Evolutionary Rescue as a Mechanism Allowing a Clonal Grass to Adapt to Novel Climates
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34079569
PubMed Central
PMC8166245
DOI
10.3389/fpls.2021.659479
Knihovny.cz E-zdroje
- Klíčová slova
- alpine ecosystems, clonal species, rapid evolution, reciprocal transplant experiment, trait selection,
- Publikační typ
- časopisecké články MeSH
Filing gaps in our understanding of species' abilities to adapt to novel climates is a key challenge for predicting future range shifts and biodiversity loss. Key knowledge gaps are related to the potential for evolutionary rescue in response to climate, especially in long-lived clonally reproducing species. We illustrate a novel approach to assess the potential for evolutionary rescue using a combination of reciprocal transplant experiment in the field to assess performance under a changing climate and independent growth chamber assays to assess growth- and physiology-related plant trait maxima and plasticities of the same clones. We use a clonal grass, Festuca rubra, as a model species. We propagated individual clones and used them in a transplant experiment across broad-scale temperature and precipitation gradients, simulating the projected direction of climate change in the region. Independent information on trait maxima and plasticities of the same clones was obtained by cultivating them in four growth chambers representing climate extremes. Plant survival was affected by interaction between plant traits and climate change, with both trait plasticities and maxima being important for adaptation to novel climates. Key traits include plasticity in extravaginal ramets, aboveground biomass, and osmotic potential. The direction of selection in response to a given climatic change detected in this study mostly contradicted the natural trait clines indicating that short-term selection pressure as identified here does not match long-term selection outcomes. Long-lived clonal species exposed to different climatic changes are subjected to consistent selection pressures on key traits, a necessary condition for adaptation to novel conditions. This points to evolutionary rescue as an important mechanism for dealing with climate change in these species. Our experimental approach may be applied also in other model systems broadening our understanding of evolutionary rescue. Such knowledge cannot be easily deduced from observing the existing field clines.
Department of Botany Faculty of Science Charles University Prague Czechia
Institute of Botany Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Auld J. R., Agrawal A. A., Relyea R. A. (2010). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. Royal Soc. B Biol. Sci. 277, 503–511. 10.1098/rspb.2009.1355 PubMed DOI PMC
Avolio M. L., Smith M. D. (2013). Mechanisms of selection: phenotypic differences among genotypes explain patterns of selection in a dominant species. Ecology 94, 953–965. 10.1890/12-1119.1 DOI
Baker H. G. (1974). The evolution of weeds. Ann Rev Ecol Systemat. 5, 1–24. 10.1146/annurev.es.05.110174.000245 DOI
Bartlett M. K., Zhang Y., Kreidler N., Sun S. W., Ardy R., Cao K. F., et al. . (2014). Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580–1590. 10.1111/ele.12374 PubMed DOI
Bates D., Machler M., Bolker B. M., Walker S. C. (2015). Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67, 1–48. 10.18637/jss.v067.i01 DOI
Bell G. (2017). Evolutionary rescue. Ann. Rev. Ecol. Evol. Systemat. 48, 605–627. 10.1146/annurev-ecolsys-110316-023011 DOI
Bell G., Collins S. (2008). Adaptation, extinction and global change. Evol. Appl. 1, 3–16. 10.1111/j.1752-4571.2007.00011.x PubMed DOI PMC
Bradshaw A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155. 10.1016/S0065-2660(08)60048-6 DOI
Callaway R. M., Brooker R. W., Choler P., Kikvidze Z., Lortie C. J., Michalet R., et al. . (2002). Positive interactions among alpine plants increase with stress. Nature 417, 844–848. 10.1038/nature00812 PubMed DOI
Cohen D. (1966). Optimizing reproduction in a randomly varying environment. J. Theoret. Biol. 12, 119–129. 10.1016/0022-5193(66)90188-3 PubMed DOI
de Witte L. C., Stocklin J. (2010). Longevity of clonal plants: why it matters and how to measure it. Ann. Bot. 106, 859–870. 10.1093/aob/mcq191 PubMed DOI PMC
