Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
28770062
PubMed Central
PMC5528211
DOI
10.1002/ece3.3105
PII: ECE33105
Knihovny.cz E-zdroje
- Klíčová slova
- Festuca rubra, climatic extremes, common garden experiment, epigenetic memory, genome methylation, local adaptation, reciprocal transplant experiment,
- Publikační typ
- časopisecké články MeSH
In spite of the increasing number of studies on the importance of transgenerational plasticity for species response to novel environments, its effects on species ability to respond to climate change are still largely unexplored. We study the importance of transgenerational plasticity for response of a clonal species Festuca rubra. Individuals from four natural populations representing two levels of temperature and two levels of precipitation were cultivated in four growth chambers that simulate the temperature and precipitation of origin of the populations (maternal phase). Each population was represented in each growth chamber. After 6 months, single young ramets of these plants were reshuffled among the growth chambers and let to grow for additional 2 months (offspring phase). The results show that transgenerational effects (i.e., maternal phase conditions) significantly modify species response to novel climates, and the direction and intensity of the response depend on the climate of origin of the plants. For traits related to recourse acquisition, the conditions of maternal phase, either alone or in interaction mainly with climate of origin, had stronger effect than the conditions of cultivation. Overall, the maternal climate interacted more intensively with the climate of origin than with the offspring climate. The direction of the effect of the maternal climate was of different directions and intensities depending on plant origin and trait studied. The data demonstrated strong significant effects of conditions during maternal phase on species response to novel climates. These transgenerational affects were, however, not adaptive. Still, transgenerational plasticity may be an important driver of species response to novel conditions across clonal generations. These effects thus need to be carefully considered in future studies exploring species response to novel climates. This will also have strong effects on species performance under increasingly variable climates expected to occur with the climate change.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Institute of Botany Academy of Sciences of the Czech Republic Průhonice Czech Republic
Zobrazit více v PubMed
Allen, R. M. , Buckley, Y. M. , & Marshall, D. J. (2008). Offspring size plasticity in response to intraspecific competition: An adaptive maternal effect across life‐history stages. American Naturalist, 171, 225–237. PubMed
Barrett, S. C. H. (2015). Influences of clonality on plant sexual reproduction. Proceedings of the National Academy of Sciences of the United States of America, 112, 8859–8866. PubMed PMC
Beaman, J. E. , White, C. R. , & Seebacher, F. (2016). Evolution of plasticity: Mechanistic link between development and reversible acclimation. Trends in Ecology & Evolution, 31, 237–249. PubMed
Bernareggi, G. , Carbognani, M. , Petraglia, A. , & Mondoni, A. (2015). Climate warming could increase seed longevity of alpine snowbed plants. Alpine Botany, 125, 69–78.
Bezemer, T. M. , Thompson, L. J. , & Jones, T. H. (1998). Poa annua shows inter‐generational differences in response to elevated CO2. Global Change Biology, 4, 687–691.
Bossdorf, O. , Richards, C. L. , & Pigliucci, M. (2008). Epigenetics for ecologists. Ecology Letters, 11, 106–115. PubMed
Bowman, G. , Perret, C. , Hoehn, S. , Galeuchet, D. J. , & Fischer, M. (2008). Habitat fragmentation and adaptation: A reciprocal replant‐transplant experiment among 15 populations of Lychnis flos‐cuculi. Journal of Ecology, 96, 1056–1064.
Briske, D. , & Derner, J. (1998). Clonal biology of caespitose grasses In Cheplick G. (Ed.), Population biology of grasses (pp. 106–135). Cambridge: Cambridge University Press.
Cahenzli, F. , & Erhardt, A. (2013). Transgenerational acclimatization in an herbivore ‐ host plant relationship. Proceedings of the Royal Society Biological Sciences Series B, 280, 1–8. PubMed PMC
Cavieres, L. A. , & Arroyo, M. T. K. (2000). Seed germination response to cold stratification period and thermal regime in Phacelia secunda (Hydrophyllaceae) ‐ Altitudinal variation in the mediterranean Andes of central Chile. Plant Ecology, 149, 1–8.
Cortijo, S. , Wardenaar, R. , Colome‐Tatche, M. , Gilly, A. , Etcheverry, M. , Labadie, K. , … Johannes, F. (2014). Mapping the epigenetic basis of complex traits. Science, 343, 1145–1148. PubMed
Dalrymple, R. L. , Buswell, J. M. , & Moles, A. T. (2015). Asexual plants change just as often and just as fast as do sexual plants when introduced to a new range. Oikos, 124, 196–205.
