauer, H. , Klečková, I. , Fric, Z. , & Wahlberg, N. (2015). Adaptive radiations in butterflies: Evolutionary history of the genus Erebia (Nymphalidae: Satyrinae). Biological Journal of the Linnean Society, 116(2), 449–467. 10.1111/bij.12597 DOI
Petrov, D. A. , Aminetzach, Y. T. , Davis, J. C. , Bensasson, D. , & Hirsh, A. E. (2003). Size matters: Non‐LTR Retrotransposable elements and ectopic recombination in drosophila . Molecular Biology and Evolution, 20(6), 880–892. 10.1093/molbev/msg102 PubMed DOI
Pinheiro, J. , Bates, D. , & R Core Team . (2023). Nlme: Linear and nonlinear mixed effects models. R package version 3.1‐162. https://CRAN.R‐project.org/package=nlme
Posit team . (2023). RStudio: Integrated development environment for R [Manual]. http://www.posit.co/
R Core Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Rebollo, R. , Romanish, M. T. , & Mager, D. L. (2012). Transposable elements: An abundant and natural source of regulatory sequences for host genes. Annual Review of Genetics, 46(1), 21–42. 10.1146/annurev-genet-110711-155621 PubMed DOI
Renkawitz, J. , Lademann, C. A. , & Jentsch, S. (2014). Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology, 15(6), 369–383. 10.1038/nrm3805 PubMed DOI
Ricci, M. , Peona, V. , Guichard, E. , Taccioli, C. , & Boattini, A. (2018). Transposable elements activity is positively related to rate of speciation in mammals. Journal of Molecular Evolution, 86(5), 303–310. 10.1007/s00239-018-9847-7 PubMed DOI PMC
Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. Trends in Ecology & Evolution, 16(7), 351–358. 10.1016/S0169-5347(01)02187-5 PubMed DOI
Robinson, R. (1971). Lepidoptera Genetics. Pergamon Press.
Salser, W. , Bowen, S. , Browne, D. , El‐Adli, F. , Fedoroff, N. , Fry, K. , Heindell, H. , Paddock, G. , Poon, R. , Wallace, B. , & Whitcome, P. (1976). Investigation of the organization of mammalian chromosomes at the DNA sequence level. Federation Proceedings, 35(1), 23–35. PubMed
Schmitt, T. , Louy, D. , Zimmermann, E. , & Habel, J. C. (2016). Species radiation in the Alps: Multiple range shifts caused diversification in ringlet butterflies in the European high mountains. Organisms Diversity and Evolution, 16(4), 791–808. 10.1007/s13127-016-0282-6 DOI
Schrader, L. , Kim, J. W. , Ence, D. , Zimin, A. , Klein, A. , Wyschetzki, K. , Weichselgartner, T. , Kemena, C. , Stökl, J. , Schultner, E. , Wurm, Y. , Smith, C. D. , Yandell, M. , Heinze, J. , Gadau, J. , & Oettler, J. (2014). Transposable element islands facilitate adaptation to novel environments in an invasive species. Nature Communications, 5(1), 6495. 10.1038/ncomms6495 PubMed DOI PMC
Schrader, L. , & Schmitz, J. (2019). The impact of transposable elements in adaptive evolution. Molecular Ecology, 28(6), 1537–1549. 10.1111/mec.14794 PubMed DOI
Senaratne, A. P. , Muller, H. , Fryer, K. A. , Kawamoto, M. , Katsuma, S. , & Drinnenberg, I. A. (2021). Formation of the CenH3‐deficient Holocentromere in Lepidoptera avoids active chromatin. Current Biology, 31(1), 173–181.e7. 10.1016/j.cub.2020.09.078 PubMed DOI
Serrato‐Capuchina, A. , & Matute, D. R. (2018). The role of transposable elements in speciation. Genes, 9(5), 254. 10.3390/genes9050254 PubMed DOI PMC
Shoji, K. , Umemura, Y. , Katsuma, S. , & Tomari, Y. (2023). The piRNA cluster torimochi is an expanding transposon in cultured silkworm cells. PLoS Genetics, 19(2), e1010632. 10.1371/journal.pgen.1010632 PubMed DOI PMC
Silva, B. S. M. L. , Heringer, P. , Dias, G. B. , Svartman, M. , & Kuhn, G. C. S. (2019). De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One, 14(12), e0223466. 10.1371/journal.pone.0223466 PubMed DOI PMC
Slotkin, R. K. (2018). The case for not masking away repetitive DNA. Mobile DNA, 9(1), 15. 10.1186/s13100-018-0120-9 PubMed DOI PMC
Smit, A. , Hubley, R. , & Green, P. (2013). RepeatMasker Open‐4.0. http://www.repeatmasker.org
Sonderegger, P. (2005). Die Erebien der Schweiz: (Lepidoptera: Satyrinae, Genus Erebia). P. Sonderegger.