Delnevo N., Petraglia A., Carbognani M., Vandvik V., Halbritter A. H. (2018). Plastic and genetic responses to shifts in snowmelt time affects the reproductive phenology and growth of Ranunculus acris. Perspectiv. Plant Ecol. Evol. Systemat. 30, 62–70. 10.1016/j.ppees.2017.07.005 DOI
DeWitt T. J., Sih A., Wilson D. S. (1998). Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81. 10.1016/S0169-5347(97)01274-3 PubMed DOI
Diniz J. A. F., Bini L. M. (2019). Will life find a way out? Evolutionary rescue and Darwinian adaptation to climate change. Perspectiv. Ecol. Conserv. 17, 117–121. 10.1016/j.pecon.2019.06.001 DOI
Diniz J. A. F., Souza K. S., Bini L. M., Loyola R., Dobrovolski R., Rodrigues J. F. M., et al. . (2019). A macroecological approach to evolutionary rescue and adaptation to climate change. Ecography 42, 1124–1141. 10.1111/ecog.04264 DOI
Dirihan S., Helander M., Vare H., Gundel P. E., Garibaldi L. A., Irisarri J. G. N., et al. . (2016). Geographic variation in Festuca rubra L. ploidy levels and systemic fungal endophyte frequencies. PLoS ONE 11:166264. 10.1371/journal.pone.0166264 PubMed DOI PMC
Dostal P., Fischer M., Prati D. (2016). Phenotypic plasticity is a negative, though weak, predictor of the commonness of 105 grassland species. Glob. Ecol. Biogeogr. 25, 464–474. 10.1111/geb.12429 DOI
Dullinger S., Gattringer A., Thuiller W., Moser D., Zimmermann N. E., Guisan A., et al. . (2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Climate Change 2, 619–622. 10.1038/nclimate1514 DOI
Dunne J. A., Saleska S. R., Fischer M. L., Harte J. (2004). Integrating experimental and gradient methods in ecological climate change research. Ecology 85, 904–916. 10.1890/03-8003 DOI
Ehrlén J., Münzbergová Z. (2009). Timing of flowering: opposed selection on different fitness components and trait covariation. Am. Natural. 173, 819–830. 10.1086/598492 PubMed DOI
Ehrlen J., Valdes A. (2020). Climate drives among-year variation in natural selection on flowering time. Ecol. Lett. 23, 653–662. 10.1111/ele.13468 PubMed DOI
Etterson J. R., Shaw R. G. (2001). Constraint to adaptive evolution in response to global warming. Science 294, 151–154. 10.1126/science.1063656 PubMed DOI
Franks S. J., Avise J. C., Bradshaw W. E., Conner J. K., Etterson J. R., Mazer S. J., et al. . (2008). The resurrection initiative: storing ancestral genotypes to capture evolution in action. Bioscience 58, 870–873. 10.1641/B580913 DOI
Franks S. J., Sim S., Weis A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. U. S. A. 104, 1278–1282. 10.1073/pnas.0608379104 PubMed DOI PMC
Fremstad E. (1997). Vegetasjonstyper i Norge. NINA Temahefte. 12, 1–279.
Fridley J. D. (2017). Plant energetics and the synthesis of population and ecosystem ecology. J. Ecol. 105, 95–110. 10.1111/1365-2745.12693 DOI
Gibson D. J. (2009). Grasses and Grassland Ecology. Oxford: Oxford University Press.
Gomez-Gonzalez S., Torres-Diaz C., Bustos-Schindler C., Gianoli E. (2011). Anthropogenic fire drives the evolution of seed traits. Proc. Natl. Acad. Sci. U. S. A. 108, 18743–18747. 10.1073/pnas.1108863108 PubMed DOI PMC
Gomulkiewicz R., Holt R. D. (1995). When does evolution by natural selection prevent extinction. Evolution 49, 201–207. 10.1111/j.1558-5646.1995.tb05971.x PubMed DOI
Gray L. K., Gylander T., Mbogga M. S., Chen P. Y., Hamann A. (2011). Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol. Appl. 21, 1591–1603. 10.1890/10-1054.1 PubMed DOI
Groves A. M., Brudvig L. A. (2019). Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restorat. Ecol. 27, 128–137. 10.1111/rec.12708 DOI
Guittar J., Goldberg D., Klanderud K., Berge A., Boixaderas M. R., Meineri E., et al. . (2020). Quantifying the roles of seed dispersal, filtering, and climate on regional patterns of grassland biodiversity. Ecology 101:3061. 10.1002/ecy.3061 PubMed DOI
Hansen W. D., Turner M. G. (2019). Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89:21. 10.1002/ecm.1340 DOI
Hanssen-Bauer I., Drange H., Førland E. J., Roald L. A., Børsheim K. Y., Hisdal H., et al. . (2009). Klima i Norge 2100 Bakgrunnsmateriale til NOU Klimatilpassing (Climate in Norway 2100 Background Material to the NOU Climate Adaption). Oslo: Norsk klimasenter.
