Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29531716
PubMed Central
PMC5838036
DOI
10.1002/ece3.3871
PII: ECE33871
Knihovny.cz E-zdroje
- Klíčová slova
- DNA methylation, Europe, Taraxacum officinale, drought, salicylic acid, stress memory,
- Publikační typ
- časopisecké články MeSH
DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced transgenerational DNA methylation changes are and if they persist for more than one offspring generation. We exposed multiple accessions of two different apomictic dandelion lineages of the Taraxacum officinale group (Taraxacum alatum and T. hemicyclum) to drought and salicylic acid (SA) treatment. Using methylation-sensitive amplified fragment length polymorphism markers (MS-AFLPs) we screened anonymous methylation changes at CCGG restriction sites throughout the genome after stress treatments and assessed the heritability of induced changes for two subsequent unexposed offspring generations. Irrespective of the initial stress treatment, a clear buildup of heritable DNA methylation variation was observed across three generations, indicating a considerable background rate of heritable epimutations. Less evidence was detected for environmental effects. Drought stress showed some evidence for accession-specific methylation changes, but only in the exposed generation and not in their offspring. By contrast, SA treatment caused an increased rate of methylation change in offspring of treated plants. These changes were seemingly undirected resulting in increased transgenerational epigenetic variation between offspring individuals, but not in predictable epigenetic variants. While the functional consequences of these MS-AFLP-detected DNA methylation changes remain to be demonstrated, our study shows that (1) stress-induced transgenerational DNA methylation modification in dandelions is genotype and context-specific; and (2) inherited environmental DNA methylation effects are mostly undirected and not targeted to specific loci.
Department of Terrestrial EcologyNetherlands Institute of Ecology WageningenThe Netherlands
Institute of Botany of the Czech Academy of SciencesPrůhoniceCzech Republic
Laboratory of NematologyWageningen UniversityWageningenThe Netherlands
Zobrazit více v PubMed
Ahmad, R. , Liow, P.‐S. , Spencer, D. F. , & Jasieniuk, M. (2008). Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquatic Botany, 88, 113–120. https://doi.org/10.1016/j.aquabot.2007.08.015 DOI
Aina, R. , Sgorbati, S. , Santagostino, A. , Labra, M. , Ghiani, A. , & Citterio, S. (2004). Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum, 121, 472–480. https://doi.org/10.1111/j.1399-3054.2004.00343.x DOI
Alonso, C. , Pérez, R. , Bazaga, P. , Medrano, M. , & Herrera, C. M. (2016). MSAP markers and global cytosine methylation in plants: A literature survey and comparative analysis for a wild‐growing species. Molecular Ecology Resources, 16, 80–90. https://doi.org/10.1111/1755-0998.12426 PubMed DOI
Asker, S. E. , & Jerling, L. (1992). Apomixis in plants (p. 298). Boca Raton, FL: CRC Press.
Becker, C. , Hagmann, J. , Müller, J. , Koenig, D. , Stegle, O. , Borgwardt, K. , & Weigel, D. (2011). Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature, 480, 245–249. https://doi.org/10.1038/nature10555 PubMed DOI
Bilichak, A. , Ilnytskyy, Y. , Wóycicki, R. , Kepeshchuk, N. , Fogen, D. , & Kovalchuk, I. (2015). The elucidation of stress memory inheritance in Brassica rapa plants. Frontiers in Plant Science, 6, 5 https://doi.org/10.3389/fpls.2015.00005 PubMed DOI PMC
Bond, D. M. , & Baulcombe, D. C. (2014). Small RNAs and heritable epigenetic variation in plants. Trends in Cell Biology, 24, 100–107. https://doi.org/10.1016/j.tcb.2013.08.001 PubMed DOI
