Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages

. 2018 Mar ; 8 (5) : 3047-3059. [epub] 20180219

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29531716

DNA methylation is one of the mechanisms underlying epigenetic modifications. DNA methylations can be environmentally induced and such induced modifications can at times be transmitted to successive generations. However, it remains speculative how common such environmentally induced transgenerational DNA methylation changes are and if they persist for more than one offspring generation. We exposed multiple accessions of two different apomictic dandelion lineages of the Taraxacum officinale group (Taraxacum alatum and T. hemicyclum) to drought and salicylic acid (SA) treatment. Using methylation-sensitive amplified fragment length polymorphism markers (MS-AFLPs) we screened anonymous methylation changes at CCGG restriction sites throughout the genome after stress treatments and assessed the heritability of induced changes for two subsequent unexposed offspring generations. Irrespective of the initial stress treatment, a clear buildup of heritable DNA methylation variation was observed across three generations, indicating a considerable background rate of heritable epimutations. Less evidence was detected for environmental effects. Drought stress showed some evidence for accession-specific methylation changes, but only in the exposed generation and not in their offspring. By contrast, SA treatment caused an increased rate of methylation change in offspring of treated plants. These changes were seemingly undirected resulting in increased transgenerational epigenetic variation between offspring individuals, but not in predictable epigenetic variants. While the functional consequences of these MS-AFLP-detected DNA methylation changes remain to be demonstrated, our study shows that (1) stress-induced transgenerational DNA methylation modification in dandelions is genotype and context-specific; and (2) inherited environmental DNA methylation effects are mostly undirected and not targeted to specific loci.

Zobrazit více v PubMed

Ahmad, R. , Liow, P.‐S. , Spencer, D. F. , & Jasieniuk, M. (2008). Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquatic Botany, 88, 113–120. https://doi.org/10.1016/j.aquabot.2007.08.015 DOI

Aina, R. , Sgorbati, S. , Santagostino, A. , Labra, M. , Ghiani, A. , & Citterio, S. (2004). Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiologia Plantarum, 121, 472–480. https://doi.org/10.1111/j.1399-3054.2004.00343.x DOI

Alonso, C. , Pérez, R. , Bazaga, P. , Medrano, M. , & Herrera, C. M. (2016). MSAP markers and global cytosine methylation in plants: A literature survey and comparative analysis for a wild‐growing species. Molecular Ecology Resources, 16, 80–90. https://doi.org/10.1111/1755-0998.12426 PubMed DOI

Asker, S. E. , & Jerling, L. (1992). Apomixis in plants (p. 298). Boca Raton, FL: CRC Press.

Becker, C. , Hagmann, J. , Müller, J. , Koenig, D. , Stegle, O. , Borgwardt, K. , & Weigel, D. (2011). Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature, 480, 245–249. https://doi.org/10.1038/nature10555 PubMed DOI

Bilichak, A. , Ilnytskyy, Y. , Wóycicki, R. , Kepeshchuk, N. , Fogen, D. , & Kovalchuk, I. (2015). The elucidation of stress memory inheritance in Brassica rapa plants. Frontiers in Plant Science, 6, 5 https://doi.org/10.3389/fpls.2015.00005 PubMed DOI PMC

Bond, D. M. , & Baulcombe, D. C. (2014). Small RNAs and heritable epigenetic variation in plants. Trends in Cell Biology, 24, 100–107. https://doi.org/10.1016/j.tcb.2013.08.001 PubMed DOI

Bonin, A. , Ehrich, D. , & Manel, S. (2007). Statistical analysis of amplified fragment length polymorphism data: A toolbox for molecular ecologists and evolutionists. Molecular Ecology, 16, 3737–3758. https://doi.org/10.1111/j.1365-294X.2007.03435.x PubMed DOI

Bossdorf, O. , Richards, C. L. , & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters, 11, 106–115. PubMed

