Evolutionary Rescue as a Mechanism Allowing a Clonal Grass to Adapt to Novel Climates

. 2021 ; 12 () : 659479. [epub] 20210517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34079569

Filing gaps in our understanding of species' abilities to adapt to novel climates is a key challenge for predicting future range shifts and biodiversity loss. Key knowledge gaps are related to the potential for evolutionary rescue in response to climate, especially in long-lived clonally reproducing species. We illustrate a novel approach to assess the potential for evolutionary rescue using a combination of reciprocal transplant experiment in the field to assess performance under a changing climate and independent growth chamber assays to assess growth- and physiology-related plant trait maxima and plasticities of the same clones. We use a clonal grass, Festuca rubra, as a model species. We propagated individual clones and used them in a transplant experiment across broad-scale temperature and precipitation gradients, simulating the projected direction of climate change in the region. Independent information on trait maxima and plasticities of the same clones was obtained by cultivating them in four growth chambers representing climate extremes. Plant survival was affected by interaction between plant traits and climate change, with both trait plasticities and maxima being important for adaptation to novel climates. Key traits include plasticity in extravaginal ramets, aboveground biomass, and osmotic potential. The direction of selection in response to a given climatic change detected in this study mostly contradicted the natural trait clines indicating that short-term selection pressure as identified here does not match long-term selection outcomes. Long-lived clonal species exposed to different climatic changes are subjected to consistent selection pressures on key traits, a necessary condition for adaptation to novel conditions. This points to evolutionary rescue as an important mechanism for dealing with climate change in these species. Our experimental approach may be applied also in other model systems broadening our understanding of evolutionary rescue. Such knowledge cannot be easily deduced from observing the existing field clines.

Zobrazit více v PubMed

Auld J. R., Agrawal A. A., Relyea R. A. (2010). Re-evaluating the costs and limits of adaptive phenotypic plasticity. Proc. Royal Soc. B Biol. Sci. 277, 503–511. 10.1098/rspb.2009.1355 PubMed DOI PMC

Avolio M. L., Smith M. D. (2013). Mechanisms of selection: phenotypic differences among genotypes explain patterns of selection in a dominant species. Ecology 94, 953–965. 10.1890/12-1119.1 DOI

Baker H. G. (1974). The evolution of weeds. Ann Rev Ecol Systemat. 5, 1–24. 10.1146/annurev.es.05.110174.000245 DOI

Bartlett M. K., Zhang Y., Kreidler N., Sun S. W., Ardy R., Cao K. F., et al. . (2014). Global analysis of plasticity in turgor loss point, a key drought tolerance trait. Ecol. Lett. 17, 1580–1590. 10.1111/ele.12374 PubMed DOI

Bates D., Machler M., Bolker B. M., Walker S. C. (2015). Fitting linear mixed-effects models using lme4. J. Statist. Softw. 67, 1–48. 10.18637/jss.v067.i01 DOI

Bell G. (2017). Evolutionary rescue. Ann. Rev. Ecol. Evol. Systemat. 48, 605–627. 10.1146/annurev-ecolsys-110316-023011 DOI

Bell G., Collins S. (2008). Adaptation, extinction and global change. Evol. Appl. 1, 3–16. 10.1111/j.1752-4571.2007.00011.x PubMed DOI PMC

Bradshaw A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13, 115–155. 10.1016/S0065-2660(08)60048-6 DOI

Callaway R. M., Brooker R. W., Choler P., Kikvidze Z., Lortie C. J., Michalet R., et al. . (2002). Positive interactions among alpine plants increase with stress. Nature 417, 844–848. 10.1038/nature00812 PubMed DOI

Cohen D. (1966). Optimizing reproduction in a randomly varying environment. J. Theoret. Biol. 12, 119–129. 10.1016/0022-5193(66)90188-3 PubMed DOI

de Witte L. C., Stocklin J. (2010). Longevity of clonal plants: why it matters and how to measure it. Ann. Bot. 106, 859–870. 10.1093/aob/mcq191 PubMed DOI PMC