Bonin, A. , Ehrich, D. , & Manel, S. (2007). Statistical analysis of amplified fragment length polymorphism data: A toolbox for molecular ecologists and evolutionists. Molecular Ecology, 16, 3737–3758. https://doi.org/10.1111/j.1365-294X.2007.03435.x PubMed DOI
Bossdorf, O. , Richards, C. L. , & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters, 11, 106–115. PubMed
Boyko, A. , Kathiria, P. , Zemp, F. J. , Yao, Y. , Pogribny, I. , & Kovalchuk, I. (2007). Transgenerational changes in the genome stability and methylation in pathogen‐infected plants (virus‐induced plant genome instability). Nucleic Acids Research, 35, 1714–1725. https://doi.org/10.1093/nar/gkm029 PubMed DOI PMC
Cara, N. , Marfil, C. F. , & Masuelli, R. W. (2013). Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum. Ecology and Evolution, 3, 3764–3779. https://doi.org/10.1002/ece3.758 PubMed DOI PMC
Cheng, R. Y.‐S. , Hockman, T. , Crawford, E. , Anderson, L. M. , & Shiao, Y.‐H. (2004). Epigenetic and gene expression changes related to transgenerational carcinogenesis. Molecular Carcinogenesis, 40, 1–11. https://doi.org/10.1002/(ISSN)1098-2744 PubMed DOI
Choi, C.‐S. , & Sano, H. (2007). Abiotic‐stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase‐like protein in tobacco plants. Molecular Genetics and Genomics, 277, 589–600. https://doi.org/10.1007/s00438-007-0209-1 PubMed DOI
Comes, H. P. , & Kadereit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3, 432–438. https://doi.org/10.1016/S1360-1385(98)01327-2 DOI
Cramer, G. R. , Urano, K. , Delrot, S. , Pezzotti, M. , & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163 https://doi.org/10.1186/1471-2229-11-163 PubMed DOI PMC
Delaney, T. P. , Uknes, S. , Vernooij, B. , Friedrich, L. , Weymann, K. , Negrotto, D. , … Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science, 266, 1247–1250. https://doi.org/10.1126/science.266.5188.1247 PubMed DOI
Dowen, R. H. , Pelizzola, M. , Schmitz, R. J. , Lister, R. , Dowen, J. M. , Nery, J. R. , … Ecker, J. R. (2012). Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences of the United States of America, 109, E2183–E2191. https://doi.org/10.1073/pnas.1209329109 PubMed DOI PMC
Dubin, M. J. , Zhang, P. , Meng, D. , Remigereau, M. S. , Osborne, E. J. , Casale, F. P. , … Jagoda, J. (2015). DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. JAMA, 4, eLife. PubMed PMC
Feng, S. , Jacobsen, S. E. , & Reik, W. (2010). Epigenetic reprogramming in plant and animal development. Science, 330, 622–627. https://doi.org/10.1126/science.1190614 PubMed DOI PMC
Foust, C. M. , Preite, V. , Schrey, A. W. , Alvarez, M. , Robertson, M. H. , Verhoeven, K. J. F. , & Richards, C. L. (2016). Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Molecular Ecology, 25, 1639–1652. https://doi.org/10.1111/mec.13522 PubMed DOI
Gao, L. , Geng, Y. , Li, B. , Chen, J. , & Yang, J. (2010). Genome‐wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: Implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant, Cell & Environment, 33, 1820–1827. https://doi.org/10.1111/j.1365-3040.2010.02186.x PubMed DOI
Grandbastien, M.‐A. (1998). Activation of plant retrotransposons under stress conditions. Trends in Plant Science, 3, 181–187. https://doi.org/10.1016/S1360-1385(98)01232-1 DOI
Gugger, P. F. , Fitz‐Gibbon, S. , PellEgrini, M. , & Sork, V. L. (2016). Species‐wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Molecular Ecology, 25, 1665–1680. https://doi.org/10.1111/mec.13563 PubMed DOI
Hagmann, J. , Becker, C. , Müller, J. , Stegle, O. , Meyer, R. C. , Wang, G. , … Borgwardt, K. (2015). Century‐scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genetics, 11, e1004920 https://doi.org/10.1371/journal.pgen.1004920 PubMed DOI PMC
Herman, J. J. , Spencer, H. G. , Donohue, K. , & Sultan, S. E. (2013). How stable “should” epigenetic modifications be? Insight from adaptive plasticity and bet hedging. Evolution, 68(3), 632–664. PubMed
