Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens

. 2018 ; 9 () : 1677. [epub] 20181120

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30524458

Transgenerational effects (TGE) can modify phenotypes of offspring generations playing thus a potentially important role in ecology and evolution of many plant species. These effects have been studied mostly across generations of sexually reproducing species. A substantial proportion of plant species are however reproducing asexually, for instance via clonal growth. TGE are thought to be enabled by heritable epigenetic modification of DNA, although unambiguous evidence is still scarce. On the clonal herb white clover (Trifolium repens), we tested the generality of clonal TGE across five genotypes and five parental environments including soil contamination and above-ground competition. Moreover, by genome wide-methylation variation analysis we explored the role of drought, one of the parental environments that triggered the strongest TGE. We tested the induction of epigenetic changes in offspring generations using several intensities and durations of drought stress. We found that TGE of different environments were highly genotype specific and all tested environments triggered TGE at least in some genotypes. In addition, parental drought stresses triggered epigenetic change in T. repens and most of the induced epigenetic change was maintained across several clonal offspring generations. We conclude that TGE are common and genotype specific in clonal plant T. repens and potentially under epigenetic control.

Zobrazit více v PubMed

Adrees M., Ali S., Rizwan M., Ibrahim M., Abbas F., Farid M., et al. (2015). The effect of excess copper on growth and physiology of important food crops: a review. Environ. Sci. Pollut. Res. 22 8148–8162. 10.1007/s11356-015-4496-5 PubMed DOI

Ahn J., Franklin S. B., Douhovnikoff V. (2017). Folia Geobot. Folia Geobotanica 52:443 10.1007/s12224-017-9308-x DOI

Aina R., Sgorbati S., Santagostin A., Labra M., Ghiani A., Citterio S. (2004). Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol. Plant. 121 472–480. 10.1111/j.1399-3054.2004.00343.x DOI

Alpert P., Stuefer J. (1997). “Division of labour in clonal plants,” in The Ecology and Evolution of Clonal Plants, eds Kroon H. de, van Groenendael J. (Leiden: Backhuys Publishers; ), 137–154.

Angers B., Castonguay E., Massicotte R. (2010). Environmentally induced phenotypes and DNA methylation: how to deal with unpredictable conditions until the next generation and after. Mol. Ecol. 19 1283–1295. 10.1111/j.1365-294X.2010.04580 PubMed DOI

Bartels D., Sunkar R. (2005). Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24 23–58. 10.1080/07352680590910410 DOI

Bell A. D. (1984). “Dynamic morphology: a contribution to plant population ecology,” in Perspectives on Plant Population Ecology, eds Dirzo R., Sarukhan J. (Sunderland: Sinauer; ), 48–65.

Bilichak A., Kovalchuk I. (2016). Transgenerational response to stress in plants and its application for breeding. J. Exp. Bot. 67 2081–2092. 10.1093/jxb/erw066 PubMed DOI

Bonin A., Bellemain E., Bronken Eidesen P., Pompanon F., Brochmann C., Taberlet P. (2004). How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13 3261–3273. 10.1111/j.1365-294X.2004.02346.x PubMed DOI

Boyko A., Blevins T., Yao Y., Golubov A., Bilichak A., Ilnytskyy Y., et al. (2010). Transgenerational adaptation of arabidopsis to stress requires DNA methylation and the function of dicer-like proteins. PLoS One 5:e9514. 10.1371/journal.pone.0009514 PubMed DOI PMC

Bruce T. J. A., Matthes M. C., Napier J. A., Pickett J. A. (2007). Stressful ‘memories’ of plants: evidence and possible mechanisms. Plant Sci. 173 603–608. 10.1016/j.plantsci.2007.09.002 DOI

Crisp P. A., Ganguly D., Eichten S. R., Borevitz J. O., Pogson B. J. (2016). Reconsidering plant memory: intersections between stress recovery, RNA turnover, and epigenetics. Sci. Adv. 2:e1501340. 10.1126/sciadv.1501340 PubMed DOI PMC

Ding Y., Fromm M., Avramova Z. (2012). Multiple exposures to drought “train” transcriptional responses in Arabidopsis. Nat. Commun. 3:740. 10.1038/ncomms1732 PubMed DOI