Delnevo N., Petraglia A., Carbognani M., Vandvik V., Halbritter A. H. (2018). Plastic and genetic responses to shifts in snowmelt time affects the reproductive phenology and growth of Ranunculus acris. Perspectiv. Plant Ecol. Evol. Systemat. 30, 62–70. 10.1016/j.ppees.2017.07.005 DOI

DeWitt T. J., Sih A., Wilson D. S. (1998). Costs and limits of phenotypic plasticity. Trends Ecol. Evol. 13, 77–81. 10.1016/S0169-5347(97)01274-3 PubMed DOI

Diniz J. A. F., Bini L. M. (2019). Will life find a way out? Evolutionary rescue and Darwinian adaptation to climate change. Perspectiv. Ecol. Conserv. 17, 117–121. 10.1016/j.pecon.2019.06.001 DOI

Diniz J. A. F., Souza K. S., Bini L. M., Loyola R., Dobrovolski R., Rodrigues J. F. M., et al. . (2019). A macroecological approach to evolutionary rescue and adaptation to climate change. Ecography 42, 1124–1141. 10.1111/ecog.04264 DOI

Dirihan S., Helander M., Vare H., Gundel P. E., Garibaldi L. A., Irisarri J. G. N., et al. . (2016). Geographic variation in Festuca rubra L. ploidy levels and systemic fungal endophyte frequencies. PLoS ONE 11:166264. 10.1371/journal.pone.0166264 PubMed DOI PMC

Dostal P., Fischer M., Prati D. (2016). Phenotypic plasticity is a negative, though weak, predictor of the commonness of 105 grassland species. Glob. Ecol. Biogeogr. 25, 464–474. 10.1111/geb.12429 DOI

Dullinger S., Gattringer A., Thuiller W., Moser D., Zimmermann N. E., Guisan A., et al. . (2012). Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Climate Change 2, 619–622. 10.1038/nclimate1514 DOI

Dunne J. A., Saleska S. R., Fischer M. L., Harte J. (2004). Integrating experimental and gradient methods in ecological climate change research. Ecology 85, 904–916. 10.1890/03-8003 DOI

Ehrlén J., Münzbergová Z. (2009). Timing of flowering: opposed selection on different fitness components and trait covariation. Am. Natural. 173, 819–830. 10.1086/598492 PubMed DOI

Ehrlen J., Valdes A. (2020). Climate drives among-year variation in natural selection on flowering time. Ecol. Lett. 23, 653–662. 10.1111/ele.13468 PubMed DOI

Etterson J. R., Shaw R. G. (2001). Constraint to adaptive evolution in response to global warming. Science 294, 151–154. 10.1126/science.1063656 PubMed DOI

Franks S. J., Avise J. C., Bradshaw W. E., Conner J. K., Etterson J. R., Mazer S. J., et al. . (2008). The resurrection initiative: storing ancestral genotypes to capture evolution in action. Bioscience 58, 870–873. 10.1641/B580913 DOI

Franks S. J., Sim S., Weis A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl. Acad. Sci. U. S. A. 104, 1278–1282. 10.1073/pnas.0608379104 PubMed DOI PMC

Fremstad E. (1997). Vegetasjonstyper i Norge. NINA Temahefte. 12, 1–279.

Fridley J. D. (2017). Plant energetics and the synthesis of population and ecosystem ecology. J. Ecol. 105, 95–110. 10.1111/1365-2745.12693 DOI

Gibson D. J. (2009). Grasses and Grassland Ecology. Oxford: Oxford University Press.