Herman, J. J. , & Sultan, S. E. (2011). Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2, 102. PubMed PMC
Herrera, C. M. , & Bazaga, P. (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis . New Phytologist, 187, 867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x PubMed DOI
Hollingsworth, M. L. , & Bailey, J. P. (2000). Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Botanical Journal of the Linnean Society, 133, 463–472. https://doi.org/10.1111/j.1095-8339.2000.tb01589.x DOI
IPCC (2013). Summary for policymakers In Stocker T. F., Qin D., Plattner G.‐K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P. M. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
Iwasaki, M. , & Paszkowski, J. (2014). Epigenetic memory in plants. The EMBO Journal, 33, 1987–1998. https://doi.org/10.15252/embj.201488883 PubMed DOI PMC
Johannes, F. , Porcher, E. , Teixeira, F. K. , Saliba‐Colombani, V. , Simon, M. , Agier, N. , … Bouchez, D. (2009). Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics, 5, e1000530. PubMed PMC
Kalendar, R. , Tanskanen, J. , Immonen, S. , Nevo, E. , & Schulman, A. H. (2000). Genome evolution of wild barley (Hordeum spontaneum) by BARE‐1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America, 97, 6603–6607. https://doi.org/10.1073/pnas.110587497 PubMed DOI PMC
Keyte, A. L. , Percifield, R. , Liu, B. , & Wendel, J. F. (2006). Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). Journal of Heredity, 97, 444–450. https://doi.org/10.1093/jhered/esl023 PubMed DOI
Kirschner, J. , Oplaat, C. , Verhoeven, K. J. F. , Zeisek, V. , Uhlemann, I. , Trávníček, B. , … Štepánek, J. (2016). Identification of oligoclonal agamospermous microspecies: Taxonomic specialists versus microsatellites. Preslia, 88, 1–17.
Kirschner, J. , & Štěpánek, J. (2011). Typification of Leontodon taraxacum L. ((≡ Taraxacum officinale FH Wigg.) and the generic name Taraxacum: A review and a new typification proposal. Taxon, 60, 216–220.
Koltunow, A. M. (1993). Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. The Plant Cell, 5, 1425 https://doi.org/10.1105/tpc.5.10.1425 PubMed DOI PMC
Kou, H. P. , Li, Y. , Song, X. X. , Ou, X. F. , Xing, S. C. , Ma, J. , … Liu, B. (2011). Heritable alteration in DNA methylation induced by nitrogen‐deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Journal of Plant Physiology, 168, 1685–1693. https://doi.org/10.1016/j.jplph.2011.03.017 PubMed DOI
Lämke, J. , & Bäurle, I. (2017). Epigenetic and chromatin‐based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18, 124 https://doi.org/10.1186/s13059-017-1263-6 PubMed DOI PMC
Lang‐Mladek, C. , Popova, O. , Kiok, K. , Berlinger, M. , Rakic, B. , Aufsatz, W. , … Luschnig, C. (2010). Transgenerational inheritance and resetting of stress‐induced loss of epigenetic gene silencing in Arabidopsis . Molecular Plant, 3, 594–602. https://doi.org/10.1093/mp/ssq014 PubMed DOI PMC
Lippman, Z. , & Martienssen, R. (2004). The role of RNA interference in heterochromatic silencing. Nature, 431, 364–370. https://doi.org/10.1038/nature02875 PubMed DOI
Lira‐Medeiros, C. F. , Parisod, C. , Fernandes, R. A. , Mata, C. S. , Cardoso, M. A. , & Ferreira, P. C. G. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE, 5, e10326 https://doi.org/10.1371/journal.pone.0010326 PubMed DOI PMC
Luna, E. , Bruce, T. J. A. , Roberts, M. R. , Flors, V. , & Ton, J. (2012). Next‐generation systemic acquired resistance. Plant Physiology, 158, 844–853. https://doi.org/10.1104/pp.111.187468 PubMed DOI PMC
McCue, A. D. , Nuthikattu, S. , Reeder, S. H. , & Slotkin, R. K. (2012). Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PloS Genetics, 8(2), e1002474 https://doi.org/10.1371/journal.pgen.1002474 PubMed DOI PMC