Harberd D. (1961). Observations on population struture and longevity of Festuca rubra L. New Phytol. 60, 184–206. 10.1111/j.1469-8137.1961.tb06251.x DOI
He Q., Bertness M. D., Altieri A. H. (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706. 10.1111/ele.12080 PubMed DOI
Henn J. J., Buzzard V., Enquist B. J., Halbritter A. H., Klanderuds K., Maitner B. S., et al. . (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front. Plant Sci. 9:11. 10.3389/fpls.2018.01548 PubMed DOI PMC
Herben T., Krahulec F., Hadincova V., Pechackova S. (2001). Clone-specific response of Festuca rubra to natural variation in biomass and species composition of neighbours. Oikos 95, 43–52. 10.1034/j.1600-0706.2001.950105.x DOI
Hofmann G. E., Todgham A. E. (2010). Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Ann. Rev. Physiol. 2010, 127–145. 10.1146/annurev-physiol-021909-135900 PubMed DOI
Hufbauer R. A., Szucs M., Kasyon E., Youngberg C., Koontz M. J., Richards C., et al. . (2015). Three types of rescue can avert extinction in a changing environment. Proc. Natl. Acad. Sci. U. S. A. 112, 10557–10562. 10.1073/pnas.1504732112 PubMed DOI PMC
IPCC (2014). Climate change 2014: Synthesis report.
Iriart V., Baucom R. S., Ashman T. L. (2020). Herbicides as anthropogenic drivers of eco-evo feedbacks in plant communities at the agro-ecological interface. Mol. Ecol. 16:15510. 10.1111/mec.15510 PubMed DOI
Jackson J. B. C., Coates A. G. (1986). Life-cycles and evolution of clonal (modular) animals. Philos. Trans. Royal Soc. B Biol. Sci. 313, 7–22. 10.1098/rstb.1986.0022 DOI
Klanderud K., Meineri E., Topper J., Michel P., Vandvik V. (2017). Biotic interaction effects on seedling recruitment along bioclimatic gradients: testing the stress-gradient hypothesis. J. Vegetat. Sci. 28, 347–356. 10.1111/jvs.12495 DOI
Klanderud K., Vandvik V., Goldberg D. (2015). The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10:e0130205. 10.1371/journal.pone.0130205 PubMed DOI PMC
Knappova J., Zidlicka D., Kadlec T., Knapp M., Haisel D., Hadincova V., et al. . (2018). Population differentiation related to climate of origin affects the intensity of plant-herbivore interactions in a clonal grass. Basic Appl. Ecol. 28, 76–86. 10.1016/j.baae.2018.02.011 DOI
Knutzen F., Meier I. C., Leuschner C. (2015). Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 35, 949–963. 10.1093/treephys/tpv057 PubMed DOI
Kosová V., Hájek T., Hadincová V., Münzbergová Z. (2020). Ecophysiological traits of a clonal grass in its climate change response. bioRxiv 2020:864827. 10.1101/864827 DOI
Krauss J., Bommarco R., Guardiola M., Heikkinen R. K., Helm A., Kuussaari M., et al. . (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605. 10.1111/j.1461-0248.2010.01457.x PubMed DOI PMC
Kulbaba M. W., Sheth S. N., Pain R. E., Eckhart V. M., Shaw R. G. (2019). Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73, 1746–1758. 10.1111/evo.13830 PubMed DOI
Kuussaari M., Bommarco R., Heikkinen R. K., Helm A., Krauss J., Lindborg R., et al. . (2009). Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. 10.1016/j.tree.2009.04.011 PubMed DOI
Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). lmerTest package: tests in linear mixed effects models. J. Statist. Softw. 82, 1–26. 10.18637/jss.v082.i13 DOI
Lande R., Arnold S. J. (1983). The measurement of selection on correlated characters. Evolution 37, 1210–1226. 10.1111/j.1558-5646.1983.tb00236.x PubMed DOI
Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., et al. . (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manag. 259, 698–709. 10.1016/j.foreco.2009.09.023 DOI
Lustenhouwer N., Wilschut R. A., Williams J. L., van der Putten W. H., Levine J. M. (2018). Rapid evolution of phenology during range expansion with recent climate change. Glob. Change Biol. 24, E534–E544. 10.1111/gcb.13947 PubMed DOI
