Holocentric repeat landscapes: From micro-evolutionary patterns to macro-evolutionary associations with karyotype evolution

. 2024 Dec ; 33 (24) : e17100. [epub] 20230814

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37577951

Grantová podpora
PID2021-122715NB-I00 Agencia Estatal de Investigación
23-06455S Grantová Agentura České Republiky
310030_184934 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
PCEFP3_202869 Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
UJAR10MS Spanish Ministry of Universities - European Union's NextGenerationEU

Repetitive elements can cause large-scale chromosomal rearrangements, for example through ectopic recombination, potentially promoting reproductive isolation and speciation. Species with holocentric chromosomes, that lack a localized centromere, might be more likely to retain chromosomal rearrangements that lead to karyotype changes such as fusions and fissions. This is because chromosome segregation during cell division should be less affected than in organisms with a localized centromere. The relationships between repetitive elements and chromosomal rearrangements and how they may translate to patterns of speciation in holocentric organisms are though poorly understood. Here, we use a reference-free approach based on low-coverage short-read sequencing data to characterize the repeat landscape of two independently evolved holocentric groups: Erebia butterflies and Carex sedges. We consider both micro- and macro-evolutionary scales to investigate the repeat landscape differentiation between Erebia populations and the association between repeats and karyotype changes in a phylogenetic framework for both Erebia and Carex. At a micro-evolutionary scale, we found population differentiation in repeat landscape that increases with overall intraspecific genetic differentiation among four Erebia species. At a macro-evolutionary scale, we found indications for an association between repetitive elements and karyotype changes along both Erebia and Carex phylogenies. Altogether, our results suggest that repetitive elements are associated with the level of population differentiation and chromosomal rearrangements in holocentric clades and therefore likely play a role in adaptation and potentially species diversification.

Zobrazit více v PubMed

Ahola, V. , Lehtonen, R. , Somervuo, P. , Salmela, L. , Koskinen, P. , Rastas, P. , Välimäki, N. , Paulin, L. , Kvist, J. , Wahlberg, N. , Tanskanen, J. , Hornett, E. A. , Ferguson, L. C. , Luo, S. , Cao, Z. , de Jong, M. A. , Duplouy, A. , Smolander, O.‐P. , Vogel, H. , … Hanski, I. (2014). The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera. Nature . Communications, 5(1), 4737. 10.1038/ncomms5737 PubMed DOI PMC

Alioto, T. , Alexiou, K. G. , Bardil, A. , Barteri, F. , Castanera, R. , Cruz, F. , Dhingra, A. , Duval, H. , Fernández I Martí, Á. , Frias, L. , Galán, B. , García, J. L. , Howad, W. , Gómez‐Garrido, J. , Gut, M. , Julca, I. , Morata, J. , Puigdomènech, P. , Ribeca, P. , … Arús, P. (2020). Transposons played a major role in the diversification between the closely related almond and peach genomes: Results from the almond genome sequence. The Plant Journal, 101(2), 455–472. 10.1111/tpj.14538 PubMed DOI PMC

Ansai, S. , & Kitano, J. (2022). Speciation and adaptation research meets genome editing. Philosophical Transactions of the Royal Society B: Biological Sciences, 377(1855), 20200516. 10.1098/rstb.2020.0516 PubMed DOI PMC

Antonarakis, S. E. (2022). Short arms of human acrocentric chromosomes and the completion of the human genome sequence. Genome Research, 32, 599–607. 10.1101/gr.275350.121 PubMed DOI PMC

Augustijnen, H. , Baetscher, L. , Cesanek, M. , Chkhartishvili, T. , Dinca, V. , Iankoshvili, G. , Ogawa, K. , Vila, R. , Klopfstein, S. , de Vos, J. , & Lucek, K. (2023). A macro‐evolutionary role for chromosomal fusion and fission in Erebia butterflies (p. 2023.01.16.524200). bioRxiv. 10.1101/2023.01.16.524200 PubMed DOI PMC

Augustijnen, H. , Patsiou, T. , & Lucek, K. (2022). Secondary contact rather than coexistence—Erebia butterflies in the Alps. Evolution, 76(11), 2669–2686. 10.1111/evo.14615 PubMed DOI PMC

Baril, T. , Imrie, R. M. , & Hayward, A. (2022). Earl Grey: A fully automated user‐friendly transposable element annotation and analysis pipeline. bioRxiv. 10.1101/2022.06.30.498289 PubMed DOI PMC