Boyko, A. , Kathiria, P. , Zemp, F. J. , Yao, Y. , Pogribny, I. , & Kovalchuk, I. (2007). Transgenerational changes in the genome stability and methylation in pathogen‐infected plants (virus‐induced plant genome instability). Nucleic Acids Research, 35, 1714–1725. https://doi.org/10.1093/nar/gkm029 PubMed DOI PMC

Cara, N. , Marfil, C. F. , & Masuelli, R. W. (2013). Epigenetic patterns newly established after interspecific hybridization in natural populations of Solanum. Ecology and Evolution, 3, 3764–3779. https://doi.org/10.1002/ece3.758 PubMed DOI PMC

Cheng, R. Y.‐S. , Hockman, T. , Crawford, E. , Anderson, L. M. , & Shiao, Y.‐H. (2004). Epigenetic and gene expression changes related to transgenerational carcinogenesis. Molecular Carcinogenesis, 40, 1–11. https://doi.org/10.1002/(ISSN)1098-2744 PubMed DOI

Choi, C.‐S. , & Sano, H. (2007). Abiotic‐stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase‐like protein in tobacco plants. Molecular Genetics and Genomics, 277, 589–600. https://doi.org/10.1007/s00438-007-0209-1 PubMed DOI

Comes, H. P. , & Kadereit, J. W. (1998). The effect of Quaternary climatic changes on plant distribution and evolution. Trends in Plant Science, 3, 432–438. https://doi.org/10.1016/S1360-1385(98)01327-2 DOI

Cramer, G. R. , Urano, K. , Delrot, S. , Pezzotti, M. , & Shinozaki, K. (2011). Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biology, 11, 163 https://doi.org/10.1186/1471-2229-11-163 PubMed DOI PMC

Delaney, T. P. , Uknes, S. , Vernooij, B. , Friedrich, L. , Weymann, K. , Negrotto, D. , … Ryals, J. (1994). A central role of salicylic acid in plant disease resistance. Science, 266, 1247–1250. https://doi.org/10.1126/science.266.5188.1247 PubMed DOI

Dowen, R. H. , Pelizzola, M. , Schmitz, R. J. , Lister, R. , Dowen, J. M. , Nery, J. R. , … Ecker, J. R. (2012). Widespread dynamic DNA methylation in response to biotic stress. Proceedings of the National Academy of Sciences of the United States of America, 109, E2183–E2191. https://doi.org/10.1073/pnas.1209329109 PubMed DOI PMC

Dubin, M. J. , Zhang, P. , Meng, D. , Remigereau, M. S. , Osborne, E. J. , Casale, F. P. , … Jagoda, J. (2015). DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. JAMA, 4, eLife. PubMed PMC

Feng, S. , Jacobsen, S. E. , & Reik, W. (2010). Epigenetic reprogramming in plant and animal development. Science, 330, 622–627. https://doi.org/10.1126/science.1190614 PubMed DOI PMC

Foust, C. M. , Preite, V. , Schrey, A. W. , Alvarez, M. , Robertson, M. H. , Verhoeven, K. J. F. , & Richards, C. L. (2016). Genetic and epigenetic differences associated with environmental gradients in replicate populations of two salt marsh perennials. Molecular Ecology, 25, 1639–1652. https://doi.org/10.1111/mec.13522 PubMed DOI

Gao, L. , Geng, Y. , Li, B. , Chen, J. , & Yang, J. (2010). Genome‐wide DNA methylation alterations of Alternanthera philoxeroides in natural and manipulated habitats: Implications for epigenetic regulation of rapid responses to environmental fluctuation and phenotypic variation. Plant, Cell & Environment, 33, 1820–1827. https://doi.org/10.1111/j.1365-3040.2010.02186.x PubMed DOI

Grandbastien, M.‐A. (1998). Activation of plant retrotransposons under stress conditions. Trends in Plant Science, 3, 181–187. https://doi.org/10.1016/S1360-1385(98)01232-1 DOI

