Anticipatory Behavior of the Clonal Plant Fragaria vesca
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30619415
PubMed Central
PMC6297673
DOI
10.3389/fpls.2018.01847
Knihovny.cz E-zdroje
- Klíčová slova
- 5-azacytidine, DNA methylation, anticipatory behavior, epigenetic variation, foraging, intelligence, light, nutrients,
- Publikační typ
- časopisecké články MeSH
Active foraging for patchy resources is a crucial feature of many clonal plant species. It has been recently shown that plants' foraging for resources can be facilitated by anticipatory behavior via association of resource position with other environmental cues. We therefore tested whether clones of Fragaria vesca are able to associate and memorize positions of soil nutrients with particular light intensity, which will consequently enable them anticipating nutrients in new environment. We trained clones of F. vesca for nutrients to occur either in shade or in light. Consequently, we tested their growth response to differing light intensity in the absence of soil nutrients. We also manipulated epigenetic status of a subset of the clones to test the role of DNA methylation in the anticipatory behavior. Clones of F. vesca were able to associate presence of nutrients with particular light intensity, which enabled them to anticipate nutrient positions in the new environment based on its light intensity. Clones that had been trained for nutrients to occur in shade increased placement of ramets to shade whereas clones trained for nutrients to occur in light increased biomass of ramets in light. Our study clearly shows that the clonal plant F. vesca is able to relate two environmental factors, light and soil nutrients, and use this connection in anticipatory behavior. We conclude that anticipatory behavior can substantially improve the ability of clonal plants to utilize scarce and unevenly distributed resources.
Department of Botany Faculty of Science Charles University Prague Czechia
Department of Population Ecology Institute of Botany The Czech Academy of Sciences Průhonice Czechia
Zobrazit více v PubMed
Alpert P. (1996). Nutrient sharing in natural clonal fragments of Fragaria chiloensis. J. Ecol. 84 395–406. 10.2307/2261201 DOI
Alpert P., Stuefer J. F. (1997). “Division of labour in clonal plants,” in The Ecology and Evolution of Clonal Plants, eds de Kroon H., van Groenendael J. (Leiden: Backhuys Publisher; ), 137–154.
Bates D., Maechler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67 1–48. 10.18637/jss.v067.i01 DOI
Bell A. D. (1984). “Dynamic morphology, a contribution to plant population ecology,” in Perspectives on Plant Population Ecology, eds Dirzoand R., Sarukhan J. (Sunderland, MA: Sinauer Associates; ), 48–65.
Calvo P., Friston K. (2017). Predicting green, really radical (plant) predictive processing. J. R. Soc. Interface 14:20170096. 10.1098/rsif.2017.0096 PubMed DOI PMC
Casal J. J., Questa J. I. (2018). Light and temperature cues, multitasking receptors and transcriptional integrators. New Phytol. 217 1029–1034. 10.1111/nph.14890 PubMed DOI
Crawley M. (2012). The R Book. Hoboken, NJ: John Wiley & Sons; 10.1002/9781118448908 DOI
de Kroon H., Fransen B., van Rheenen J. W. A., van Dijk A., Kreulen R. (1996). High levels of inter-ramet water translocation in two rhizomatous Carex species, as quantified by deuterium labeling. Oecologia 106 73–84. 10.1007/BF00334409 PubMed DOI
de Kroon H., Hutchings M. J. (1995). Morphological plasticity in clonal plants – the foraging concept reconsidered. J. Ecol. 83 143–152. 10.2307/2261158 DOI
de Kroon H., Mommer L. (2006). Root foraging theory put to the test. Trends Ecol. Evol. 21 113–116. 10.1016/j.tree.2005.11.021 PubMed DOI
de Kroon H., Visser E. J., Huber H., Mommer L., Hutchings M. J. (2009). A modular concept of plant foraging behaviour, the interplay between local responses and systemic control. Plant Cell Env. 32 704–712. 10.1111/j.1365-3040.2009.01936.x PubMed DOI
Duek P. D., Fankhauser C. (2005). bHLH class transcription factors take centre stage in phytochrome signaling. Trends Plant Sci. 10 51–54. 10.1016/j.tplants.2004.12.005 PubMed DOI
Fischer M., Stöcklin J. (1997). Local extinctions of plants in remnants of extensively used calcareous grasslands 1950–1985. Cons. Biol. 11 727–737. 10.1007/s004420050888 PubMed DOI