Bartolomé, C. , Bello, X. , & Maside, X. (2009). Widespread evidence for horizontal transfer of transposable elements across Drosophila genomes. Genome Biology, 10(2), R22. 10.1186/gb-2009-10-2-r22 PubMed DOI PMC

Benestan, L. M. , Rougemont, Q. , Senay, C. , Normandeau, E. , Parent, E. , Rideout, R. , Bernatchez, L. , Lambert, Y. , Audet, C. , & Parent, G. J. (2021). Population genomics and history of speciation reveal fishery management gaps in two related redfish species (Sebastes mentella and Sebastes fasciatus). Evolutionary Applications, 14(2), 588–606. 10.1111/eva.13143 PubMed DOI PMC

Biémont, C. , & Vieira, C. (2006). Junk DNA as an evolutionary force. Nature, 443(7111), 521–524. 10.1038/443521a PubMed DOI

Bourgeois, Y. , & Boissinot, S. (2019). On the population dynamics of junk: A review on the population genomics of transposable elements. Genes, 10(6), 419. 10.3390/genes10060419 PubMed DOI PMC

Cabral‐de‐Mello, D. C. , Zrzavá, M. , Kubíčková, S. , Rendón, P. , & Marec, F. (2021). The role of satellite DNAs in genome architecture and sex chromosome evolution in Crambidae moths. Frontiers in Genetics, 12, 661417. 10.3389/fgene.2021.661417 PubMed DOI PMC

Cáceres, M. , Ranz, J. M. , Barbadilla, A. , Long, M. , & Ruiz, A. (1999). Generation of a widespread Drosophila inversion by a transposable element. Science (New York, N.Y.), 285(5426), 415–418. 10.1126/science.285.5426.415 PubMed DOI

Carta, A. , & Escudero, M. (2023). Karyotypic diversity: A neglected trait to explain angiosperm diversification? Evolution, 77(4), 1158–1164. 10.1093/evolut/qpad014 PubMed DOI

Chang, C. C. , Chow, C. C. , Tellier, L. C. , Vattikuti, S. , Purcell, S. M. , & Lee, J. J. (2015). Second‐generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), s13742‐015‐0047–0048. 10.1186/s13742-015-0047-8 PubMed DOI PMC

Charlesworth, B. , & Charlesworth, D. (1983). The population dynamics of transposable elements. Genetics Research, 42(1), 1–27. 10.1017/S0016672300021455 DOI

Chen, S. , Zhou, Y. , Chen, Y. , & Gu, J. (2018). fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890. 10.1093/bioinformatics/bty560 PubMed DOI PMC

Costa, L. , Marques, A. , Buddenhagen, C. , Thomas, W. W. , Huettel, B. , Schubert, V. , Dodsworth, S. , Houben, A. , Souza, G. , & Pedrosa‐Harand, A. (2021). Aiming off the target: Recycling target capture sequencing reads for investigating repetitive DNA. Annals of Botany, 128(7), 835–848. 10.1093/aob/mcab063 PubMed DOI PMC

Coyne, J. A. , & Orr, H. A. (2004). Speciation. Oxford University Press.

Cupedo, F. (2014). Reproductive isolation and intraspecific structure in Alpine populations of Erebia euryale (Esper, 1805) (Lepidoptera, Nymphalidae, Satyrinae). Nota Lepidopterologica, 37(1), 19. 10.3897/nl.37.7960 DOI

de Vos, J. M. , Augustijnen, H. , Bätscher, L. , & Lucek, K. (2020). Speciation through chromosomal fusion and fission in Lepidoptera. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1806), 20190539. 10.1098/rstb.2019.0539 PubMed DOI PMC

Delprat, A. , Negre, B. , Puig, M. , & Ruiz, A. (2009). The transposon Galileo generates natural chromosomal inversions in drosophila by ectopic recombination. PLoS One, 4(11), e7883. 10.1371/journal.pone.0007883 PubMed DOI PMC

Dodsworth, S. , Chase, M. W. , Kelly, L. J. , Leitch, I. J. , Macas, J. , Novák, P. , Piednoël, M. , Weiss‐Schneeweiss, H. , & Leitch, A. R. (2015). Genomic repeat abundances contain phylogenetic signal. Systematic Biology, 64(1), 112–126. 10.1093/sysbio/syu080 PubMed DOI PMC

