Ultraviolet B Radiation Triggers DNA Methylation Change and Affects Foraging Behavior of the Clonal Plant Glechoma longituba
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
33719308
PubMed Central
PMC7952652
DOI
10.3389/fpls.2021.633982
Knihovny.cz E-zdroje
- Klíčová slova
- UV-B radiation, clonal plant, epigenetic memory, foraging behavior, habitat selection, heterogeneous environment,
- Publikační typ
- časopisecké články MeSH
Clonal plants in heterogeneous environments can benefit from their habitat selection behavior, which enables them to utilize patchily distributed resources efficiently. It has been shown that such behavior can be strongly influenced by their memories on past environmental interactions. Epigenetic variation such as DNA methylation was proposed to be one of the mechanisms involved in the memory. Here, we explored whether the experience with Ultraviolet B (UV-B) radiation triggers epigenetic memory and affects clonal plants' foraging behavior in an UV-B heterogeneous environment. Parental ramets of Glechoma longituba were exposed to UV-B radiation for 15 days or not (controls), and their offspring ramets were allowed to choose light environment enriched with UV-B or not (the species is monopodial and can only choose one environment). Sizes and epigenetic profiles (based on methylation-sensitive amplification polymorphism analysis) of parental and offspring plants from different environments were also analyzed. Parental ramets that have been exposed to UV-B radiation were smaller than ramets from control environment and produced less and smaller offspring ramets. Offspring ramets were placed more often into the control light environment (88.46% ramets) than to the UV-B light environment (11.54% ramets) when parental ramets were exposed to UV-B radiation, which is a manifestation of "escape strategy." Offspring of control parental ramets show similar preference to the two light environments. Parental ramets exposed to UV-B had lower levels of overall DNA methylation and had different epigenetic profiles than control parental ramets. The methylation of UV-B-stressed parental ramets was maintained among their offspring ramets, although the epigenetic differentiation was reduced after several asexual generations. The parental experience with the UV-B radiation strongly influenced foraging behavior. The memory on the previous environmental interaction enables clonal plants to better interact with a heterogeneous environment and the memory is at least partly based on heritable epigenetic variation.
Department of Botany Faculty of Science Charles University Prague Czechia
Institute of Botany Czech Academy of Sciences Průhonice Czechia
Xi'an Botanical Garden of Shaanxi Province Institute of Botany of Shaanxi Province Xi'an China
Zobrazit více v PubMed
Alpert P., Mooney H. A. (1986). Resource sharing among ramets in the clonal herb, Fragaria chiloensis. Oecologia 70 227–233. 10.1007/bf00379244 PubMed DOI
Bazzaz F. A. (1991). Habitat selection in plants. Am. Nat. 137 116–130.
Birch C. P. D., Hutchings M. J. (1994). Exploitation of patchily distributed soil resources by the clonal herb Glechoma hederacea. J. Ecol. 83 653–664. 10.2307/2261272 DOI
Bonin A., Ehrich D., Manel S. (2007). Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol. Ecol. 16 3737–3758. 10.1111/j.1365-294x.2007.03435.x PubMed DOI
Bossdorf O., Richards C. L., Pigliucci M. (2008). Epigenetics for ecologists. Ecol. Lett. 11 106–115. PubMed
Boyko A., Blevins T., Yao Y., Golubov A., Bilichak A., Ilnytskyy Y., et al. (2010). Transgenerational adaptation of arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5:e9514. 10.1371/journal.pone.0009514 PubMed DOI PMC
Cain M. L., Subler S., Evans J. P., Fortin M. J. (1999). Sampling spatial and temporal variation in soil nitrogen availability. Oecologia 118 397–404. 10.1007/s004420050741 PubMed DOI
Caldwell M. M., Pearcy R. W. (1994). ‘Exploitation of Environmental Heterogeneity by Plants. Ecophysiological Processes Above and Below Ground.’. San Diego, CA: Academic Press.