Donelson, J. M. , Munday, P. L. , McCormick, M. I. , & Pitcher, C. R. (2012). Rapid transgenerational acclimation of a tropical reef fish to climate change. Nature Climate Change, 2, 30–32.
Dunn, O. (1961). Comparisons among means. Journal of the American Statistical Association, 56, 52–64.
Elith, J. , & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology Evolution and Systematics, 40, 677–697.
Fremstad, E. (1997). Vegetasjonstyper i Norge. NINA Temahefte, 12, 1–279.
Galloway, L. F. (2001). Parental environmental effects on life history in the herbaceous plant Campanula americana . Ecology, 82, 2781–2789.
Garcia, L. V. (2004). Escaping the Bonferroni iron claw in ecological studies. Oikos, 105, 657–663.
Germain, R. M. , & Gilbert, B. (2014). Hidden responses to environmental variation: Maternal effects reveal species niche dimensions. Ecology Letters, 17, 662–669. PubMed
Gonzalez, A. P. R. , Chrtek, J. , Dobrev, P. I. , Dumalasova, V. , Fehrer, J. , Mraz, P. , & Latzel, V. (2016). Stress‐induced memory alters growth of clonal off spring of white clover (Trifolium repens). American Journal of Botany, 103, 1567–1574. PubMed
González, A. P. R. , Dumalasová, V. , Rosenthal, J. , Skuhrovec, J. , & Latzel, V. (2017). The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evolutionary Ecology, 31, 345–361.
Gotelli, N. , & Ellison, A. (2004). A primer of ecological statistics. Sunderland, MA, USA: Sinauer Associates.
Gotelli, N. J. , & Stanton‐Geddes, J. (2015). Climate change, genetic markers and species distribution modelling. Journal of Biogeography, 42, 1577–1585.
Guillaume, A. S. , Monro, K. , & Marshall, D. J. (2016). Transgenerational plasticity and environmental stress: Do paternal effects act as a conduit or a buffer? Functional Ecology, 30, 1175–1184.
Gunderson, C. A. , O'Hara, K. H. , Campion, C. M. , Walker, A. V. , & Edwards, N. T. (2010). Thermal plasticity of photosynthesis: The role of acclimation in forest responses to a warming climate. Global Change Biology, 16, 2272–2286.
Gugger, S. , Kesselring, H. , Stoecklin, J. , & Hamann, E. (2015). Lower plasticity exhibited by high‐ versus mid‐elevation species in their phenological responses to manipulated temperature and drought. Annals of Botany, 116, 953–962. PubMed PMC
Hallsson, L. R. , Chenoweth, S. F. , & Bonduriansky, R. (2012). The relative importance of genetic and nongenetic inheritance in relation to trait plasticity in Callosobruchus maculatus . Journal of Evolutionary Biology, 25, 2422–2431. PubMed
Hanssen‐Bauer, I. , Achberger, C. , Benestad, R. E. , Chen, D. , & Forland, E. J. (2005). Statistical downscaling of climate scenarios over Scandinavia. Climate Research, 29, 255–268.
Harberd, D. (1961). Observations on population structure and longevity of Festuca rubra L. New Phytologist, 60, 184–206.
Herben, T. , Krahulec, F. , Hadincova, V. , & Pechackova, S. (2001). Clone‐specific response of Festuca rubra to natural variation in biomass and species composition of neighbours. Oikos, 95, 43–52.
Herman, J. J. , & Sultan, S. E. (2011). Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2, 10. PubMed PMC
Herman, J. J. , & Sultan, S. E. (2016). DNA methylation mediates genetic variation for adaptive transgenerational plasticity. Proceedings of the Royal Society B‐Biological Sciences, 283, 20160988. PubMed PMC
Herman, J. J. , Sultan, S. E. , Horgan‐Kobelski, T. , & Riggs, C. (2012). Adaptive transgenerational plasticity in an annual plant: Grandparental and parental drought stress enhance performance of seedlings in dry soil. Integrative and Comparative Biology, 52, 77–88. PubMed
Hoffmann, A. A. , & Sgro, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470, 479–485. PubMed
Hurlbert, S. H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54, 187–211.
Hurlbert, S. H. (2004). On misinterpretations of pseudoreplication and related matters: A reply to Oksanen. Oikos, 104, 591–597.
IPCC (2014). Climate change 2014: Synthesis report. [Online]. Retrieved from http://www.ipcc.ch/report/ar5/syr/ Accessed September 15th 2016.