Escudero, M. , Hahn, M. , Brown, B. H. , Lueders, K. , & Hipp, A. L. (2016). Chromosomal rearrangements in holocentric organisms lead to reproductive isolation by hybrid dysfunction: The correlation between karyotype rearrangements and germination rates in sedges. American Journal of Botany, 103(8), 1529–1536. 10.3732/ajb.1600051 PubMed DOI

Escudero, M. , Hipp, A. L. , Waterway, M. J. , & Valente, L. M. (2012). Diversification rates and chromosome evolution in the most diverse angiosperm genus of the temperate zone (Carex, Cyperaceae). Molecular Phylogenetics and Evolution, 63(3), 650–655. 10.1016/j.ympev.2012.02.005 PubMed DOI

Escudero, M. , Marques, A. , Lucek, K. , & Hipp, A. (2023). Highly conserved synteny despite massive chromosome fusion and fission suggest fragile sites in holocentric plants. Molecular Ecology , 10.22541/au.167593554.47685772/v1 . DOI

Escudero, M. , Márquez‐Corro, J. I. , & Hipp, A. L. (2016). The phylogenetic origins and evolutionary history of holocentric chromosomes. Systematic Botany, 41(3), 580–585. 10.1600/036364416X692442 DOI

Faria, R. , & Navarro, A. (2010). Chromosomal speciation revisited: Rearranging theory with pieces of evidence. Trends in Ecology & Evolution, 25(11), 660–669. 10.1016/j.tree.2010.07.008 PubMed DOI

Fedoroff, N. V. (2012). Transposable elements, epigenetics, and genome evolution. Science, 338(6108), 758–767. 10.1126/science.338.6108.758 PubMed DOI

Feiner, N. (2016). Accumulation of transposable elements in Hox gene clusters during adaptive radiation of Anolis lizards. Proceedings of the Royal Society B: Biological Sciences, 283(1840), 20161555. 10.1098/rspb.2016.1555 PubMed DOI PMC

Feliciello, I. , Akrap, I. , Brajković, J. , Zlatar, I. , & Ugarković, Đ. (2015). Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum . Genome Biology and Evolution, 7(1), 228–239. 10.1093/gbe/evu280 PubMed DOI PMC

Fry, K. , & Salser, W. (1977). Nucleotide sequences of HS‐α satellite DNA from kangaroo rat dipodomys ordii and characterization of similar sequences in other rodents. Cell, 12(4), 1069–1084. 10.1016/0092-8674(77)90170-2 PubMed DOI

Galili, T. (2015). dendextend: An R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics (Oxford, England), 31, 3718–3720. 10.1093/bioinformatics/btv428 PubMed DOI PMC

Global Carex Group , Roalson, E. H. , Jiménez‐Mejías, P. , Hipp, A. L. , Benítez‐Benítez, C. , Bruederle, L. P. , Chung, K.‐S. , Escudero, M. , Ford, B. A. , Ford, K. , Gebauer, S. , Gehrke, B. , Hahn, M. , Hayat, M. Q. , Hoffmann, M. H. , Jin, X.‐F. , Kim, S. , Larridon, I. , Léveillé‐Bourret, É. , … Zhang, S.‐R. (2021). A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles. Journal of Systematics and Evolution, 59(4), 726–762. 10.1111/jse.12722 DOI

Goldman, A. S. H. , & Lichten, M. (1996). The efficiency of meiotic recombination between dispersed sequences in Saccharomyces cerevisiae depends upon their chromosomal location. Genetics, 144(1), 43–55. PubMed PMC

Goubert, C. , Craig, R. J. , Bilat, A. F. , Peona, V. , Vogan, A. A. , & Protasio, A. V. (2022). A beginner's guide to manual curation of transposable elements. Mobile DNA, 13(1), 7. 10.1186/s13100-021-00259-7 PubMed DOI PMC

Gratton, P. , Trucchi, E. , Trasatti, A. , Riccarducci, G. , Marta, S. , Allegrucci, G. , Cesaroni, D. , & Sbordoni, V. (2016). Testing classical species properties with contemporary data: How “bad species” in the brassy ringlets (Erebia tyndarus complex, Lepidoptera) turned good. Systematic Biology, 65(2), 292–303. 10.1093/sysbio/syv087 PubMed DOI