Chen D., Ali A., Yong X. H., Lin C. G., Niu X. H., Cai A. M., et al. (2019). A multi-species comparison of selective placement patterns of ramets in invasive alien and native clonal plants to light, soil nutrient and water heterogeneity. Sci. Total Environ. 657 1568–1577. 10.1016/j.scitotenv.2018.12.099 PubMed DOI
de Kroon H., Hutchings M. J. (1995). Morphological plasticity in clonal plants: the foraging concept revisited. J. Ecol. 83 143–152. 10.2307/2261158 DOI
Ding Y., Virlouvet L., Liu N., Riethoven J. J., Fromm M., Avramova Z. (2014). Dehydration stress memory genes of zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol. 14:141. 10.1186/1471-2229-14-141 PubMed DOI PMC
Dixon P. (2003). VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14 927–930. 10.1111/j.1654-1103.2003.tb02228.x DOI
Dong B. C., Meng J., Yu F. H. (2019). Effects of parental light environment on growth and morphological responses of clonal offspring. Plant Biol. 21 1083–1089. 10.1111/plb.13001 PubMed DOI
Dong B. C., van Kleunen M., Yu F. H. (2018). Context-dependent parental effects on clonal offspring performance. Front. Plant Sci. 9:1824. 10.3389/fpls.2018.01824 PubMed DOI PMC
Dotto M., Casati P. (2017). Developmental reprogramming by UV-B radiation in plants. Plant Sci. 264 96–101. 10.1016/j.plantsci.2017.09.006 PubMed DOI
Douhovnikoff V., Dodd R. S. (2015). Epigenetics: a potential mechanism for clonal plant success. Plant Ecol. 216 227–233. 10.1007/s11258-014-0430-z DOI
Evans J. P., Cain M. L. (1995). A spatially explicit test of foraging behavior in a clonal plant. Ecology 76 1147–1155. 10.2307/1940922 DOI
Frohnmeyer H., Staiger D. (2003). Ultraviolet-B radiation-mediated responses in plants. Balancing Damage Protect. Plant Physiol. 133 1420–1428. 10.1104/pp.103.030049 PubMed DOI PMC
García-palacios P., Maestre F. T., Bardgett R. D., de Kroon H. (2012). Plant responses to soil heterogeneity and global environmental change. J. Ecol. 100 1303–1314. 10.1111/j.1365-2745.2012.02014.x PubMed DOI PMC
González R. A. P., Chrtek J., Dobrev P. I., Dumalasová V., Fehrer J., Latzel V., et al. (2016). Stress-induced memory alters growth of clonal off spring of white clover (Trifolium repens). Am. J. Bot. 103 1567–1574. 10.3732/ajb.1500526 PubMed DOI
González R. A. P., Preite V., Verhoeven K. J. F., Latzel V. (2018). Transgenerational effects and epigenetic memory in the clonal plant Trifolium repens. Front. Plant Sci. 9:1677. 10.3389/fpls.2018.01677 PubMed DOI PMC
Gómez S., Onoda Y., Ossipov V., Stuefer J. F. (2008). Systemic induced resistance: a risk-spreading strategy in clonal plant networks. New Phytol. 179 1142–1153. 10.1111/j.1469-8137.2008.02542.x PubMed DOI
Groenendael J. M. V., Klimes L., Klimesova J., Hendriks R. J. J. (1996). Comparative ecology of clonal plants. Phil. Trans. R. Soc. Lond. B 351 1331–1339.