Spirito, F. (1998). The role of chromosomal change in speciation. In Endless forms: Species and speciation. Oxford University Press.
Sproul, J. S. , Hotaling, S. , Heckenhauer, J. , Powell, A. , Larracuente, A. M. , Kelley, J. L. , Pauls, S. U. , & Frandsen, P. B. (2022). Repetitive elements in the era of biodiversity genomics: Insights from 600+ insect genomes (p. 2022.06.02.494618). bioRxiv . 10.1101/2022.06.02.494618 DOI
Stritt, C. , Gordon, S. P. , Wicker, T. , Vogel, J. P. , & Roulin, A. C. (2018). Recent activity in expanding populations and purifying selection have shaped transposable element landscapes across natural accessions of the Mediterranean grass Brachypodium distachyon . Genome Biology and Evolution, 10(1), 304–318. 10.1093/gbe/evx276 PubMed DOI PMC
Talavera, G. , Lukhtanov, V. A. , Rieppel, L. , Pierce, N. E. , & Vila, R. (2013). In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Molecular Phylogenetics and Evolution, 69(3), 469–478. 10.1016/j.ympev.2013.08.004 PubMed DOI
Uyeda, J. C. , & Harmon, L. J. (2014). A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Systematic Biology, 63(6), 902–918. 10.1093/sysbio/syu057 PubMed DOI
Van't Hof, A. E. , Campagne, P. , Rigden, D. J. , Yung, C. J. , Lingley, J. , Quail, M. A. , Hall, N. , Darby, A. C. , & Saccheri, I. J. (2016). The industrial melanism mutation in British peppered moths is a transposable element. Nature, 534(7605), 102–105. 10.1038/nature17951 PubMed DOI
Venner, S. , Feschotte, C. , & Biémont, C. (2009). Dynamics of transposable elements: Towards a community ecology of the genome. Trends in Genetics, 25(7), 317–323. 10.1016/j.tig.2009.05.003 PubMed DOI PMC
Vitales, D. , Garcia, S. , & Dodsworth, S. (2020). Reconstructing phylogenetic relationships based on repeat sequence similarities. Molecular Phylogenetics and Evolution, 147, 106766. 10.1016/j.ympev.2020.106766 PubMed DOI
Wells, J. N. , & Feschotte, C. (2020). A field guide to eukaryotic transposable elements. Annual Review of Genetics, 54, 539–561. 10.1146/annurev-genet-040620-022145 PubMed DOI PMC
White, M. J. D. (1978). Modes of speciation (First ed.). W. H. Freeman.
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer International Publishing. 10.1007/978-3-319-24277-4 DOI
Wright, C. J. , Stevens, L. , Mackintosh, A. , Lawniczak, M. , & Blaxter, M. (2023). Chromosome evolution in Lepidoptera (p. 2023.05.12.540473). bioRxiv. 10.1101/2023.05.12.540473 PubMed DOI PMC
Yoshida, K. , Rödelsperger, C. , Röseler, W. , Riebesell, M. , Sun, S. , Kikuchi, T. , & Sommer, R. J. (2023). Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nature Ecology & Evolution, 7(3), 424–439. 10.1038/s41559-022-01980-z PubMed DOI PMC
Zamudio, N. , Barau, J. , Teissandier, A. , Walter, M. , Borsos, M. , Servant, N. , & Bourc'his, D. (2015). DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes & Development, 29(12), 1256–1270. 10.1101/gad.257840.114 PubMed DOI PMC
Zhang, C. , Rabiee, M. , Sayyari, E. , & Mirarab, S. (2018). ASTRAL‐III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19(6), 153. 10.1186/s12859-018-2129-y PubMed DOI PMC