Haley, A. L. , & Mueller, R. L. (2022). Transposable element diversity remains high in gigantic genomes. Journal of Molecular Evolution, 90(5), 332–341. 10.1007/s00239-022-10063-3 PubMed DOI

Hansen, T. F. , Pienaar, J. , & Orzack, S. H. (2008). A comparative method for studying adaptation to a randomly evolving environment. Evolution, 62(8), 1965–1977. 10.1111/j.1558-5646.2008.00412.x PubMed DOI

Haubold, B. , Pfaffelhuber, P. , & Lynch, M. (2010). MlRho – A program for estimating the population mutation and recombination rates from shotgun‐sequenced diploid genomes. Molecular Ecology, 19(s1), 277–284. 10.1111/j.1365-294X.2009.04482.x PubMed DOI PMC

Hipp, A. L. , Rothrock, P. E. , & Roalson, E. H. (2009). The evolution of chromosome arrangements in Carex (Cyperaceae). The Botanical Review, 75(1), 96–109. 10.1007/s12229-008-9022-8 DOI

Hofstatter, P. G. , Thangavel, G. , Lux, T. , Neumann, P. , Vondrak, T. , Novak, P. , Zhang, M. , Costa, L. , Castellani, M. , Scott, A. , Toegelová, H. , Fuchs, J. , Mata‐Sucre, Y. , Dias, Y. , Vanzela, A. L. L. , Huettel, B. , Almeida, C. C. S. , Šimková, H. , Souza, G. , … Marques, A. (2022). Repeat‐based holocentromeres influence genome architecture and karyotype evolution. Cell, 185(17), 3153–3168.e18. 10.1016/j.cell.2022.06.045 PubMed DOI

Höök, L. , Näsvall, K. , Vila, R. , Wiklund, C. , & Backström, N. (2023). High‐density linkage maps and chromosome level genome assemblies unveil direction and frequency of extensive structural rearrangements in wood white butterflies (Leptidea spp.). Chromosome Research, 31(1), 2. 10.1007/s10577-023-09713-z PubMed DOI PMC

Huang, C. , Sun, H. , Xu, D. , Chen, Q. , Liang, Y. , Wang, X. , Xu, G. , Tian, J. , Wang, C. , Li, D. , Wu, L. , Yang, X. , Jin, W. , Doebley, J. F. , & Tian, F. (2018). ZmCCT9 enhances maize adaptation to higher latitudes. Proceedings of the National Academy of Sciences, 115(2), E334–E341. 10.1073/pnas.1718058115 PubMed DOI PMC

Jombart, T. (2008). adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics, 24(11), 1403–1405. 10.1093/bioinformatics/btn129 PubMed DOI

Keck, F. , Rimet, F. , Bouchez, A. , & Franc, A. (2016). phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution, 6(9), 2774–2780. 10.1002/ece3.2051 PubMed DOI PMC

Kent, T. V. , Uzunović, J. , & Wright, S. I. (2017). Coevolution between transposable elements and recombination. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1736), 20160458. 10.1098/rstb.2016.0458 PubMed DOI PMC

Kopperud, B. T. , Pienaar, J. , Voje, K. L. , Orzack, S. H. , Hansen, T. F. , & Grabowski, M. (2020). slouch: Stochastic linear Ornstein‐Uhlenbeck comparative hypotheses (2.1.4). https://CRAN.R‐project.org/package=slouch

Kulmuni, J. , Butlin, R. K. , Lucek, K. , Savolainen, V. , & Westram, A. M. (2020). Towards the completion of speciation: The evolution of reproductive isolation beyond the first barriers. Philosophical Transactions of the Royal Society B: Biological Sciences, 375(1806), 20190528. 10.1098/rstb.2019.0528 PubMed DOI PMC

Larridon, I. , Galán Díaz, J. , Bauters, K. , & Escudero, M. (2021). What drives diversification in a pantropical plant lineage with extraordinary capacity for long‐distance dispersal and colonization? Journal of Biogeography, 48(1), 64–77. 10.1111/jbi.13982 DOI

Li, L. , Jean, M. , & Belzile, F. (2006). The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis . The Plant Journal, 45(6), 908–916. 10.1111/j.1365-313X.2006.02657.x PubMed DOI