Franklin K. A. (2008). Shade avoidance. New Phytol. 179 930–944. 10.1111/j.1469-8137.2008.02507.x PubMed DOI
Gagliano M., Renton M., Depczynski M., Mancuso S. (2014). Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 175 63–72. 10.1007/s00442-013-2873-7 PubMed DOI
Gagliano M., Vyazovskiy V. V., Borbély A. A., Grimonprez M., Depczynski M. (2016). Learning by association in plants. Sci. Rep. 6:38427. 10.1038/srep38427 PubMed DOI PMC
Galloway L. F., Etterson J. R. (2007). Transgenerational plasticity is adaptive in the wild. Science 318 1134–1136. 10.1126/science.1148766 PubMed DOI
Gil M., De Marco R. J., Menzel R. (2007). Learning reward expectations in honeybees. Learn. Mem. 14 491–496. 10.1101/lm.618907 PubMed DOI PMC
Goldschmidt D., Wörgötter F., Manoonpong P. (2014). Biologically-inspired adaptive obstacle negotiation behavior of hexapod robots. Front. Neurorobiol. 8:3. 10.3389/fnbot.2014.00003 PubMed DOI PMC
Gómez S., Latzel V., Verhulst Y., Stuefer J. F. (2007). Costs and benefits of induced resistance in a clonal plant network. Oecologia 153 921–930. 10.1007/s00442-007-0792-1 PubMed DOI PMC
Grime J. P., Mackey J. M. L. (2002). The role of plasticity in resource capture by plants. Evol. Ecol. 16 299–307. 10.1023/A:1019640813676 DOI
Hutchings M. J., de Kroon H. (1994). Foraging in plants, the role of morphological plasticity in resource acquisition. Adv. Ecol. Res. 25 159–238. 10.1016/S0065-2504(08)60215-9 DOI
Karban R. (2008). Plant behaviour and communication. Ecol. Lett. 11 727–739. 10.1111/j.1461-0248.2008.01183.x PubMed DOI
Karpinski S., Szechynska-Hebda M. (2010). Secret life of plants, from memory to intelligence. Plant Sig. Behav. 5 1391–1394. 10.4161/psb.5.11.13243 PubMed DOI PMC
Latzel V., Janeček Š, Doležal J., Klimešová J., Bossdorf O. (2014). Adaptive transgenerational plasticity in the perennial Plantago lanceolata. Oikos 123 41–46. 10.1111/j.1600-0706.2013.00537.x DOI
Latzel V., Klimešová J. (2010). Year-to-year changes in expression of maternal effects in perennial plants. Basic Appl. Ecol. 11 702–708. 10.1016/j.baae.2010.09.004 DOI
Latzel V., Rendina González A. P., Rosenthal J. (2016). Epigenetic memory as a basis for intelligent behavior in clonal plants. Front. Plant Sci. 7:1354. 10.3389/fpls.2016.01354 PubMed DOI PMC
Li L., Ljung K., Breton G., Schmitz R. J., Pruneda-Paz J., Cowing-Zitron C., et al. (2012). Linking photoreceptor excitation to changes in plant architecture. Genes Dev. 26 785–790. 10.1101/gad.187849.112 PubMed DOI PMC
Lorrain S., Allen T., Duek P. D., Whitelam G. C., Fankhauser C. (2008). Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 53 312–323. 10.1111/j.1365-313X.2007.03341.x PubMed DOI
Louapré P., Bittebiere A., Clément B., Pierre J., Mony C. (2012). How past and present influence the foraging of clonal plants? PLoS One 7:e38288. 10.1371/journal.pone.0038288 PubMed DOI PMC
McCormac A. C., Cherry J. R., Hershey H. P., Vierstra R. D., Smith H. (1991). Photoresponses of transgenic tobacco plants expressing an oat phytochrome gene. Planta 185 162–170. 10.1007/BF00194057 PubMed DOI
McCormac A. C., Whitelam G. C., Smith H. (1992). Light grown plants of transgenic tobacco expressing an introduced oat phytochrome A gene under the control of a constitutive viral promoter exhibit persistent growth inhibition by far-red light. Planta 188 173–181. 10.1007/BF00216811 PubMed DOI
Molet M., Miller R. R. (2014). Timing, an attribute of associative learning. Behav. Process. 101 4–14. 10.1016/j.beproc.2013.05.015 PubMed DOI PMC
Monte E., Al-Sady B., Leivar P., Quail P. H. (2007). Out of the dark, how the PIFs are unmasking a dual temporal mechanism of phytochrome signalling. J. Exp. Bot. 58 3125–3133. 10.1093/jxb/erm186 PubMed DOI
Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Evol. Ecol. 7 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC
Nilsson J., Kristiansen T. S., Fosseidengen J. E., Fernö A., Bos R. (2008). Sign- and goal-tracking in Atlantic cod (Gadus morhua). Anim. Cogn. 11 651–659. 10.1007/s10071-008-0155-2 PubMed DOI
Novoplansky A. (2016). “Future perception in plants,” in Anticipation Across Disciplines, Cognitive Systems Monographs Vol. 29 ed. Nadin M. (Cham: Springer International Publishing; ), 57–70.