Gugger, P. F. , Fitz‐Gibbon, S. , PellEgrini, M. , & Sork, V. L. (2016). Species‐wide patterns of DNA methylation variation in Quercus lobata and their association with climate gradients. Molecular Ecology, 25, 1665–1680. https://doi.org/10.1111/mec.13563 PubMed DOI

Hagmann, J. , Becker, C. , Müller, J. , Stegle, O. , Meyer, R. C. , Wang, G. , … Borgwardt, K. (2015). Century‐scale methylome stability in a recently diverged Arabidopsis thaliana lineage. PLoS Genetics, 11, e1004920 https://doi.org/10.1371/journal.pgen.1004920 PubMed DOI PMC

Herman, J. J. , Spencer, H. G. , Donohue, K. , & Sultan, S. E. (2013). How stable “should” epigenetic modifications be? Insight from adaptive plasticity and bet hedging. Evolution, 68(3), 632–664. PubMed

Herman, J. J. , & Sultan, S. E. (2011). Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2, 102. PubMed PMC

Herrera, C. M. , & Bazaga, P. (2010). Epigenetic differentiation and relationship to adaptive genetic divergence in discrete populations of the violet Viola cazorlensis . New Phytologist, 187, 867–876. https://doi.org/10.1111/j.1469-8137.2010.03298.x PubMed DOI

Hollingsworth, M. L. , & Bailey, J. P. (2000). Evidence for massive clonal growth in the invasive weed Fallopia japonica (Japanese Knotweed). Botanical Journal of the Linnean Society, 133, 463–472. https://doi.org/10.1111/j.1095-8339.2000.tb01589.x DOI

IPCC (2013). Summary for policymakers In Stocker T. F., Qin D., Plattner G.‐K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V. & Midgley P. M. (Eds.), Climate change 2013: The physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

Iwasaki, M. , & Paszkowski, J. (2014). Epigenetic memory in plants. The EMBO Journal, 33, 1987–1998. https://doi.org/10.15252/embj.201488883 PubMed DOI PMC

Johannes, F. , Porcher, E. , Teixeira, F. K. , Saliba‐Colombani, V. , Simon, M. , Agier, N. , … Bouchez, D. (2009). Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genetics, 5, e1000530. PubMed PMC

Kalendar, R. , Tanskanen, J. , Immonen, S. , Nevo, E. , & Schulman, A. H. (2000). Genome evolution of wild barley (Hordeum spontaneum) by BARE‐1 retrotransposon dynamics in response to sharp microclimatic divergence. Proceedings of the National Academy of Sciences of the United States of America, 97, 6603–6607. https://doi.org/10.1073/pnas.110587497 PubMed DOI PMC

Keyte, A. L. , Percifield, R. , Liu, B. , & Wendel, J. F. (2006). Infraspecific DNA methylation polymorphism in cotton (Gossypium hirsutum L.). Journal of Heredity, 97, 444–450. https://doi.org/10.1093/jhered/esl023 PubMed DOI

Kirschner, J. , Oplaat, C. , Verhoeven, K. J. F. , Zeisek, V. , Uhlemann, I. , Trávníček, B. , … Štepánek, J. (2016). Identification of oligoclonal agamospermous microspecies: Taxonomic specialists versus microsatellites. Preslia, 88, 1–17.

Kirschner, J. , & Štěpánek, J. (2011). Typification of Leontodon taraxacum L. ((≡ Taraxacum officinale FH Wigg.) and the generic name Taraxacum: A review and a new typification proposal. Taxon, 60, 216–220.