Dodd R. S., Douhovnikoff V. (2016). Adjusting to global change through clonal growth and epigenetic variation. Front. Ecol. Evol. 4:86 10.3389/fevo.2016.00086 DOI

Douhovnikoff V., Dodd R. S. (2015). Epigenetics: a potential mechanism for clonal plant success. Plant Ecol. 216 227–233. 10.1007/s11258-014-0430-z DOI

Eichten S. R., Schmitz R. J., Springer N. M. (2014). Epigenetics: beyond chromatin modifications and complex genetic regulation. Plant Physiol. 165 933–947. 10.1104/pp.113.234211 PubMed DOI PMC

Excoffier L., Smouse P. E., Quattro J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131 479–491. PubMed PMC

Fedoroff N. (2012). Transposable elements, epigenetics, and genome evolution. Science 338 758–767. 10.1126/science.338.6108.758 PubMed DOI

Feng S., Jacobsen S. E. (2011). Epigenetic modifications in plants: an evolutionary perspective. Curr. Opin. Plant Biol. 14 179–186. 10.1016/j.pbi.2010.12.002 PubMed DOI PMC

Galloway L. F., Etterson J. R. (2007). Transgenerational plasticity is adaptive in the wild. Science 318 1134–1136. 10.1126/science.1148766 PubMed DOI

Gao L., Geng Y., Li B., Chen J., Yang J. (2010). Genome-wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant Cell Environ. 33 1820–1827. 10.1111/j.1365-3040.2010.02186.x PubMed DOI

Ginsburg S., Jablonka E. (2009). Epigenetic learning in non-neural organisms. J. Biosci. 34 633–646. 10.1007/s12038-009-0081-8 PubMed DOI

Grant-Downton R. T., Dickinson H. G. (2006). Epigenetics and its implications for plant biology 2. The ’epigenetic epiphany’: epigenetics, evolution and beyond. Ann. Bot. 97 11–27. 10.1093/aob/mcj001 PubMed DOI PMC

Groot M. P., Kubisch A., Ouborg N. J., Pagel J., Schmid K. J., Vergeer P., et al. (2017). Transgenerational effects of mild heat in Arabidopsis thaliana show strong genotype specificity that is explained by climate at origin. New Phytol. 215 1221–1234. 10.1111/nph.14642 PubMed DOI

Guarino F., Cicatelli A., Brundu G., Heinze B., Castiglione S. (2015). Epigenetic diversity of clonal white poplar (Populus alba L.) populations: could methylation support the success of vegetative reproduction strategy?. PLoS One. 10:e0131480. 10.1371/journal.pone.0131480 PubMed DOI PMC

Hauser M.-T., Aufsatz W., Jonak C., Luschnig C. (2011). Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta 1809 459–468. 10.1016/j.bbagrm.2011.03.007 PubMed DOI PMC

Heard E., Martienssen R. A. (2014). Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157 95–109. 10.1016/j.cell.2014.02.045 PubMed DOI PMC

Herman J. J., Sultan S. E. (2016). DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proc. R. Soc. B 283:20160988. 10.1098/rspb.2016.0988 PubMed DOI PMC

Huxman T. E., Charlet T. N., Grant C., Smith S. D. (2001). The effects of parental CO2 and offspring nutrient environment on initial growth and photosynthesis in an annual grass. Int. J. Plant Sci. 162 617–623. 10.1086/320132 DOI

Jablonka E., Lamb M. J. (2008). Soft inheritance: challenging the modern synthesis. Genet. Mol. Biol. 31 389–395. 10.1590/S1415-47572008000300001 DOI

Klimeš L., Klimešová J., Hendriks R., van Groenendael J. (1997). “Clonal plant architecture: a comparative analysis of form and function,” in The Ecology and Evolution of Clonal Plants, eds Kroon H. de, van Groenendael J. (Leiden: Backhuys; ), 1–29.