Li, Y. , Wang, S. , Zhang, Z. , Luo, J. , Lin, G. L. , Deng, W.‐D. , Guo, Z. , Han, F. M. , Wang, L.‐L. , Li, J. , Wu, S.‐F. , Liu, H.‐Q. , He, S. , Murphy, R. W. , Zhang, Z.‐J. , Cooper, D. N. , Wu, D.‐D. , & Zhang, Y.‐P. (2023). Large‐scale chromosomal changes Lead to genome‐level expression alterations, environmental adaptation, and speciation in the Gayal (Bos frontalis). Molecular Biology and Evolution, 40(1), msad006. 10.1093/molbev/msad006 PubMed DOI PMC

Lohse, K. , Hayward, A. , Laetsch, D. R. , Vila, R. , Lucek, K. , & Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, & Darwin Tree of Life Consortium . (2022). The genome sequence of the arran brown, Erebia ligea (Linnaeus, 1758). Wellcome Open Research, 7, 259. 10.12688/wellcomeopenres.18115.1 PubMed DOI PMC

Lohse, O. , Lohse, K. , Augustijnen, H. , & Lucek, K. (2022). The genome sequence of the scotch argus butterfly, Erebia aethiops (Esper, 1777). Wellcome Open Research, 7, 217. 10.12688/wellcomeopenres.17927.1 PubMed DOI PMC

Lönnig, W.‐E. , & Saedler, H. (2002). Chromosome rearrangements and transposable elements. Annual Review of Genetics, 36(1), 389–410. 10.1146/annurev.genet.36.040202.092802 PubMed DOI

Lucek, K. , Augustijnen, H. , & Escudero, M. (2022). A holocentric twist to chromosomal speciation? Trends in Ecology & Evolution, 37(8), 655–662. 10.1016/j.tree.2022.04.002 PubMed DOI

Lucek, K. , Butlin, R. K. , & Patsiou, T. (2020). Secondary contact zones of closely‐related Erebia butterflies overlap with narrow phenotypic and parasitic clines. Journal of Evolutionary Biology, 33(9), 1152–1163. 10.1111/jeb.13669 PubMed DOI

Lukhtanov, V. A. , Dincă, V. , Friberg, M. , Šíchová, J. , Olofsson, M. , Vila, R. , Marec, F. , & Wiklund, C. (2018). Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proceedings of the National Academy of Sciences, 115(41), E9610–E9619. 10.1073/pnas.1802610115 PubMed DOI PMC

Macas, J. , Novák, P. , Pellicer, J. , Čížková, J. , Koblížková, A. , Neumann, P. , Fuková, I. , Doležel, J. , Kelly, L. J. , & Leitch, I. J. (2015). In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the legume tribe Fabeae. PLoS One, 10(11), e0143424. 10.1371/journal.pone.0143424 PubMed DOI PMC

Mackintosh, A. , Vila, R. , Laetsch, D. R. , Hayward, A. , Martin, S. H. , & Lohse, K. (2023). Chromosome fissions and fusions act as barriers to gene flow between Brenthis fritillary butterflies. Molecular Biology and Evolution, 40(3), msad043. 10.1093/molbev/msad043 PubMed DOI PMC

Mandrioli, M. , & Manicardi, G. C. (2020). Holocentric chromosomes. PLOS Genetics, 16(7), e1008918. 10.1371/journal.pgen.1008918 PubMed DOI PMC

Márquez‐Corro, J. I. , Martín‐Bravo, S. , Jiménez‐Mejías, P. , Hipp, A. L. , Spalink, D. , Naczi, R. F. C. , Roalson, E. H. , Luceño, M. , & Escudero, M. (2021). Macro‐evolutionary insights into sedges (Carex: Cyperaceae): The effects of rapid chromosome number evolution on lineage diversification. Journal of Systematics and Evolution, 59(4), 776–790. 10.1111/jse.12730 DOI

Martín‐Bravo, S. , Jiménez‐Mejías, P. , Villaverde, T. , Escudero, M. , Hahn, M. , Spalink, D. , Roalson, E. H. , Hipp, A. L. , Group, the G. C , Benítez‐Benítez, C. P. , Bruederle, L. , Fitzek, E. A. , Ford, B. A. , Ford, K. , Garner, M. , Gebauer, S. H. , Hoffmann, M. , Jin, X.‐F. , Larridon, I. , … Starr, J. R. (2019). A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification. Journal of Systematics and Evolution, 57(6), 695–718. 10.1111/jse.12549 DOI