Paszkowski J., Grossniklaus U. (2011). Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Cur. Opin. Plant Biol. 14 195–203. 10.1016/j.pbi.2011.01.002 PubMed DOI
Puy J., Dvořáková H., Carmona C. P., de Bello F., Hiiesalu I., Latzel V. (2018). Improved demethylation in ecological epigenetic experiments, Testing a simple and harmless foliar demethylation application. Methods Ecol. Evol. 9 744–753. 10.1111/2041-210X.12903 DOI
R Development Core Team (2011). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available at: http://www.R-project.org
Rendina González A. P., Chrtek J., Dobrev P. I., Dumalasová V., Fehrer J., Mráz P., et al. (2016). Stress-induced memory alters growth of clonal offspring of white clover (Trifolium repens). Am. J. Bot. 103 1567–1574. 10.3732/ajb.1500526 PubMed DOI
Rendina González A. P., Dumalasová V., Rosenthal J., Skuhrovec J., Latzel V. (2017). The role of transgenerational effects in adaptation of clonal offspring of white clover (Trifolium repens) to drought and herbivory. Evol. Ecol. 31 345–361. 10.1007/s10682-016-9844-5 DOI
Shemesh H., Ovadia O., Novoplansky O. (2010). Anticipating future conditions via trajectory sensitivity. Plant Signal. Behav. 5 1501–1503. 10.1371/journal.pone.0010824 PubMed DOI PMC
Shettleworth S. J. (2007). Animal behaviour, planning for breakfast. Nature 445 825–826. 10.1038/445825a PubMed DOI
Stuefer J. F., Hutchings M. J. (1994). Environmental heterogeneity and clonal growth, a study of the capacity for reciprocal translocation in Glechoma hederacea L. Oecologia 100 302–308. 10.1007/BF00316958 PubMed DOI
Sultan S. E., Barton K., Wilczek A. M. (2009). Contrasting patterns of transgenerational plasticity in ecologically distinct congeners. Ecology 90 1831–1839. 10.1890/08-1064.1 PubMed DOI
Trewavas A. (2003). Aspects of plant intelligence. Ann. Bot. 92 1–10. 10.1093/aob/mcg101 PubMed DOI PMC
Trewavas A. (2017). The foundations of plant intelligence. Int. Focus 7:20160098. 10.1098/rsfs.2016.0098 PubMed DOI PMC
Turkington R., Hamilton R. S., Gliddon C. (1991). Within population variation in localized and integrated responses of Trifolium repens to biotically patchy environments. Oecologia 86 183–192. 10.1007/BF00317530 PubMed DOI
Watanabe M., Cromwell H. C., Tremblay L., Hollerman J. R., Hikosaka K., Schultz W. (2001). Behavioral reactions reflecting differential reward expectations in monkeys. Exp. Brain Res. 140 511–518. 10.1007/s002210100856 PubMed DOI
Waters E. M., Watson M. A. (2015). Live substrate positively affects root growth and stolon direction in the woodland strawberry, Fragaria vesca. Front. Plant Sci. 6:814. 10.3389/fpls.2015.00814 PubMed DOI PMC
Whittle C. A., Otto S. P., Johnston M. O., Krochko J. E. (2009). Adaptive epigenetic memory of ancestral temperature regime in Arabidopsis thaliana. Botany 87 650–657. 10.1139/B09-030 DOI
Yang C., Li L. (2017). Hormonal regulation in shade avoidance. Front. Plant Sci. 8:1527. 10.3389/fpls.2017.01527 PubMed DOI PMC
Time dynamics of stress legacy in clonal transgenerational effects: A case study on Trifolium repens