Lämke J., Bäurle I. (2017). Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 18:124. 10.1186/s13059-017-1263-6 PubMed DOI PMC

Lampei C., Metz J., Tielborger K. (2017). Clinal population divergence in an adaptive parental environmental effect that adjusts seed banking. New Phytol. 214 1230–1244. 10.1111/nph.14436 PubMed DOI

Latzel V., Janeèek Š., Doležal J., Klimešová J., Bossdorf O. (2014). Adaptive transgenerational plasticity in the perennial Plantago lanceolata. Oikos 123 41–46. 10.1111/j.1600-0706.2013.00537.x DOI

Latzel V., Klimešová J. (2010). Transgenerational plasticity in clonal plants. Evol. Ecol. 24 1537–1543. 10.1007/s10682-010-9385-2 DOI

Latzel V., Rendina González A. P., Rosenthal J. (2016). Epigenetic memory as a basis for intelligent behavior in clonal plants. Front. Plant Sci. 7:1354. 10.3389/fpls.2016.01354 PubMed DOI PMC

Lauria M., Rossi V. (2011). Epigenetic control of gene regulation in plants. Biochim. Biophys. Acta 1809 369–378. 10.1016/j.bbagrm.2011.03.002 PubMed DOI

Louapre P., Bittebiere A., Clément B., Pierre J., Mony C. (2012). How past and present influence the foraging of clonal plants? PLoS One 7:e38288. 10.1371/journal.pone.0038288 PubMed DOI PMC

McClintock B. (1984). The significance of responses of the genome to challenge. Science 226:792 10.1126/science.15739260 PubMed DOI

Miao S. L., Bazzaz F. A., Primack R. B. (1991). Effects of maternal nutrient pulse on reproduction of two colonizing plantago species. Ecology 72 586–596. 10.2307/2937198 DOI

Müller-Xing R., Xing Q., Goodrich J. (2014). Footprints of the sun: memory of UV and light stress in plants. Front. Plant Sci. 5:474. 10.3389/fpls.2014.00474 PubMed DOI PMC

Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC

Ou X., Zhang Y., Xu C., Lin X., Zang Q., Zhuang T., et al. (2012). Transgenerational inheritance of modified DNA methylation patterns and enhanced tolerance induced by heavy metal stress in rice (Oryza sativa L.). PLoS One 7:e41143. 10.1371/journal.pone.0041143 PubMed DOI PMC

Paszkowski J., Grossniklaus U. (2011). Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr. Opin. Plant Biol. 14 195–203. 10.1016/j.pbi.2011.01.002 PubMed DOI

Pérez-Figueroa A. (2013). msap: a tool for the statistical analysis of methylation-sensitive amplified polymorphism data. Mol. Ecol. Resour. 13 522–527. 10.1111/1755-0998.12064 PubMed DOI

Preite V., Oplaat C., Biere A., Kirschner J., van der Putten W. H., Verhoeven K. J. F. (2018). Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages. Ecol. Evol. 8 3047–3059. 10.1002/ece3.3871 PubMed DOI PMC

Preite V., Snoek L. B., Oplaat C., Biere A., Van der Putten W. H., Verhoeven K. J. F. (2015). The epigenetic footprint of poleward range-expanding plants in apomictic dandelions. Mol. Ecol. 24 4406–4418. 10.1111/mec.13329 PubMed DOI

Raj S., Bräutigam K., Hamanishi E. T., Wilkins O., Schroeder W., Mansfield S. D., et al. (2011). Clone history shapes populus drought responses. Proc. Natl. Acad. Sci. U.S.A. 108 12521–12526. 10.1073/pnas.1103341108 PubMed DOI PMC

Rendina González A. P., Chrtek J., Dobrev P. I., Dumalasová V., Fehrer J., Mráz P., et al. (2016). Stress-induced memory alters growth of clonal off spring of white clover (Trifolium repens). Am. J. Bot. 103 1567–1574. 10.3732/ajb.1500526 PubMed DOI

Rendina González A. P., Dumalasová V., Rosenthal J., Skuhrovec J., Latzel V. (2017). The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol. Ecol. 31:345 10.1007/s10682-016-9844-5 DOI

Richards C. L., Schrey A. W., Pigliucci M. (2012). Invasion of diverse habitats by few Japanese knotweed genotypes is correlated with epigenetic differentiation. Ecol. Lett. 15 1016–1025. 10.1111/j.1461-0248.2012.01824.x PubMed DOI

Roach D. A., Wulff R. D. (1987). Maternal effects in plants. Annu. Rev. Ecol. Syst. 18 209–235. 10.1146/annurev.es.18.110187.001233 DOI