Koltunow, A. M. (1993). Apomixis: Embryo sacs and embryos formed without meiosis or fertilization in ovules. The Plant Cell, 5, 1425 https://doi.org/10.1105/tpc.5.10.1425 PubMed DOI PMC

Kou, H. P. , Li, Y. , Song, X. X. , Ou, X. F. , Xing, S. C. , Ma, J. , … Liu, B. (2011). Heritable alteration in DNA methylation induced by nitrogen‐deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). Journal of Plant Physiology, 168, 1685–1693. https://doi.org/10.1016/j.jplph.2011.03.017 PubMed DOI

Lämke, J. , & Bäurle, I. (2017). Epigenetic and chromatin‐based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biology, 18, 124 https://doi.org/10.1186/s13059-017-1263-6 PubMed DOI PMC

Lang‐Mladek, C. , Popova, O. , Kiok, K. , Berlinger, M. , Rakic, B. , Aufsatz, W. , … Luschnig, C. (2010). Transgenerational inheritance and resetting of stress‐induced loss of epigenetic gene silencing in Arabidopsis . Molecular Plant, 3, 594–602. https://doi.org/10.1093/mp/ssq014 PubMed DOI PMC

Lippman, Z. , & Martienssen, R. (2004). The role of RNA interference in heterochromatic silencing. Nature, 431, 364–370. https://doi.org/10.1038/nature02875 PubMed DOI

Lira‐Medeiros, C. F. , Parisod, C. , Fernandes, R. A. , Mata, C. S. , Cardoso, M. A. , & Ferreira, P. C. G. (2010). Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS ONE, 5, e10326 https://doi.org/10.1371/journal.pone.0010326 PubMed DOI PMC

Luna, E. , Bruce, T. J. A. , Roberts, M. R. , Flors, V. , & Ton, J. (2012). Next‐generation systemic acquired resistance. Plant Physiology, 158, 844–853. https://doi.org/10.1104/pp.111.187468 PubMed DOI PMC

McCue, A. D. , Nuthikattu, S. , Reeder, S. H. , & Slotkin, R. K. (2012). Gene expression and stress response mediated by the epigenetic regulation of a transposable element small RNA. PloS Genetics, 8(2), e1002474 https://doi.org/10.1371/journal.pgen.1002474 PubMed DOI PMC

Meissner, A. , Gnirke, A. , Bell, G. W. , Ramsahoye, B. , Lander, E. S. , & Jaenisch, R. (2005). Reduced representation bisulfite sequencing for comparative high‐resolution DNA methylation analysis. Nucleic Acids Research, 33, 5868–5877. https://doi.org/10.1093/nar/gki901 PubMed DOI PMC

Menken, S. B. , Smit, E. , Nijs, H. J. , & Den Nijs, C. (1995). Genetical population structure in plants: Gene flow between diploid sexual and triploid asexual dandelions (Taraxacum section Ruderalia). Evolution, 49(6), 1108–1118. PubMed

Mogie, M. , & Ford, H. (1988). Sexual and asexual Taraxacum species. Biological Journal of the Linnean Society, 35, 155–168. https://doi.org/10.1111/j.1095-8312.1988.tb00463.x DOI

Morgado, L. , Preite, V. , Oplaat, C. , Anava, S. , Ferreira de Carvalho, J. , Rechavi, O. , … Verhoeven, K. J. (2017). Small RNAs reflect grandparental environments in apomictic dandelion. Molecular Biology Evolution, 34, 2035–2040. https://doi.org/10.1093/molbev/msx150 PubMed DOI PMC

Park, S. W. , Kaimoyo, E. , Kumar, D. , Mosher, S. , & Klessig, D. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318, 113–116. https://doi.org/10.1126/science.1147113 PubMed DOI

Pautasso, M. , Dӧring, T. F. , Garbelotto, M. , Pellis, L. , & Jeger, M. J. (2012). Impacts of climate change on plant diseases—opinions and trends. European Journal of Plant Pathology, 133, 295–313. https://doi.org/10.1007/s10658-012-9936-1 DOI

Pecinka, A. , & Scheid, O. M. (2012). Stress‐induced chromatin changes: A critical view on their heritability. Plant and Cell Physiology, 53(5), 801–808. https://doi.org/10.1093/pcp/pcs044 PubMed DOI PMC