Johnson, S. N. , Gherlenda, A. N. , Frew, A. , & Ryalls, J. M. W. (2016). The importance of testing multiple environmental factors in legume‐insect research: Replication, reviewers, and rebuttal. Frontiers in Plant Science, 7, 489. PubMed PMC
Kappeler, L. , & Meaney, M. J. (2010). Epigenetics and parental effects. BioEssays, 32, 818–827. PubMed
Klanderud, K. , Vandvik, V. , & Goldberg, D. (2015). The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE, 10, e0130205. PubMed PMC
Klimeš, L. , Klimešová, J. , Hendriks, R. , & van Groenendael, J. (1997). Clonal plant architecture: A comparative analysis of form and function In de Kroon H., & van Groenendael J. (Eds.), The ecology and evolution of clonal plants (pp. 1–29). Leiden, The Netherlands: Backhuys Publishers.
Kokko, H. , & Lopez‐Sepulcre, A. (2006). From individual dispersal to species ranges: Perspectives for a changing world. Science, 313, 789–791. PubMed
Lampei, C. , Metz, J. , & Tielborger, K. (2017). Clinal population divergence in an adaptive parental environmental effect that adjusts seed banking. New Phytologist, 214, 1230–1244. PubMed
Latzel, V. (2015). Pitfalls in ecological research—Transgenerational effects. Folia Geobotanica, 50, 75–85.
Latzel, V. , Allan, E. , Silveira, A. B. , Colot, V. , Fischer, M. , & Bossdorf, O. (2013). Epigenetic diversity increases the productivity and stability of plant populations. Nature Communications, 4, 7. PubMed
Latzel, V. , & Klimesova, J. (2010). Transgenerational plasticity in clonal plants. Evolutionary Ecology, 24, 1537–1543.
Leverett, L. D. , Auge, G. A. , Bali, A. , & Donohue, K. (2016). Contrasting germination responses to vegetative canopies experienced in pre‐ vs. post‐dispersal environments. Annals of Botany, 118, 1175–1186. PubMed PMC
Matias, L. , & Jump, A. S. (2014). Impacts of predicted climate change on recruitment at the geographical limits of Scots pine. Journal of Experimental Botany, 65, 299–310. PubMed PMC
Marshall, D. J. , & Uller, T. (2007). When is a maternal effect adaptive? Oikos, 116, 1957–1963.
Meineri, E. , Skarpaas, O. , & Vandvik, V. (2012). Modeling alpine plant distributions at the landscape scale: Do biotic interactions matter? Ecological Modelling, 231, 1–10.
Meineri, E. , Spindelbock, J. , & Vandvik, V. (2013). Seedling emergence responds to both seed source and recruitment site climates: A climate change experiment combining transplant and gradient approaches. Plant Ecology, 214, 607–619.
Meineri, E. , Deville, A. S. , Gremillet, D. , Gauthier‐Clerc, M. , & Bechet, A. (2015). Combining correlative and mechanistic habitat suitability models to improve ecological compensation. Biological Reviews, 90, 314–329. PubMed
Meineri, E. , Skarpaas, O. , Spindelbock, J. , Bargmann, T. , & Vandvik, V. (2014). Direct and size‐dependent effects of climate on flowering performance in alpine and lowland herbaceous species. Journal of Vegetation Science, 25, 275–286.
Mondoni, A. , Orsenigo, S. , Dona, M. , Balestrazzi, A. , Probert, R. J. , Hay, F. R. , … Abeli, T. (2014). Environmentally induced transgenerational changes in seed longevity: Maternal and genetic influence. Annals of Botany, 113, 1257–1263. PubMed PMC
Moran, M. D. (2003). Arguments for rejecting the sequential Bonferroni in ecological studies. Oikos, 100, 403–405.
Moran, E. V. , Hartig, F. , & Bell, D. M. (2016). Intraspecific trait variation across scales: Implications for understanding global change responses. Global Change Biology, 22, 137–150. PubMed
Mousseau, T. A. , & Fox, C. W. (1998). The adaptive significance of maternal effects. Trends in Ecology & Evolution, 13, 403–407. PubMed
Munday, P. L. , Warner, R. R. , Monro, K. , Pandolfi, J. M. , & Marshall, D. J. (2013). Predicting evolutionary responses to climate change in the sea. Ecology Letters, 16, 1488–1500. PubMed
Nicotra, A. B. , Atkin, O. K. , Bonser, S. P. , Davidson, A. M. , Finnegan, E. J. , Mathesius, U. , … van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15, 684–692. PubMed
Münzbergová, Z. (2007). No effect of ploidy level in plant response to competition in a common garden experiment. Biological Journal of the Linnean Society, 92, 211–219.