Hutchings M. J. (1999). Clonal plants as cooperative systems: benefits in heterogeneous environments. Plant Species Biol. 14 1–10. 10.1046/j.1442-1984.1999.00001.x DOI
Hutchings M. J., John E. A. (2004). The effects of environmental heterogeneity on root growth and root/shoot partitioning. Ann. Bot. 94 1–8. 10.1093/aob/mch111 PubMed DOI PMC
Ikegami M., Whigham D. F., Werger M. J. A. (2007). Responses of rhizome length and ramet production to resource availability in the clonal sedge Scirpus olneyi A. Gray. Plant Ecol. 189 247–259. 10.1007/s11258-006-9181-9 DOI
Kakani V. G., Reddy K. R., Zhao D., Sailaja K. (2003). Field crop responses to ultraviolet-B radiation: a review. Agric. For. Meteorol. 120 191–218. 10.1016/j.agrformet.2003.08.015 DOI
Latzel V., González A. P. R., Rosenthal J. (2016). Epigenetic memory as a basis for intelligent behavior in clonal plants. Front. Plant Sci. 7:1354. 10.3389/fpls.2016.01354 PubMed DOI PMC
Latzel V., Klimešová J. (2010). Transgenerational plasticity in clonal plants. Evol. Ecol. 24 1537–1543. 10.1007/s10682-010-9385-2 DOI
Latzel V., Münzbergová Z. (2018). Anticipatory behavior of the clonal plant Fragaria vesca. Front. Plant Sci. 9:1847. 10.3389/fpls.2018.01847 PubMed DOI PMC
Li Y., Chen J. S., Xue G., Peng Y., Song H. X. (2018). Effect of clonal integration on nitrogen cycling in rhizosphere of rhizomatous clonal plant, Phyllostachys bissetii, under heterogeneous light. Sci. Total Environ. 628-629 594–602. 10.1016/j.scitotenv.2018.02.002 PubMed DOI
Li Y., Yue M., Wang X. L., Hu Z. D. (1999). Competition and sensitivity of wheat and wild oat exposed to enhanced UV-B radiation at different densities under field conditions. Environ. Exp. Bot. 41 47–55. 10.1016/s0098-8472(98)00049-5 DOI
Liao M. J., Yu F. H., Song M. H., Zhang S. M., Zhang J. Z., Dong M. (2003). Plasticity in R/S ratio, morphology and fitness-related traits in response to reciprocal patchiness of light and nutrients in the stoloniferous herb, Glechoma longituba L. Acta Oecol. 24 231–239. 10.1016/j.actao.2003.07.001 DOI
Liu S., Sun K., Jiang T., Ho J. P., Liu B., Feng J. (2012). Natural epigenetic variation in the female great roundleaf bat (Hipposideros armiger) populations. Mol. Genet. Genomics 287 643–650. 10.1007/s00438-012-0704-x PubMed DOI
Liu X., Li Q., Yue M., Zhang X. F., Zhang R. C., Zhang B., et al. (2015). Nitric oxide is involved in integration of UV-B absorbing compounds among parts of clonal plants under a heterogeneous UV-B environment. Physiol. Plant. 155 180–191. 10.1111/ppl.12313 PubMed DOI
Louapre P., Bittebière A. K., Clément B., Pierre J. S., Mony C. (2012). How past and present influence the foraging of clonal plants? PLoS One 7:e38288. 10.1371/journal.pone.0038288 PubMed DOI PMC
Mackerness S. A. (2000). Plant responses to ultraviolet-B (UV-B: 280–320 nm) stress: what are the key regulators? Plant Growth Regul. 32 27–39.
Molinier J., Ries G., Zipfel C., Hohn B. (2006). Transgeneration memory of stress in plants. Nature 442 1046–1049. 10.1038/nature05022 PubMed DOI
Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC
Münzbergová Z., Latzel V., Šurinová M., Hadincová V. (2019). DNA methylation as a possible mechanism affecting ability of natural populations to adapt to changing climate. Oikos 128 124–134. 10.1111/oik.05591 DOI
Oborny B., Hubai G. (2014). Patch size and distance: modelling habitat structure from the perspective of clonal growth. Ann. Bot. 114 389–398. 10.1093/aob/mcu110 PubMed DOI PMC