Mairal M., Caujape-Castells J., Pellissier L., Jaen-Molina R., Alvarez N., Heuertz M., et al. . (2018). A tale of two forests: ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. Ann. Bot. 122, 1005–1017. 10.1093/aob/mcy107 PubMed DOI PMC
Malcolm J. R., Markham A., Neilson R. P., Garaci M. (2002). Estimated migration rates under scenarios of global climate change. J. Biogeogr. 29, 835–849. 10.1046/j.1365-2699.2002.00702.x DOI
Mason C. M., Goolsby E. W., Davis K. E., Bullock D. V., Donovan L. A. (2017). Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers. Ann. Bot. 119, 1131–1142. 10.1093/aob/mcx002 PubMed DOI PMC
McGraw J. B., Turner J. B., Souther S., Bennington C. C., Vavrek M. C., Shaver G. R., et al. . (2015). Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska. Glob. Change Biol. 21, 3827–3835. 10.1111/gcb.12991 PubMed DOI
Meineri E., Skarpaas O., Spindelbock J., Bargmann T., Vandvik V. (2014). Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species. J. Veg. Sci. 25, 275–286. 10.1111/jvs.12062 DOI
Merila J., Hendry A. P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolution. Appl. 7, 1–14. 10.1111/eva.12137 PubMed DOI PMC
Miner B. G., Sultan S. E., Morgan S. G., Padilla D. K., Relyea R. A. (2005). Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20, 685–692. 10.1016/j.tree.2005.08.002 PubMed DOI
Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7, 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC
Münzbergová Z., Hadincová V., Skálová H., Vandvik V. (2017). Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105, 1358–1373. 10.1111/1365-2745.12762 DOI
Murray B. R., Thrall P. H., Gill A. M., Nicotra A. B. (2002). How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310. 10.1046/j.1442-9993.2002.01181.x DOI
Nevo E., Fu Y. B., Pavlicek T., Khalifa S., Tavasi M., Beiles A. (2012). Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. U. S. A. 109, 3412–3415. 10.1073/pnas.1121411109 PubMed DOI PMC
Nicotra A. B., Atkin O. K., Bonser S. P., Davidson A. M., Finnegan E. J., Mathesius U., et al. . (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. 10.1016/j.tplants.2010.09.008 PubMed DOI
O'Gorman E. J., Benstead J. P., Cross W. F., Friberg N., Hood J. M., Johnson P. W., et al. . (2014). Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Glob. Change Biol. 20, 3291–3299. 10.1111/gcb.12602 PubMed DOI
Olsen S. L., Topper J. P., Skarpaas O., Vandvik V., Klanderud K. (2016). From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Glob. Change Biol. 22, 1915–1926. 10.1111/gcb.13241 PubMed DOI
Orive M. E., Holt R. D., Barfield M. (2019). Evolutionary rescue in a linearly changing environment: limits on predictability. Bullet. Math. Biol. 81, 4821–4839. 10.1007/s11538-018-0504-5 PubMed DOI
Peniston J. H., Barfield M., Gonzalez A., Holt R. D. (2020). Environmental fluctuations can promote evolutionary rescue in high-extinction-risk scenarios. Proc. Royal Soc. B Biol. Sci. 287:9. 10.1098/rspb.2020.1144 PubMed DOI PMC
Peterson M. L., Angert A. L., Kay K. M. (2020). Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 10, 612–625. 10.1002/ece3.5710 PubMed DOI PMC
Plue J., Vandepitte K., Honnay O., Cousins S. A. O. (2017). Does the seed bank contribute to the build-up of a genetic extinction debt in the grassland perennial Campanula rotundifolia? Ann. Bot. 120, 373–385. 10.1093/aob/mcx057 PubMed DOI PMC
Pratt J. D., Mooney K. A. (2013). Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Glob. Change Biol. 19, 2454–2466. 10.1111/gcb.12199 PubMed DOI
R Development Core Team (2011). A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Ravenscroft C. H., Fridley J. D., Grime J. P. (2014). Intraspecific functional differentiation suggests local adaptation to long-term climate change in a calcareous grassland. J. Ecol. 102, 65–73. 10.1111/1365-2745.12168 DOI