Potop, V. , Boroneanţ, C. , Možný, M. , Štěpánek, P. , & Skalák, P. (2014). Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theoretical and Applied Climatology, 115, 563–581. https://doi.org/10.1007/s00704-013-0908-y DOI

Rapp, R. A. , & Wendel, J. F. (2005). Epigenetics and plant evolution. New Phytologist, 168, 81–91. https://doi.org/10.1111/j.1469-8137.2005.01491.x PubMed DOI

Rasmann, S. , De Vos, M. , Casteel, C. L. , Tian, D. , Halitschke, R. , Sun, J. Y. , … Jander, G. (2012). Herbivory in the previous generation primes plants for enhanced insect resistance. Plant Physiology, 158, 854–863. https://doi.org/10.1104/pp.111.187831 PubMed DOI PMC

Richards, A. (1973). The origin of Taraxacum agamospecies. Botanical Journal of the Linnean Society, 66, 189–211. https://doi.org/10.1111/j.1095-8339.1973.tb02169.x PubMed DOI PMC

Richards, A. J. (1989). A comparison of within‐plant karyological heterogeneity between agamospermous and sexual Taraxacum (Compositae) as assessed by the nucleolar organiser chromosome. Plant Systematics and Evolution, 163, 177–185. https://doi.org/10.1007/BF00936513 DOI

Richards, E. J. (2006). Inherited epigenetic variation—revisiting soft inheritance. Nature Reviews Genetics, 7, 395–401. https://doi.org/10.1038/nrg1834 PubMed DOI

Richards, E. J. (2011). Natural epigenetic variation in plant species: A view from the field. Current Opinion in Plant Biology, 14, 204–209. https://doi.org/10.1016/j.pbi.2011.03.009 PubMed DOI

Richards, C. L. , Bossdorf, O. , & Verhoeven, K. J. F. (2010). Understanding natural epigenetic variation. New Phytologist, 187, 562–564. https://doi.org/10.1111/j.1469-8137.2010.03369.x PubMed DOI

Riddle, N. C. , & Richards, E. J. (2002). The control of natural variation in cytosine methylation in Arabidopsis . Genetics, 162, 355–363. PubMed PMC

Rogstad, S. H. (1992). Saturated NaCl‐CTAB solution as a means of field preservation of leaves for DNA analyses. Taxon, 41(4), 701–708. https://doi.org/10.2307/1222395 DOI

Salmon, A. , Ainouche, M. L. , & Wendel, J. F. (2005). Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Molecular Ecology, 14, 1163–1175. https://doi.org/10.1111/j.1365-294X.2005.02488.x PubMed DOI

Schemske, D. W. , Mittelbach, G. G. , Cornell, H. V. , Sobel, J. M. , & Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution and Systematics., 40, 245–269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430 DOI

Schmitz, R. J. , Schultz, M. D. , Lewsey, M. G. , O'Malley, R. C. , Urich, M. A. , Libiger, O. , … Ecker, J. R. (2011). Transgenerational epigenetic instability is a source of novel methylation variants. Science, 334, 369–373. https://doi.org/10.1126/science.1212959 PubMed DOI PMC

Schulz, B. , Eckstein, R. L. , & Durka, W. (2013). Scoring and analysis of methylation‐sensitive amplification polymorphisms for epigenetic population studies. Molecular Ecology Resources, 13, 642–653. https://doi.org/10.1111/1755-0998.12100 PubMed DOI

Suter, L. , & Widmer, A. (2013). Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana . PLoS ONE, 8, e60364 https://doi.org/10.1371/journal.pone.0060364 PubMed DOI PMC

Tas, I. C. , & Van Dijk, P. J. (1999). Crosses between sexual and apomictic dandelions (Taraxacum). I. The inheritance of apomixis. Heredity, 83, 707–714. https://doi.org/10.1046/j.1365-2540.1999.00619.x PubMed DOI