Gomez-Gonzalez S., Torres-Diaz C., Bustos-Schindler C., Gianoli E. (2011). Anthropogenic fire drives the evolution of seed traits. Proc. Natl. Acad. Sci. U. S. A. 108, 18743–18747. 10.1073/pnas.1108863108 PubMed DOI PMC

Gomulkiewicz R., Holt R. D. (1995). When does evolution by natural selection prevent extinction. Evolution 49, 201–207. 10.1111/j.1558-5646.1995.tb05971.x PubMed DOI

Gray L. K., Gylander T., Mbogga M. S., Chen P. Y., Hamann A. (2011). Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecol. Appl. 21, 1591–1603. 10.1890/10-1054.1 PubMed DOI

Groves A. M., Brudvig L. A. (2019). Interannual variation in precipitation and other planting conditions impacts seedling establishment in sown plant communities. Restorat. Ecol. 27, 128–137. 10.1111/rec.12708 DOI

Guittar J., Goldberg D., Klanderud K., Berge A., Boixaderas M. R., Meineri E., et al. . (2020). Quantifying the roles of seed dispersal, filtering, and climate on regional patterns of grassland biodiversity. Ecology 101:3061. 10.1002/ecy.3061 PubMed DOI

Hansen W. D., Turner M. G. (2019). Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89:21. 10.1002/ecm.1340 DOI

Hanssen-Bauer I., Drange H., Førland E. J., Roald L. A., Børsheim K. Y., Hisdal H., et al. . (2009). Klima i Norge 2100 Bakgrunnsmateriale til NOU Klimatilpassing (Climate in Norway 2100 Background Material to the NOU Climate Adaption). Oslo: Norsk klimasenter.

Harberd D. (1961). Observations on population struture and longevity of Festuca rubra L. New Phytol. 60, 184–206. 10.1111/j.1469-8137.1961.tb06251.x DOI

He Q., Bertness M. D., Altieri A. H. (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 16, 695–706. 10.1111/ele.12080 PubMed DOI

Henn J. J., Buzzard V., Enquist B. J., Halbritter A. H., Klanderuds K., Maitner B. S., et al. . (2018). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Front. Plant Sci. 9:11. 10.3389/fpls.2018.01548 PubMed DOI PMC

Herben T., Krahulec F., Hadincova V., Pechackova S. (2001). Clone-specific response of Festuca rubra to natural variation in biomass and species composition of neighbours. Oikos 95, 43–52. 10.1034/j.1600-0706.2001.950105.x DOI

Hofmann G. E., Todgham A. E. (2010). Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Ann. Rev. Physiol. 2010, 127–145. 10.1146/annurev-physiol-021909-135900 PubMed DOI

Hufbauer R. A., Szucs M., Kasyon E., Youngberg C., Koontz M. J., Richards C., et al. . (2015). Three types of rescue can avert extinction in a changing environment. Proc. Natl. Acad. Sci. U. S. A. 112, 10557–10562. 10.1073/pnas.1504732112 PubMed DOI PMC

IPCC (2014). Climate change 2014: Synthesis report.

Iriart V., Baucom R. S., Ashman T. L. (2020). Herbicides as anthropogenic drivers of eco-evo feedbacks in plant communities at the agro-ecological interface. Mol. Ecol. 16:15510. 10.1111/mec.15510 PubMed DOI

Jackson J. B. C., Coates A. G. (1986). Life-cycles and evolution of clonal (modular) animals. Philos. Trans. Royal Soc. B Biol. Sci. 313, 7–22. 10.1098/rstb.1986.0022 DOI

Klanderud K., Meineri E., Topper J., Michel P., Vandvik V. (2017). Biotic interaction effects on seedling recruitment along bioclimatic gradients: testing the stress-gradient hypothesis. J. Vegetat. Sci. 28, 347–356. 10.1111/jvs.12495 DOI

Klanderud K., Vandvik V., Goldberg D. (2015). The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10:e0130205. 10.1371/journal.pone.0130205 PubMed DOI PMC

Knappova J., Zidlicka D., Kadlec T., Knapp M., Haisel D., Hadincova V., et al. . (2018). Population differentiation related to climate of origin affects the intensity of plant-herbivore interactions in a clonal grass. Basic Appl. Ecol. 28, 76–86. 10.1016/j.baae.2018.02.011 DOI