Münzbergová, Z. , Hadincová, V. , Skálová, H. , & Vandvik, V. (2017). Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. Journal of Ecology, https://doi.org/10.1111/1365-2745.12762 DOI
Oksanen, L. (2001). Logic of experiments in ecology: Is pseudoreplication a pseudoissue? Oikos, 94, 27–38.
Parmesan, C. , & Hanley, M. E. (2015). Plants and climate change: Complexities and surprises. Annals of Botany, 116, 849–864. PubMed PMC
Penfield, S. , & Springthorpe, V. (2012). Understanding chilling responses in Arabidopsis seeds and their contribution to life history. Philosophical Transactions of the Royal Society B‐Biological Sciences, 367, 291–297. PubMed PMC
R Development Core Team (2011). A language and environment for statistical computing. Vienna: Austria, R Foundation for Statistical Computing.
Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43, 223–225. PubMed
Roach, D. A. , & Wulff, R. D. (1987). Maternal effects in plants. Annual Review of Ecology and Systematics, 18, 209–235.
Scheepens, J. F . & Stocklin, J . (2013). Flowering phenology and reproductive fitness along a mountain slope: maladaptive responses to transplantation to a warmer climate in Campanula thyrsoides. Oecologia, 171, 679–691. PubMed
Sgro, C. M. , Terblanche, J. S. , & Hoffmann, A. A. (2016). What can plasticity contribute to insect responses to climate change? In Berenbaum M. R. (Ed.), Annual review of entomology, Vol 61 (pp. 433–451). Annual Reviews, Palo Alto. PubMed
Skalova, H. , Pechackova, S. , Suzuki, J. , Herben, T. , Hara, T. , Hadincova, V. , & Krahulec, F. (1997). Within population genetic differentiation in traits affecting clonal growth: Festuca rubra in a mountain grassland. Journal of Evolutionary Biology, 10, 383–406.
Souther, S. , Lechowicz, M. J. , & McGraw, J. B. (2012). Experimental test for adaptive differentiation of ginseng populations reveals complex response to temperature. Annals of Botany, 110, 829–837. PubMed PMC
Sunday, J. M. , Calosi, P. , Dupont, S. , Munday, P. L. , Stillman, J. H. , & Reusch, T. B. H. (2014). Evolution in an acidifying ocean. Trends in Ecology & Evolution, 29, 117–125. PubMed
Suter, L. , & Widmer, A. (2013a). Environmental heat and salt stress induce transgenerational phenotypic changes in Arabidopsis thaliana . PLoS ONE, 8, e60364. PubMed PMC
Suter, L. , & Widmer, A. (2013b). Phenotypic effects of salt and heat stress over three generations in Arabidopsis thaliana . PLoS One, 8, 12. PubMed PMC
Verhoeven, K. J. F. , & Preite, V. (2014). Epigenetic variation in asexually reproducing organisms. Evolution, 68, 644–655. PubMed
Vu, W. T. , Chang, P. L. , Moriuchi, K. S. , & Friesen, M. L. (2015). Genetic variation of transgenerational plasticity of offspring germination in response to salinity stress and the seed transcriptome of Medicago truncatula . BMC Evolutionary Biology, 15, 14. PubMed PMC
Walter, J. , Harter, D. E. V. , Beierkuhnlein, C. , & Jentsch, A. (2016). Transgenerational effects of extreme weather: Perennial plant offspring show modified germination, growth and stoichiometry. Journal of Ecology, 104, 1032–1040.
Whittle, C. A. , Otto, S. P. , Johnston, M. O. , & Krochko, J. E. (2009). Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana . Botany‐Botanique, 87, 650–657.
de Witte, L. C. , & Stocklin, J. (2010). Longevity of clonal plants: Why it matters and how to measure it. Annals of Botany, 106, 859–870. PubMed PMC
Wolf, J. B. , & Wade, M. J. (2009). What are maternal effects (and what are they not)? Philosophical Transactions of the Royal Society B‐Biological Sciences, 364, 1107–1115. PubMed PMC
Zhang, H. X. , Yu, Q. , Huang, Y. X. , Zheng, W. , Tian, Y. , Song, Y. T. , … Zhou, D. W. (2014). Germination shifts of C‐3 and C‐4 species under simulated global warming scenario. PLoS ONE, 9, e105139. PubMed PMC
Evolutionary Rescue as a Mechanism Allowing a Clonal Grass to Adapt to Novel Climates
Plant Origin, but Not Phylogeny, Drive Species Ecophysiological Response to Projected Climate
Anticipatory Behavior of the Clonal Plant Fragaria vesca
Transgenerational Effects and Epigenetic Memory in the Clonal Plant Trifolium repens