Mathers, T. C. , Wouters, R. H. M. , Mugford, S. T. , Swarbreck, D. , van Oosterhout, C. , & Hogenhout, S. A. (2021). Chromosome‐scale genome assemblies of aphids reveal extensively rearranged autosomes and long‐term conservation of the X chromosome. Molecular Biology and Evolution, 38(3), 856–875. 10.1093/molbev/msaa246 PubMed DOI PMC

Melters, D. P. , Paliulis, L. V. , Korf, I. F. , & Chan, S. W. L. (2012). Holocentric chromosomes: Convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research, 20(5), 579–593. 10.1007/s10577-012-9292-1 PubMed DOI

Molina‐Venegas, R. , & Rodríguez, M. Á. (2017). Revisiting phylogenetic signal; strong or negligible impacts of polytomies and branch length information? BMC Evolutionary Biology, 17, 53. 10.1186/s12862-017-0898-y PubMed DOI PMC

Nguyen, L.‐T. , Schmidt, H. A. , von Haeseler, A. , & Minh, B. Q. (2015). IQ‐TREE: A fast and effective stochastic algorithm for estimating maximum‐likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. 10.1093/molbev/msu300 PubMed DOI PMC

Nguyen, P. , & Carabajal Paladino, L. (2016). On the neo‐sex chromosomes of Lepidoptera. In Pontarotti P. (Ed.), Evolutionary biology: Convergent evolution, evolution of complex traits, concepts and methods (pp. 171–185). Springer International Publishing. 10.1007/978-3-319-41324-2_11 DOI

Novák, P. , Ávila Robledillo, L. , Koblížková, A. , Vrbová, I. , Neumann, P. , & Macas, J. (2017). TAREAN: A computational tool for identification and characterization of satellite DNA from unassembled short reads. Nucleic Acids Research, 45(12), e111. 10.1093/nar/gkx257 PubMed DOI PMC

Novák, P. , Neumann, P. , & Macas, J. (2010). Graph‐based clustering and characterization of repetitive sequences in next‐generation sequencing data. BMC Bioinformatics, 11(1), 378. 10.1186/1471-2105-11-378 PubMed DOI PMC

Novák, P. , Neumann, P. , & Macas, J. (2020). Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nature Protocols, 15(11), 3745–3776. 10.1038/s41596-020-0400-y PubMed DOI

Oggenfuss, U. , Badet, T. , Wicker, T. , Hartmann, F. E. , Singh, N. K. , Abraham, L. , Karisto, P. , Vonlanthen, T. , Mundt, C. , McDonald, B. A. , & Croll, D. (2021). A population‐level invasion by transposable elements triggers genome expansion in a fungal pathogen. eLife, 10, e69249. 10.7554/eLife.69249 PubMed DOI PMC

Oksanen, J. , Simpson, G. L. , Blanchet, F. G. , Kindt, R. , Legendre, P. , Minchin, P. R. , O'Hara, R. B. , Solymos, P. , Stevens, M. H. H. , Szoecs, E. , Wagner, H. , Barbour, M. , Bedward, M. , Bolker, B. , Borcard, D. , Carvalho, G. , Chirico, M. , Caceres, M. D. , Durand, S. , … Weedon, J. (2022). Vegan: Community ecology package (2.6‐4). https://CRAN.R‐project.org/package=vegan

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877–884. 10.1038/44766 PubMed DOI

Paradis, E. , & Schliep, K. (2019). Ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics (Oxford, England), 35, 526–528. 10.1093/bioinformatics/bty633 PubMed DOI

Pellicer, J. , & Leitch, I. J. (2020). The plant DNA C‐values database (release 7.1): An updated online repository of plant genome size data for comparative studies. New Phytologist, 226(2), 301–305. 10.1111/nph.16261 PubMed DOI

Peña, C. , Witthauer, H. , Klečková, I. , Fric, Z. , & Wahlberg, N. (2015). Adaptive radiations in butterflies: Evolutionary history of the genus Erebia (Nymphalidae: Satyrinae). Biological Journal of the Linnean Society, 116(2), 449–467. 10.1111/bij.12597 DOI

Petrov, D. A. , Aminetzach, Y. T. , Davis, J. C. , Bensasson, D. , & Hirsh, A. E. (2003). Size matters: Non‐LTR Retrotransposable elements and ectopic recombination in drosophila . Molecular Biology and Evolution, 20(6), 880–892. 10.1093/molbev/msg102 PubMed DOI