Ohlsson A. B., Segerfeldt P., Lindström A., Borg-Karlson A. K., Berglund T. (2013). UV-B exposure of indoor-grown Picea abies seedlings causes an epigenetic effect and selective emission of terpenes. Z. Naturforschung C 68 139–147. 10.1515/znc-2013-3-410 PubMed DOI
Pandey N., Goswami N., Tripathi D., Rai K. K., Rai S. K., Singh S., et al. (2019). Epigenetic control of UV-B-induced flavonoid accumulation in Artemisia annua L. Planta 249 497–514. 10.1007/s00425-018-3022-7 PubMed DOI
Pandey N., Pandey-Rai S. (2015). Deciphering UV-B induced variation in DNA methylation pattern and its influence on regulation of DBR2 expression on Artemisia annua L. Planta 242 869–879. 10.1007/s00425-015-2323-3 PubMed DOI
Paszkowski J., Grossniklaus U. (2011). Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 14 195–203. 10.1016/j.pbi.2011.01.002 PubMed DOI
Pérez Figueroa A. (2013). MSAP: a tool for the statistical analysis of methylation—sensitive amplified polymorphism data. Mol. Ecol. Resour. 13 522–527. 10.1111/1755-0998.12064 PubMed DOI
Puijalon S., Bouma T. G. J., Bornette G. (2008). Clonal plasticity of aquatic plant species submitted to mechanical stress: escape vs. resistance strategy. Ann. Bot. 102 989–996. 10.1093/aob/mcn190 PubMed DOI PMC
Quan J. X., Zhang X. Y., Song S. S., Dang H., Chai Y. F., Yue M., et al. (2018). Clonal plant Duchesnea indica Focke forms an effective survival strategy in different degrees of Pb-contaminated environments. Plant Ecol. 219 1315–1327. 10.1007/s11258-018-0881-8 DOI
Richards C. L., Alonso C., Becker C., Bossdorf O., Bucher E., Colomé-Tatché M., et al. (2017). Ecological plant epigenetics: evidence from model and non-model species, and the way forward. Ecol. Lett. 20 1576–1590. 10.1111/ele.12858 PubMed DOI
Roiloa S. R., Retuerto R. (2006a). Development, photosynthetic activity and habitat selection of the clonal plant Fragaria vesca growing in copper-polluted soil. Funct. Plant Biol. 33 961–971. 10.1071/fp06018 PubMed DOI
Roiloa S. R., Retuerto R. (2006b). Physiological integration ameliorates effects of serpentine soils in the clonal herb Fragaria vesca. Physiol. Plant. 128 662–676. 10.1111/j.1399-3054.2006.00790.x DOI
Roiloa S. R., Retuerto R. (2006c). Small-scale heterogeneity in soil quality influences photosynthetic efficiency and habitat selection in a clonal plant. Ann. Bot. 98 1043–1052. 10.1093/aob/mcl185 PubMed DOI PMC
Roiloa S. R., Retuerto R. (2012). Clonal integration in Fragaria vesca growing in metal-polluted soils: parents face penalties for establishing their offspring in unsuitable environments. Ecol. Res. 27 95–106. 10.1007/s11284-011-0876-6 DOI
Salmon A., Clotault J., Jenczewski E., Chable V., Manzanares-Dauleux M. J. (2008). Brassica oleracea displays a high level of DNA methylation polymorphism. Plant Sci. 174 61–70. 10.1016/j.plantsci.2007.09.012 DOI
Salzman A. G. (1985). Habitat selection in a clonal plant. Science 228 603–605. 10.1126/science.3983647 PubMed DOI
Shi W., Chen X. J., Gao L. X., Xu C. Y., Ou X. K., Bossdorf O. B., et al. (2019). Transient stability of epigenetic population differentiation in a clonal invader. Front. Plant Sci. 9:1851. 10.3389/fpls.2018.01851 PubMed DOI PMC
Sokolova D., Vengzhen G., Kravets A. (2014). The effect of DNA methylation modification polymorphism of corn seeds on their germination rate, seedling resistance and adaptive capacity under UV-C exposure. Am. J. Plant Biol. 1 1–14.