Robertson M., Schrey A., Shayter A., Moss C. J., Richards C. (2017). Genetic and epigenetic variation in Spartina alterniflora following the Deepwater Horizon oil spill. Evol. Appl. 10 792–801. 10.1111/eva.12482 PubMed DOI PMC

Rossiter M. C. (1996). Incidence and consequences of inherited environmental effects. Annu. Rev. Ecol. Syst. 27 451–476. 10.1146/annurev.ecolsys.27.1.451 DOI

Sommer L. (1931). Copper as an essential for plant growth. Plant Physiol. 6 339–345. 10.1104/pp.6.2.339 PubMed DOI PMC

Spens A. E., Douhovnikoff V. (2016). Epigenetic variation within Phragmites australis among lineages, genotypes, and ramets. Biol. Invasions 18 2457–2462. 10.1007/s10530-016-1223-1 DOI

Suter L., Widmer A. (2013). Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana. PLoS One 8:e60364. 10.1371/journal.pone.0060364 PubMed DOI PMC

Tang X. M., Tao X., Wang Y., Ma D. W., Li D., Yang H., et al. (2014). Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol. Genet. Genomics 289 1075–1084. 10.1007/s00438-014-0869-6 PubMed DOI

Thellier M., Lüttge U. (2013). Plant memory: a tentative model. Plant Biol. 15 1–12. 10.1111/j.1438-8677.2012.00674.x PubMed DOI

Tricker P. J. (2015). Transgenerational inheritance or resetting of stress-induced epigenetic modifications: two sides of the same coin. Front. Plant Sci. 6:699. 10.3389/fpls.2015.00699 PubMed DOI PMC

Uddin M. N., Hossain M. A., Burritt D. J. (2016). “Salinity and drought stress: similarities and differences in oxidative responses and cellular redox regulation,” in Water Stress and Crop Plants: A Sustainable Approach, ed. Ahmad P. (Hoboken, NJ: Wiley-Blackwell; ), 10.1002/9781119054450.ch7 DOI

Vanyushin B. F. (2006). DNA methylation in plants. Curr. Top. Microbiol. Immunol. 301 67–122. 10.1007/3-540-31390-7_4 PubMed DOI

Verhoeven K. J. F., Jansen J. J., Van Dijk P. J., Biere A. (2010). Stress induced DNA methylation changes and their heritability in asexual dandelions. New Phytol. 185 1108–1118. 10.1111/j.1469-8137.2009.03121.x PubMed DOI

Verhoeven K. J. F., Preite V. (2014). Epigenetic variation in asexually reproducing organisms. Evolution 68 644–655. 10.1111/evo.12320 PubMed DOI

Verhoeven K. J. F., van Gurp T. P. (2012). Transgenerational effects of stress exposure on offspring phenotypes in apomictic dandelion. PLoS One 7:e38605. 10.1371/journal.pone.0038605 PubMed DOI PMC

Wagner D. (2003). Chromatin regulation of plant development. Curr. Opin. Plant Biol. 6 20–28. 10.1016/s1369526602000079 PubMed DOI

Wang W. S., Pan Y. J., Zhao X. Q., Dwivedi D., Zhu L. H., Ali J., et al. (2010). Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J. Exp. Bot. 62 1951–1960. 10.1093/jxb/erq391 PubMed DOI PMC

Waters E. M., Watson M. A. (2015). Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. Front. Plant Sci. 6:814. 10.3389/fpls.2015.00814 PubMed DOI PMC

Wibowo A., Becker C., Marconi G., Durr J., Price J., Hagmann J., et al. (2016). Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife 5:e13546. 10.7554/eLife.13546 PubMed DOI PMC

Yaish M. W. (2017). Editorial: epigenetic modifications associated with abiotic and biotic stresses in plants: an implication for understanding plant evolution. Front. Plant Sci. 8:1983. 10.3389/fpls.2017.01983 PubMed DOI PMC

Yruela I. (2005). Copper in plants. Braz. J. Plant Physiol. 17 145–156. 10.1590/S1677-04202005000100012 DOI

Zheng X., Chen L., Li M., Lou Q., Xia H., Wang P., et al. (2013). Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 8:e80253. 10.1371/journal.pone.0080253 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...