On the Origin of Tetraploid Vernal Grasses (Anthoxanthum) in Europe
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34202779
PubMed Central
PMC8308110
DOI
10.3390/genes12070966
PII: genes12070966
Knihovny.cz E-zdroje
- Klíčová slova
- FISH, GBSSI, GISH, Poaceae, flow cytometry, genome size, polyploidy,
- MeSH
- biologická evoluce * MeSH
- chromozomy rostlin genetika MeSH
- diploidie MeSH
- fylogeneze MeSH
- hybridizace genetická * MeSH
- hybridizace in situ MeSH
- lipnicovité cytologie genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- sekvence nukleotidů MeSH
- tetraploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Polyploidy has played a crucial role in the evolution of many plant taxa, namely in higher latitudinal zones. Surprisingly, after several decades of an intensive research on polyploids, there are still common polyploid species whose evolutionary history is virtually unknown. Here, we addressed the origin of sweet vernal grass (Anthoxanthum odoratum) using flow cytometry, DNA sequencing, and in situ hybridization-based cytogenetic techniques. An allotetraploid and polytopic origin of the species has been verified. The chromosome study reveals an extensive variation between the European populations. In contrast, an autopolyploid origin of the rarer tetraploid vernal grass species, A. alpinum, has been corroborated. Diploid A. alpinum played an essential role in the polyploidization of both European tetraploids studied.
CEITEC Masaryk University CZ 625 00 Brno Czech Republic
Czech Academy of Sciences Institute of Botany CZ 242 53 Průhonice Czech Republic
Zobrazit více v PubMed
Borrill M. Experimental Studies of Evolution in Anthoxanthum (Gramineae) Genetica. 1963;34:183–210. doi: 10.1007/BF01664189. DOI
Pimentel M., Sahuquillo E. Relationships among Some Populations of Anthoxanthum alpinum and A. odoratum (Poaceae, Pooideae): A Morphological/Anatomical Approach. Aliso. 2007;23:472–484. doi: 10.5642/aliso.20072301.37. DOI
Chumová Z., Krejčíková J., Mandáková T., Suda J., Trávníček P. Evolutionary and Taxonomic Implications of Variation in Nuclear Genome Size: Lesson from the Grass Genus Anthoxanthum (Poaceae) PLoS ONE. 2015;10:e0133748. doi: 10.1371/journal.pone.0133748. PubMed DOI PMC
Paunero E. Las Especies Españoles Del Género Anthoxanthum L. An. Inst. Botánico AJ Cavanilles. 1953;12:401–442.
Tutin T. Anthoxanthum L. In: Tutin T., Heywood V., Burges N., Moore D., Valentine D., Walters S., Webb D., editors. Flora Europaea. Volume 5 Cambridge University Press; Cambridge, UK: 1980.
Teppner H. Anthoxanthum maderense Spec. Nova and A. odoratum (Poaceae-Aveneae) from Madeira and Their Chromosome Morphology. Phyton Ann. Rei Bot. 1998;38:307–321.
Pimentel M., Catalan P., Sahuquillo E. Morphological and Molecular Taxonomy of the Annual Diploids Anthoxanthum aristatum and A. ovatum (Poaceae) in the Iberian Peninsula. Evidence of Introgression in Natural Populations. Bot. J. Linn. Soc. 2010;164:53–71. doi: 10.1111/j.1095-8339.2010.01068.x. DOI
Valdés Valdés B. Revisión de Las Especies Anuales Del Género Anthoxanthum (Graminae) Lagascalia. 1973;3:99–141.
Pimentel M., Sahuquillo E., Torrecilla Z., Popp M., Catalan P., Brochmann C. Hybridization and Long-Distance Colonization at Different Time Scales: Towards Resolution of Long-Term Controversies in the Sweet Vernal Grasses (Anthoxanthum) Ann. Bot. 2013;112:1015–1030. doi: 10.1093/aob/mct170. PubMed DOI PMC
Clayton W.D. Gramineae (Part I) In: Redhead E.M., Polhill E.M., editors. Flora of Tropical East Africa. Ministry for Overseas Development; London, UK: 1970.
Tusiime F.M., Gizaw A., Wondimu T., Masao C.A., Abdi A.A., Muwanika V., Trávníček P., Nemomissa S., Popp M., Eilu G., et al. Sweet Vernal Grasses (Anthoxanthum) Colonized African Mountains along Two Fronts in the Late Pliocene, Followed by Secondary Contact, Polyploidization and Local Extinction in the Pleistocene. Mol. Ecol. 2017;26:3513–3532. doi: 10.1111/mec.14136. PubMed DOI
Hedberg I. Cytotaxonomic Reconnaissance of Tropical African Anthoxanthum L. (Gramineae) Bot. Not. 1976;129:85–90.