Steward N. (2002). Periodic dna methylation in maize nucleosomes and demethylation by environmental stress. J. Biol. Chem. 277 37741–37746. 10.1074/jbc.m204050200 PubMed DOI
Stuefer J. F., Gómez S., van Mölken T. (2004). Clonal integration beyond resource sharing: implications for defence signalling and disease transmission in clonal plant networks. Evol. Ecol. 18 647–667. 10.1007/s10682-004-5148-2 DOI
Stuefer J. F., Hutchings M. J. (1994). Environmental heterogeneity and clonal growth, a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia 100 302–308. 10.1007/bf00316958 PubMed DOI
Tombesi S., Frioni T., Poni S., Palliotti A. (2018). Effect of water stress “memory” on plant behavior during subsequent drought stress. Environ. Exp. Bot. 150 106–114. 10.1016/j.envexpbot.2018.03.009 DOI
Vanhaelewyn L., Prinsen E., Dominique V. D. S., Vandenbussche F. (2016). Hormone-controlled UV-B responses in plants. J. Exp. Bot. 67 4469–4482. 10.1093/jxb/erw261 PubMed DOI
Verhoeven K. J. F., Jansen J. J., Biere D. A. (2010). Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 185 1108–1118. 10.1111/j.1469-8137.2009.03121.x PubMed DOI
Verhoeven K. J. F., Preite V. (2014). Epigenetic variation in asexually reproducing organisms. Evolution 68 644–655. 10.1111/evo.12320 PubMed DOI
Virlouvet L., Avenson T. J., Du Q., Zhang C., Liu N., Fromm M., et al. (2018). Dehydration stress memory: gene networks linked to physiological responses during repeated stresses of Zea mays. Front. Plant Sci. 9:1058. 10.3389/fpls.2018.01058 PubMed DOI PMC
Wang M. Z., Li H. L., Li J. M., Yu F. H. (2019). Correlations between genetic, epigenetic and phenotypic variation of an introduced clonal herb. Heredity 124 146–155. 10.1038/s41437-019-0261-8 PubMed DOI PMC
Wang Y. J., Shi X. P., Wu X. J., Meng X. F., Wang P. C., Zhou Z. X., et al. (2016). Effects of patch contrast and arrangement on benefits of clonal integration in a rhizomatous clonal plant. Sci. Rep. 6:35459. PubMed PMC
Waters E. M., Soini H. A., Novotny M. V., Watson M. A. (2016). Volatile organic compounds (VOCs) drive nutrient foraging in the clonal woodland strawberry, Fragaria vesca. Plant Soil 407 1–14.
Waters E. M., Watson M. A. (2015). Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. Front. Plant Sci. 6:814. 10.3389/fpls.2015.00814 PubMed DOI PMC
Wijesinghe D. K., Hutchings M. J. (1999). The effects of environmental heterogeneity on the performance of Glechoma hederacea: the interactions between patch contrast and patch scale. J. Ecol. 87 860–872. 10.1046/j.1365-2745.1999.00395.x DOI
Xiao K. Y., Yu D., Wang J. W. (2006). Habitat selection in spatially heterogeneous environments: a test of foraging behaviour in the clonal submerged macrophyte Vallisneria spiralis. Freshw. Biol. 51 1552–1559. 10.1111/j.1365-2427.2006.01590.x DOI
Xiao K. Y., Yu D., Wang L. G., Han Y. Q. (2011). Physiological integration helps a clonal macrophyte spread into competitive environments and coexist with other species. Aquat. Bot. 95 249–253. 10.1016/j.aquabot.2011.07.002 DOI
Xu J., Tanino K. K., Robinson S. J. (2016). Stable epigenetic variants selected from an induced hypomethylated Fragaria vesca population. Front. Plant Sci. 7:1768. 10.3389/fpls.2016.01768 PubMed DOI PMC
Ye X., Gao S. Q., Liu Z. L., Zhang Y. L., Huang Z. Y., Dong M. (2015). Multiple adaptations to light and nutrient heterogeneity in the clonal plant Leymus secalinus with a combined growth form. Flora 213 49–56. 10.1016/j.flora.2015.04.006 DOI
Ye X. H., Yu F. H., Dong M. (2006). A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann. Bot. 98 187–191. 10.1093/aob/mcl086 PubMed DOI PMC
Zhang C. G., Liu X., Fan Y. L., Wang M., Chai Y. F., Wan P. C., et al. (2016). Sunfleck limits the small-scale distribution of endangered Kingdonia uniflora in the natural habitat of subalpine forest proved by its photosynthesis. Acta Physiol. Plant. 38 1–11.
Zhang L. L., He W. M. (2009). Consequences of ramets helping ramets: no damage and increased nutrient use efficiency in nurse ramets of Glechoma longituba. Flora 204 182–188. 10.1016/j.flora.2008.02.001 DOI
Zuur A. F., Ieno E. N., Elphick C. S. (2010). A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1 3–14.