Meissner, A. , Gnirke, A. , Bell, G. W. , Ramsahoye, B. , Lander, E. S. , & Jaenisch, R. (2005). Reduced representation bisulfite sequencing for comparative high‐resolution DNA methylation analysis. Nucleic Acids Research, 33, 5868–5877. https://doi.org/10.1093/nar/gki901 PubMed DOI PMC
Menken, S. B. , Smit, E. , Nijs, H. J. , & Den Nijs, C. (1995). Genetical population structure in plants: Gene flow between diploid sexual and triploid asexual dandelions (Taraxacum section Ruderalia). Evolution, 49(6), 1108–1118. PubMed
Mogie, M. , & Ford, H. (1988). Sexual and asexual Taraxacum species. Biological Journal of the Linnean Society, 35, 155–168. https://doi.org/10.1111/j.1095-8312.1988.tb00463.x DOI
Morgado, L. , Preite, V. , Oplaat, C. , Anava, S. , Ferreira de Carvalho, J. , Rechavi, O. , … Verhoeven, K. J. (2017). Small RNAs reflect grandparental environments in apomictic dandelion. Molecular Biology Evolution, 34, 2035–2040. https://doi.org/10.1093/molbev/msx150 PubMed DOI PMC
Park, S. W. , Kaimoyo, E. , Kumar, D. , Mosher, S. , & Klessig, D. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318, 113–116. https://doi.org/10.1126/science.1147113 PubMed DOI
Pautasso, M. , Dӧring, T. F. , Garbelotto, M. , Pellis, L. , & Jeger, M. J. (2012). Impacts of climate change on plant diseases—opinions and trends. European Journal of Plant Pathology, 133, 295–313. https://doi.org/10.1007/s10658-012-9936-1 DOI
Pecinka, A. , & Scheid, O. M. (2012). Stress‐induced chromatin changes: A critical view on their heritability. Plant and Cell Physiology, 53(5), 801–808. https://doi.org/10.1093/pcp/pcs044 PubMed DOI PMC
Potop, V. , Boroneanţ, C. , Možný, M. , Štěpánek, P. , & Skalák, P. (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115, 563–581. https://doi.org/10.1007/s00704-013-0908-y DOI
Rapp, R. A. , & Wendel, J. F. (2005). Epigenetics and plant evolution. New Phytologist, 168, 81–91. https://doi.org/10.1111/j.1469-8137.2005.01491.x PubMed DOI
Rasmann, S. , De Vos, M. , Casteel, C. L. , Tian, D. , Halitschke, R. , Sun, J. Y. , … Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiology, 158, 854–863. https://doi.org/10.1104/pp.111.187831 PubMed DOI PMC
Richards, A. (1973). The origin of Taraxacum agamospecies. Botanical Journal of the Linnean Society, 66, 189–211. https://doi.org/10.1111/j.1095-8339.1973.tb02169.x PubMed DOI PMC
Richards, A. J. (1989). A comparison of within‐plant karyological heterogeneity between agamospermous and sexual Taraxacum (Compositae) as assessed by the nucleolar organiser chromosome. Plant Systematics and Evolution, 163, 177–185. https://doi.org/10.1007/BF00936513 DOI
Richards, E. J. (2006). Inherited epigenetic variation—revisiting soft inheritance. Nature Reviews Genetics, 7, 395–401. https://doi.org/10.1038/nrg1834 PubMed DOI
Richards, E. J. (2011). Natural epigenetic variation in plant species: A view from the field. Current Opinion in Plant Biology, 14, 204–209. https://doi.org/10.1016/j.pbi.2011.03.009 PubMed DOI
Richards, C. L. , Bossdorf, O. , & Verhoeven, K. J. F. (2010). Understanding natural epigenetic variation. New Phytologist, 187, 562–564. https://doi.org/10.1111/j.1469-8137.2010.03369.x PubMed DOI
Riddle, N. C. , & Richards, E. J. (2002). The control of natural variation in cytosine methylation in Arabidopsis . Genetics, 162, 355–363. PubMed PMC
Rogstad, S. H. (1992). Saturated NaCl‐CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon, 41(4), 701–708. https://doi.org/10.2307/1222395 DOI
Salmon, A. , Ainouche, M. L. , & Wendel, J. F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 14, 1163–1175. https://doi.org/10.1111/j.1365-294X.2005.02488.x PubMed DOI
Schemske, D. W. , Mittelbach, G. G. , Cornell, H. V. , Sobel, J. M. , & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution and Systematics., 40, 245–269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430 DOI