Trucchi, E. , Mazzarella, A. B. , Gilfillan, G. D. , Lorenzo, M. T. , Schönswetter, P. , & Paun, O. (2016). BsRADseq: Screening DNA methylation in natural populations of non‐model species. Molecular Ecology, 25, 1697–1713. https://doi.org/10.1111/mec.13550 PubMed DOI PMC

Van der Graaf, A. , Wardenaar, R. , Neumann, D. A. , Taudt, A. , Shaw, R. G. , Jansen, R. C. , … Johannes, F. (2015). Rate, spectrum, and evolutionary dynamics of spontaneous epimutations. Proceedings of the National Academy of Sciences of the United States of America, 112, 6676–6681. https://doi.org/10.1073/pnas.1424254112 PubMed DOI PMC

Van Gurp, P. T. , Wagemaker, N. C. A. M. , Wouters, B. , Vergeer, P. , Ouborg, J. N. J. , & Verhoeven, K. J. F. (2016). epiGBS : reference‐free reduced representation bisulfite sequencing. Nature Methods, 13, 4 https://doi.org/10.1038/nmeth.3763 PubMed DOI

Verduijn, M. H. , Van Dijk, P. J. , & Van Damme, J. M. (2004). Distribution, phenology and demography of sympatric sexual and asexual dandelions (Taraxacum officinale s.l.): Geographic parthenogenesis on a small scale. Biological Journal of the Linnean Society, 82, 205–218. https://doi.org/10.1111/j.1095-8312.2004.00325.x DOI

Verhoeven, K. J. , & Biere, A. (2013). Geographic parthenogenesis and plant‐enemy interactions in the common dandelion. BMC Evolutionary Biology, 13, 23 https://doi.org/10.1186/1471-2148-13-23 PubMed DOI PMC

Verhoeven, K. J. F. , Jansen, J. J. , van Dijk, P. J. , & Biere, A. (2010). Stress‐induced DNA methylation changes and their heritability in asexual dandelions. New Phytologist, 185, 1108–1118. https://doi.org/10.1111/j.1469-8137.2009.03121.x PubMed DOI

Verhoeven, K. J. , Van Dijk, P. J. , & Biere, A. (2010). Changes in genomic methylation patterns during the formation of triploid asexual dandelion lineages. Molecular Ecology, 19, 315–324. https://doi.org/10.1111/j.1365-294X.2009.04460.x PubMed DOI

Vicente, M. R. S. , & Plasencia, J. (2011). Salicylic acid beyond defence: Its role in plant growth and development. Journal of Experimental Botany, 62(10), 3321–3338. https://doi.org/10.1093/jxb/err031 PubMed DOI

Vijverberg, K. , Van der Hulst, R. , Lindhout, P. , & Van Dijk, P. (2004). A genetic linkage map of the diplosporous chromosomal region in Taraxacum officinale (common dandelion; Asteraceae). Theoretical and Applied Genetics, 108, 725–732. https://doi.org/10.1007/s00122-003-1474-y PubMed DOI

Wibowo, A. , Becker, C. , Marconi, G. , Durr, J. , Price, J. , Hagmann, J. , … Weigel, D. (2016). Hyperosmotic stress memory in Arabidopsis is mediated by distinct epigenetically labile sites in the genome and is restricted in the male germline by DNA glycosylase activity. eLife, 5, e13546. PubMed PMC

Zhang, H. , & Hare, M. P. (2012). Identifying and reducing AFLP genotyping error: An example of tradeoffs when comparing population structure in broadcast spawning versus brooding oysters. Heredity, 108, 616–625. https://doi.org/10.1038/hdy.2011.132 PubMed DOI PMC

Zhang, Y. Y. , Zhang, D. Y. , & Barrett, S. C. H. (2010). Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Molecular Ecology, 19, 1774–1786. https://doi.org/10.1111/j.1365-294X.2010.04609.x PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens

. 2018 ; 9 () : 1677. [epub] 20181120

Zobrazit více v PubMed

Dryad
10.5061/dryad.tf536

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...