Rinkevich B. (2019). Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Glob. Change Biol. 25, 1198–1206. 10.1111/gcb.14576 PubMed DOI
Rolhauser A. G., Nordenstahl M., Aguiar M. R., Pucheta E. (2019). Community-level natural selection modes: a quadratic framework to link multiple functional traits with competitive ability. J. Ecol. 107, 1457–1468. 10.1111/1365-2745.13094 DOI
Saleska S. R., Shaw M. R., Fischer M. L., Dunne J. A., Still C. J., Holman M. L., et al. . (2002). Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Glob. Biogeochem. Cycles 16:19. 10.1029/2001GB001573 DOI
Scherrer D., Korner C. (2010). Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602–2613. 10.1111/j.1365-2486.2009.02122.x DOI
Shao H., Xia T. T., Wu D. L., Chen F. J., Mi G. H. (2018). Root growth and root system architecture of field-grown maize in response to high planting density. Plant Soil 430, 395–411. 10.1007/s11104-018-3720-8 DOI
Skalova H. (2010). Potential and constraints for grasses to cope with spatially heterogeneous radiation environments. Plant Ecol. 206, 115–125. 10.1007/s11258-009-9628-x DOI
Stirbet A, Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B. 104, 236–57. 10.1016/j.jphotobiol.2010.12.010 PubMed DOI
Stojanova B., Kolaríková V., Šurinová M., Klápště J., Hadincová V., Münzbergová Z. (2019). Evolutionary potential of a widespread clonal grass under changing climate. J. Evolution. Biol. 32, 1057–1068. 10.1111/jeb.13507 PubMed DOI
Stojanova B., Šurinová M., Klápště J., Koláríková V., Hadincová V., Münzbergová Z. (2018). Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS ONE 13:194670. 10.1371/journal.pone.0194670 PubMed DOI PMC
Šurinová M., Hadincová V., Vandvik V., Münzbergová Z. (2019). Temperature and precipitation, but not geographic distance, explain genetic relatedness among populations in the perennial grass Festuca rubra. J. Plant Ecol. 12, 730–741. 10.1093/jpe/rtz010 DOI
Thomann M., Imbert E., Engstrand R. C., Cheptou P. O. (2015). Contemporary evolution of plant reproductive strategies under global change is revealed by stored seeds. J. Evolution. Biol. 28, 766–778. 10.1111/jeb.12603 PubMed DOI
Topper J. P., Meineri E., Olsen S. L., Rydgren K., Skarpaas O., Vandvik V. (2018). The devil is in the detail: nonadditive and context-dependent plant population responses to increasing temperature and precipitation. Glob. Change Biol. 24, 4657–4666. 10.1111/gcb.14336 PubMed DOI
Valladares F., Wright S. J., Lasso E., Kitajima K., Pearcy R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology. 81, 925–1936. 10.1890/0012-9658(2000)0811925:PPRTLO2.0.CO;2 DOI
van Kleunen M., Fischer M. (2005). Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 166, 49–60. 10.1111/j.1469-8137.2004.01296.x PubMed DOI
van Kleunen M., Fischer M. (2007). Progress in the detection of costs of phenotypic plasticity in plants. New Phytol. 176, 727–730. 10.1111/j.1469-8137.2007.02296.x PubMed DOI
Vandvik V., Klanderud K., Meineri E., Maren I. E., Topper J. (2016). Seed banks are biodiversity reservoirs: species-area relationships above versus below ground. Oikos 125, 218–228. 10.1111/oik.02022 DOI
Vandvik V., Klanderud K., Skarpaas O., Telford R., Halbritter A., Goldberg D. (2020). Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proc. Natl. Acad. Sci. U. S. A. 17, 22858–22865. 10.1073/pnas.2003377117 PubMed DOI PMC
Wilczek A. M., Cooper M. D., Korves T. M., Schmitt J. (2014). Lagging adaptation to warming climate in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 111, 7906–7913. 10.1073/pnas.1406314111 PubMed DOI PMC
Ye X. H., Yu F. H., Dong M. (2006). A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann. Bot. 98, 187–191. 10.1093/aob/mcl086 PubMed DOI PMC