Knutzen F., Meier I. C., Leuschner C. (2015). Does reduced precipitation trigger physiological and morphological drought adaptations in European beech (Fagus sylvatica L.)? Comparing provenances across a precipitation gradient. Tree Physiol. 35, 949–963. 10.1093/treephys/tpv057 PubMed DOI

Kosová V., Hájek T., Hadincová V., Münzbergová Z. (2020). Ecophysiological traits of a clonal grass in its climate change response. bioRxiv 2020:864827. 10.1101/864827 DOI

Krauss J., Bommarco R., Guardiola M., Heikkinen R. K., Helm A., Kuussaari M., et al. . (2010). Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605. 10.1111/j.1461-0248.2010.01457.x PubMed DOI PMC

Kulbaba M. W., Sheth S. N., Pain R. E., Eckhart V. M., Shaw R. G. (2019). Additive genetic variance for lifetime fitness and the capacity for adaptation in an annual plant. Evolution 73, 1746–1758. 10.1111/evo.13830 PubMed DOI

Kuussaari M., Bommarco R., Heikkinen R. K., Helm A., Krauss J., Lindborg R., et al. . (2009). Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571. 10.1016/j.tree.2009.04.011 PubMed DOI

Kuznetsova A., Brockhoff P. B., Christensen R. H. B. (2017). lmerTest package: tests in linear mixed effects models. J. Statist. Softw. 82, 1–26. 10.18637/jss.v082.i13 DOI

Lande R., Arnold S. J. (1983). The measurement of selection on correlated characters. Evolution 37, 1210–1226. 10.1111/j.1558-5646.1983.tb00236.x PubMed DOI

Lindner M., Maroschek M., Netherer S., Kremer A., Barbati A., Garcia-Gonzalo J., et al. . (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol. Manag. 259, 698–709. 10.1016/j.foreco.2009.09.023 DOI

Lustenhouwer N., Wilschut R. A., Williams J. L., van der Putten W. H., Levine J. M. (2018). Rapid evolution of phenology during range expansion with recent climate change. Glob. Change Biol. 24, E534–E544. 10.1111/gcb.13947 PubMed DOI

Mairal M., Caujape-Castells J., Pellissier L., Jaen-Molina R., Alvarez N., Heuertz M., et al. . (2018). A tale of two forests: ongoing aridification drives population decline and genetic diversity loss at continental scale in Afro-Macaronesian evergreen-forest archipelago endemics. Ann. Bot. 122, 1005–1017. 10.1093/aob/mcy107 PubMed DOI PMC

Malcolm J. R., Markham A., Neilson R. P., Garaci M. (2002). Estimated migration rates under scenarios of global climate change. J. Biogeogr. 29, 835–849. 10.1046/j.1365-2699.2002.00702.x DOI

Mason C. M., Goolsby E. W., Davis K. E., Bullock D. V., Donovan L. A. (2017). Importance of whole-plant biomass allocation and reproductive timing to habitat differentiation across the North American sunflowers. Ann. Bot. 119, 1131–1142. 10.1093/aob/mcx002 PubMed DOI PMC

McGraw J. B., Turner J. B., Souther S., Bennington C. C., Vavrek M. C., Shaver G. R., et al. . (2015). Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska. Glob. Change Biol. 21, 3827–3835. 10.1111/gcb.12991 PubMed DOI

Meineri E., Skarpaas O., Spindelbock J., Bargmann T., Vandvik V. (2014). Direct and size-dependent effects of climate on flowering performance in alpine and lowland herbaceous species. J. Veg. Sci. 25, 275–286. 10.1111/jvs.12062 DOI

Merila J., Hendry A. P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolution. Appl. 7, 1–14. 10.1111/eva.12137 PubMed DOI PMC