Schmitz, R. J. , Schultz, M. D. , Lewsey, M. G. , O'Malley, R. C. , Urich, M. A. , Libiger, O. , … Ecker, J. R. (2011). Transgenerational epigenetic instability is a source of novel methylation variants. Science, 334, 369–373. https://doi.org/10.1126/science.1212959 PubMed DOI PMC
Schulz, B. , Eckstein, R. L. , & Durka, W. (2013). Scoring and analysis of methylation‐sensitive amplification polymorphisms for epigenetic population studies. Molecular Ecology Resources, 13, 642–653. https://doi.org/10.1111/1755-0998.12100 PubMed DOI
Suter, L. , & Widmer, A. (2013). Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana . PLoS ONE, 8, e60364 https://doi.org/10.1371/journal.pone.0060364 PubMed DOI PMC
Tas, I. C. , & Van Dijk, P. J. (1999). Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity, 83, 707–714. https://doi.org/10.1046/j.1365-2540.1999.00619.x PubMed DOI
Trucchi, E. , Mazzarella, A. B. , Gilfillan, G. D. , Lorenzo, M. T. , Schönswetter, P. , & Paun, O. (2016). BsRADseq: Screening DNA methylation in natural populations of non‐model species. Molecular Ecology, 25, 1697–1713. https://doi.org/10.1111/mec.13550 PubMed DOI PMC
Van der Graaf, A. , Wardenaar, R. , Neumann, D. A. , Taudt, A. , Shaw, R. G. , Jansen, R. C. , … Johannes, F. (2015). Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proceedings of the National Academy of Sciences of the United States of America, 112, 6676–6681. https://doi.org/10.1073/pnas.1424254112 PubMed DOI PMC
Van Gurp, P. T. , Wagemaker, N. C. A. M. , Wouters, B. , Vergeer, P. , Ouborg, J. N. J. , & Verhoeven, K. J. F. (2016). epiGBS : reference‐free reduced representation bisulfite sequencing. Nature Methods, 13, 4 https://doi.org/10.1038/nmeth.3763 PubMed DOI
Verduijn, M. H. , Van Dijk, P. J. , & Van Damme, J. M. (2004). Distribution, phenology and demography of sympatric sexual and asexual dandelions (Taraxacum officinale s.l.): Geographic parthenogenesis on a small scale. Biological Journal of the Linnean Society, 82, 205–218. https://doi.org/10.1111/j.1095-8312.2004.00325.x DOI
Verhoeven, K. J. , & Biere, A. (2013). Geographic parthenogenesis and plant‐enemy interactions in the common dandelion. BMC Evolutionary Biology, 13, 23 https://doi.org/10.1186/1471-2148-13-23 PubMed DOI PMC
Verhoeven, K. J. F. , Jansen, J. J. , van Dijk, P. J. , & Biere, A. (2010). Stress‐induced DNA methylation changes and their heritability in asexual dandelions. New Phytologist, 185, 1108–1118. https://doi.org/10.1111/j.1469-8137.2009.03121.x PubMed DOI
Verhoeven, K. J. , Van Dijk, P. J. , & Biere, A. (2010). Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Molecular Ecology, 19, 315–324. https://doi.org/10.1111/j.1365-294X.2009.04460.x PubMed DOI
Vicente, M. R. S. , & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321–3338. https://doi.org/10.1093/jxb/err031 PubMed DOI
Vijverberg, K. , Van der Hulst, R. , Lindhout, P. , & Van Dijk, P. (2004). A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theoretical and Applied Genetics, 108, 725–732. https://doi.org/10.1007/s00122-003-1474-y PubMed DOI
Wibowo, A. , Becker, C. , Marconi, G. , Durr, J. , Price, J. , Hagmann, J. , … Weigel, D. (2016). Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife, 5, e13546. PubMed PMC
Zhang, H. , & Hare, M. P. (2012). Identifying and reducing AFLP genotyping error: An example of tradeoffs when comparing population structure in broadcast spawning versus brooding oysters. Heredity, 108, 616–625. https://doi.org/10.1038/hdy.2011.132 PubMed DOI PMC
Zhang, Y. Y. , Zhang, D. Y. , & Barrett, S. C. H. (2010). Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology, 19, 1774–1786. https://doi.org/10.1111/j.1365-294X.2010.04609.x PubMed DOI
Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens
Dryad
10.5061/dryad.tf536