Pinheiro, J. , Bates, D. , & R Core Team . (2023). Nlme: Linear and nonlinear mixed effects models. R package version 3.1‐162. https://CRAN.R‐project.org/package=nlme

Posit team . (2023). RStudio: Integrated development environment for R [Manual]. http://www.posit.co/

R Core Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/

Rebollo, R. , Romanish, M. T. , & Mager, D. L. (2012). Transposable elements: An abundant and natural source of regulatory sequences for host genes. Annual Review of Genetics, 46(1), 21–42. 10.1146/annurev-genet-110711-155621 PubMed DOI

Renkawitz, J. , Lademann, C. A. , & Jentsch, S. (2014). Mechanisms and principles of homology search during recombination. Nature Reviews Molecular Cell Biology, 15(6), 369–383. 10.1038/nrm3805 PubMed DOI

Ricci, M. , Peona, V. , Guichard, E. , Taccioli, C. , & Boattini, A. (2018). Transposable elements activity is positively related to rate of speciation in mammals. Journal of Molecular Evolution, 86(5), 303–310. 10.1007/s00239-018-9847-7 PubMed DOI PMC

Rieseberg, L. H. (2001). Chromosomal rearrangements and speciation. Trends in Ecology & Evolution, 16(7), 351–358. 10.1016/S0169-5347(01)02187-5 PubMed DOI

Robinson, R. (1971). Lepidoptera Genetics. Pergamon Press.

Salser, W. , Bowen, S. , Browne, D. , El‐Adli, F. , Fedoroff, N. , Fry, K. , Heindell, H. , Paddock, G. , Poon, R. , Wallace, B. , & Whitcome, P. (1976). Investigation of the organization of mammalian chromosomes at the DNA sequence level. Federation Proceedings, 35(1), 23–35. PubMed

Schmitt, T. , Louy, D. , Zimmermann, E. , & Habel, J. C. (2016). Species radiation in the Alps: Multiple range shifts caused diversification in ringlet butterflies in the European high mountains. Organisms Diversity and Evolution, 16(4), 791–808. 10.1007/s13127-016-0282-6 DOI

Schrader, L. , Kim, J. W. , Ence, D. , Zimin, A. , Klein, A. , Wyschetzki, K. , Weichselgartner, T. , Kemena, C. , Stökl, J. , Schultner, E. , Wurm, Y. , Smith, C. D. , Yandell, M. , Heinze, J. , Gadau, J. , & Oettler, J. (2014). Transposable element islands facilitate adaptation to novel environments in an invasive species. Nature Communications, 5(1), 6495. 10.1038/ncomms6495 PubMed DOI PMC

Schrader, L. , & Schmitz, J. (2019). The impact of transposable elements in adaptive evolution. Molecular Ecology, 28(6), 1537–1549. 10.1111/mec.14794 PubMed DOI

Senaratne, A. P. , Muller, H. , Fryer, K. A. , Kawamoto, M. , Katsuma, S. , & Drinnenberg, I. A. (2021). Formation of the CenH3‐deficient Holocentromere in Lepidoptera avoids active chromatin. Current Biology, 31(1), 173–181.e7. 10.1016/j.cub.2020.09.078 PubMed DOI

Serrato‐Capuchina, A. , & Matute, D. R. (2018). The role of transposable elements in speciation. Genes, 9(5), 254. 10.3390/genes9050254 PubMed DOI PMC

Shoji, K. , Umemura, Y. , Katsuma, S. , & Tomari, Y. (2023). The piRNA cluster torimochi is an expanding transposon in cultured silkworm cells. PLoS Genetics, 19(2), e1010632. 10.1371/journal.pgen.1010632 PubMed DOI PMC

Silva, B. S. M. L. , Heringer, P. , Dias, G. B. , Svartman, M. , & Kuhn, G. C. S. (2019). De novo identification of satellite DNAs in the sequenced genomes of Drosophila virilis and D. americana using the RepeatExplorer and TAREAN pipelines. PLoS One, 14(12), e0223466. 10.1371/journal.pone.0223466 PubMed DOI PMC

Slotkin, R. K. (2018). The case for not masking away repetitive DNA. Mobile DNA, 9(1), 15. 10.1186/s13100-018-0120-9 PubMed DOI PMC

Smit, A. , Hubley, R. , & Green, P. (2013). RepeatMasker Open‐4.0. http://www.repeatmasker.org

Sonderegger, P. (2005). Die Erebien der Schweiz: (Lepidoptera: Satyrinae, Genus Erebia). P. Sonderegger.