Miner B. G., Sultan S. E., Morgan S. G., Padilla D. K., Relyea R. A. (2005). Ecological consequences of phenotypic plasticity. Trends Ecol. Evol. 20, 685–692. 10.1016/j.tree.2005.08.002 PubMed DOI

Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7, 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC

Münzbergová Z., Hadincová V., Skálová H., Vandvik V. (2017). Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105, 1358–1373. 10.1111/1365-2745.12762 DOI

Murray B. R., Thrall P. H., Gill A. M., Nicotra A. B. (2002). How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales. Austral Ecol. 27, 291–310. 10.1046/j.1442-9993.2002.01181.x DOI

Nevo E., Fu Y. B., Pavlicek T., Khalifa S., Tavasi M., Beiles A. (2012). Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. U. S. A. 109, 3412–3415. 10.1073/pnas.1121411109 PubMed DOI PMC

Nicotra A. B., Atkin O. K., Bonser S. P., Davidson A. M., Finnegan E. J., Mathesius U., et al. . (2010). Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 15, 684–692. 10.1016/j.tplants.2010.09.008 PubMed DOI

O'Gorman E. J., Benstead J. P., Cross W. F., Friberg N., Hood J. M., Johnson P. W., et al. . (2014). Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia. Glob. Change Biol. 20, 3291–3299. 10.1111/gcb.12602 PubMed DOI

Olsen S. L., Topper J. P., Skarpaas O., Vandvik V., Klanderud K. (2016). From facilitation to competition: temperature-driven shift in dominant plant interactions affects population dynamics in seminatural grasslands. Glob. Change Biol. 22, 1915–1926. 10.1111/gcb.13241 PubMed DOI

Orive M. E., Holt R. D., Barfield M. (2019). Evolutionary rescue in a linearly changing environment: limits on predictability. Bullet. Math. Biol. 81, 4821–4839. 10.1007/s11538-018-0504-5 PubMed DOI

Peniston J. H., Barfield M., Gonzalez A., Holt R. D. (2020). Environmental fluctuations can promote evolutionary rescue in high-extinction-risk scenarios. Proc. Royal Soc. B Biol. Sci. 287:9. 10.1098/rspb.2020.1144 PubMed DOI PMC

Peterson M. L., Angert A. L., Kay K. M. (2020). Experimental migration upward in elevation is associated with strong selection on life history traits. Ecol. Evol. 10, 612–625. 10.1002/ece3.5710 PubMed DOI PMC

Plue J., Vandepitte K., Honnay O., Cousins S. A. O. (2017). Does the seed bank contribute to the build-up of a genetic extinction debt in the grassland perennial Campanula rotundifolia? Ann. Bot. 120, 373–385. 10.1093/aob/mcx057 PubMed DOI PMC

Pratt J. D., Mooney K. A. (2013). Clinal adaptation and adaptive plasticity in Artemisia californica: implications for the response of a foundation species to predicted climate change. Glob. Change Biol. 19, 2454–2466. 10.1111/gcb.12199 PubMed DOI

R Development Core Team (2011). A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Ravenscroft C. H., Fridley J. D., Grime J. P. (2014). Intraspecific functional differentiation suggests local adaptation to long-term climate change in a calcareous grassland. J. Ecol. 102, 65–73. 10.1111/1365-2745.12168 DOI

Rinkevich B. (2019). Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Glob. Change Biol. 25, 1198–1206. 10.1111/gcb.14576 PubMed DOI

Rolhauser A. G., Nordenstahl M., Aguiar M. R., Pucheta E. (2019). Community-level natural selection modes: a quadratic framework to link multiple functional traits with competitive ability. J. Ecol. 107, 1457–1468. 10.1111/1365-2745.13094 DOI

Saleska S. R., Shaw M. R., Fischer M. L., Dunne J. A., Still C. J., Holman M. L., et al. . (2002). Plant community composition mediates both large transient decline and predicted long-term recovery of soil carbon under climate warming. Glob. Biogeochem. Cycles 16:19. 10.1029/2001GB001573 DOI

Scherrer D., Korner C. (2010). Infra-red thermometry of alpine landscapes challenges climatic warming projections. Glob. Change Biol. 16, 2602–2613. 10.1111/j.1365-2486.2009.02122.x DOI

Shao H., Xia T. T., Wu D. L., Chen F. J., Mi G. H. (2018). Root growth and root system architecture of field-grown maize in response to high planting density. Plant Soil 430, 395–411. 10.1007/s11104-018-3720-8 DOI

Skalova H. (2010). Potential and constraints for grasses to cope with spatially heterogeneous radiation environments. Plant Ecol. 206, 115–125. 10.1007/s11258-009-9628-x DOI

Stirbet A, Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. J. Photochem. Photobiol. B. 104, 236–57. 10.1016/j.jphotobiol.2010.12.010 PubMed DOI

Stojanova B., Kolaríková V., Šurinová M., Klápště J., Hadincová V., Münzbergová Z. (2019). Evolutionary potential of a widespread clonal grass under changing climate. J. Evolution. Biol. 32, 1057–1068. 10.1111/jeb.13507 PubMed DOI

Stojanova B., Šurinová M., Klápště J., Koláríková V., Hadincová V., Münzbergová Z. (2018). Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS ONE 13:194670. 10.1371/journal.pone.0194670 PubMed DOI PMC

Šurinová M., Hadincová V., Vandvik V., Münzbergová Z. (2019). Temperature and precipitation, but not geographic distance, explain genetic relatedness among populations in the perennial grass Festuca rubra. J. Plant Ecol. 12, 730–741. 10.1093/jpe/rtz010 DOI

Thomann M., Imbert E., Engstrand R. C., Cheptou P. O. (2015). Contemporary evolution of plant reproductive strategies under global change is revealed by stored seeds. J. Evolution. Biol. 28, 766–778. 10.1111/jeb.12603 PubMed DOI

Topper J. P., Meineri E., Olsen S. L., Rydgren K., Skarpaas O., Vandvik V. (2018). The devil is in the detail: nonadditive and context-dependent plant population responses to increasing temperature and precipitation. Glob. Change Biol. 24, 4657–4666. 10.1111/gcb.14336 PubMed DOI

Valladares F., Wright S. J., Lasso E., Kitajima K., Pearcy R. W. (2000). Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest. Ecology. 81, 925–1936. 10.1890/0012-9658(2000)0811925:PPRTLO2.0.CO;2 DOI

van Kleunen M., Fischer M. (2005). Constraints on the evolution of adaptive phenotypic plasticity in plants. New Phytol. 166, 49–60. 10.1111/j.1469-8137.2004.01296.x PubMed DOI

van Kleunen M., Fischer M. (2007). Progress in the detection of costs of phenotypic plasticity in plants. New Phytol. 176, 727–730. 10.1111/j.1469-8137.2007.02296.x PubMed DOI

Vandvik V., Klanderud K., Meineri E., Maren I. E., Topper J. (2016). Seed banks are biodiversity reservoirs: species-area relationships above versus below ground. Oikos 125, 218–228. 10.1111/oik.02022 DOI

Vandvik V., Klanderud K., Skarpaas O., Telford R., Halbritter A., Goldberg D. (2020). Biotic rescaling reveals importance of species interactions for variation in biodiversity responses to climate change. Proc. Natl. Acad. Sci. U. S. A. 17, 22858–22865. 10.1073/pnas.2003377117 PubMed DOI PMC

Wilczek A. M., Cooper M. D., Korves T. M., Schmitt J. (2014). Lagging adaptation to warming climate in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 111, 7906–7913. 10.1073/pnas.1406314111 PubMed DOI PMC

Ye X. H., Yu F. H., Dong M. (2006). A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann. Bot. 98, 187–191. 10.1093/aob/mcl086 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...