Spirito, F. (1998). The role of chromosomal change in speciation. In Endless forms: Species and speciation. Oxford University Press.

Sproul, J. S. , Hotaling, S. , Heckenhauer, J. , Powell, A. , Larracuente, A. M. , Kelley, J. L. , Pauls, S. U. , & Frandsen, P. B. (2022). Repetitive elements in the era of biodiversity genomics: Insights from 600+ insect genomes (p. 2022.06.02.494618). bioRxiv . 10.1101/2022.06.02.494618 DOI

Stritt, C. , Gordon, S. P. , Wicker, T. , Vogel, J. P. , & Roulin, A. C. (2018). Recent activity in expanding populations and purifying selection have shaped transposable element landscapes across natural accessions of the Mediterranean grass Brachypodium distachyon . Genome Biology and Evolution, 10(1), 304–318. 10.1093/gbe/evx276 PubMed DOI PMC

Talavera, G. , Lukhtanov, V. A. , Rieppel, L. , Pierce, N. E. , & Vila, R. (2013). In the shadow of phylogenetic uncertainty: The recent diversification of Lysandra butterflies through chromosomal change. Molecular Phylogenetics and Evolution, 69(3), 469–478. 10.1016/j.ympev.2013.08.004 PubMed DOI

Uyeda, J. C. , & Harmon, L. J. (2014). A novel Bayesian method for inferring and interpreting the dynamics of adaptive landscapes from phylogenetic comparative data. Systematic Biology, 63(6), 902–918. 10.1093/sysbio/syu057 PubMed DOI

Van't Hof, A. E. , Campagne, P. , Rigden, D. J. , Yung, C. J. , Lingley, J. , Quail, M. A. , Hall, N. , Darby, A. C. , & Saccheri, I. J. (2016). The industrial melanism mutation in British peppered moths is a transposable element. Nature, 534(7605), 102–105. 10.1038/nature17951 PubMed DOI

Venner, S. , Feschotte, C. , & Biémont, C. (2009). Dynamics of transposable elements: Towards a community ecology of the genome. Trends in Genetics, 25(7), 317–323. 10.1016/j.tig.2009.05.003 PubMed DOI PMC

Vitales, D. , Garcia, S. , & Dodsworth, S. (2020). Reconstructing phylogenetic relationships based on repeat sequence similarities. Molecular Phylogenetics and Evolution, 147, 106766. 10.1016/j.ympev.2020.106766 PubMed DOI

Wells, J. N. , & Feschotte, C. (2020). A field guide to eukaryotic transposable elements. Annual Review of Genetics, 54, 539–561. 10.1146/annurev-genet-040620-022145 PubMed DOI PMC

White, M. J. D. (1978). Modes of speciation (First ed.). W. H. Freeman.

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer International Publishing. 10.1007/978-3-319-24277-4 DOI

Wright, C. J. , Stevens, L. , Mackintosh, A. , Lawniczak, M. , & Blaxter, M. (2023). Chromosome evolution in Lepidoptera (p. 2023.05.12.540473). bioRxiv. 10.1101/2023.05.12.540473 PubMed DOI PMC

Yoshida, K. , Rödelsperger, C. , Röseler, W. , Riebesell, M. , Sun, S. , Kikuchi, T. , & Sommer, R. J. (2023). Chromosome fusions repatterned recombination rate and facilitated reproductive isolation during Pristionchus nematode speciation. Nature Ecology & Evolution, 7(3), 424–439. 10.1038/s41559-022-01980-z PubMed DOI PMC

Zamudio, N. , Barau, J. , Teissandier, A. , Walter, M. , Borsos, M. , Servant, N. , & Bourc'his, D. (2015). DNA methylation restrains transposons from adopting a chromatin signature permissive for meiotic recombination. Genes & Development, 29(12), 1256–1270. 10.1101/gad.257840.114 PubMed DOI PMC

Zhang, C. , Rabiee, M. , Sayyari, E. , & Mirarab, S. (2018). ASTRAL‐III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinformatics, 19(6), 153. 10.1186/s12859-018-2129-y PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...