Chumová Z., Záveská E., Mandáková T., Krak K., Trávníček P. The Mediterranean: The Cradle of Anthoxanthum (Poaceae) Diploid Diversity. Ann. Bot. 2017;120:285–302. doi: 10.1093/aob/mcx021. PubMed DOI PMC
Jones K. Chromosomes and the Origin of Anthoxanthum odoratum L. Chromosoma. 1964;15:248–274. doi: 10.1007/BF00321511. DOI
Hedberg O. Afro-Alpine Vascular Plants. Symb. Bot. Ups. 1957;15:54.
Felber F. Distribution des cytodèmes d’Anthoxanthum odoratum L. s lat. en Suisse. Les relations Alpes-Jura. Bot. Helvetica. 1986;96:145–158.
Phillips S. Poaceae (Graminae) In: Hedberg I., Edwards S., editors. Flora of Ethiopia and Eritreia. Swedish Science Press; Upsalla, Sweden: 1995. pp. 40–42.
Teppner H. Poaceae in the Greenhouses of the Botanic Garden Institute of Botany in Graz (Austria, Europe) Fritschiana. 2002;31:1–42.
Mashau A.C. A Synopsis of Anthoxanthum (Poaceae: Pooideae: Poeae) in Southern Africa and Description of a New Subspecies. Kew Bull. 2016;71:18. doi: 10.1007/s12225-016-9629-6. DOI
Katterman G. Über Die Bildung Polyvalenter Chromosomenverbände Bei Einigen Gramineen. Planta. 1931;12:734–774. doi: 10.1007/BF01912442. DOI
Parthasarathy N. Cytogenetical Studies in Oryzeae and Phalaridineae. Ann. Bot. Lond. NS. 1939;3:43–76. doi: 10.1093/oxfordjournals.aob.a085057. DOI
Östergren G. Chromosome Numbers in Anthoxanthum. Hereditas. 1942;33:242–243.
Hedberg I. Cytotaxonomic Studies on Anthoxanthum odoratum L. s. Lat. 2. Investigations of Some Swedish and of a Few Swiss Population Samples. Symb. Bot. Ups. 1967;18:5–97.
Hedberg I. Cytotaxonomic Studies on Anthoxanthum odoratum L. s. Lat. IV. Karyotypes, Meiosis and Origin of Tetraploid A. odoratum. Hereditas. 1970;48:471–502.
Hedberg I. The Genesis of Tetraploid Anthoxanthum odoratum. Symb. Bot. Ups. 1986;27:147–154.
Teppner H. Caryotypes of European, Perennial Species of Gramineae Genus Anthoxanthum. Osterreichische Bot. Z. 1970;118:280–292. doi: 10.1007/BF01377862. DOI
Hedberg I. Morphological, Cytotaxonomic and Evolutionary Studies in Anthoxanthum odoratum L. s. Lat.—A Critical Review. Sommerfeltia. 1990;11:97–107.
Hodkinson T.R., Chase M.W., Takahashi C., Leitch I.J., Bennett M.D., Renvoize S.A. The Use of DNA Sequencing (ITS and TrnL-F), AFLP, and Fluorescent in Situ Hybridization to Study Allopolyploid Miscanthus (Poaceae) Am. J. Bot. 2002;89:279–286. doi: 10.3732/ajb.89.2.279. PubMed DOI
Ellneskog-Staam P., Salomon B., von Bothmer R., Anamthawat-Jonsson K. The Genome Composition of Hexaploid Psammopyrum athericum and Octoploid Psammopyrum pungens (Poaceae: Triticeae) Genome. 2003;46:164–169. doi: 10.1139/g02-115. PubMed DOI
Loureiro J., Kopecky D., Castro S., Santos C., Silveira P. Flow Cytometric and Cytogenetic Analyses of Iberian Peninsula Festuca Spp. Plant Syst. Evol. 2007;269:89–105. doi: 10.1007/s00606-007-0564-8. DOI
Mahelka V., Kopecký D. Gene Capture from across the Grass Family in the Allohexaploid Elymus repens (L.) Gould (Poaceae, Triticeae) as Evidenced by ITS, GBSSI, and Molecular Cytogenetics. Mol. Biol. Evol. 2010;27:1370–1390. doi: 10.1093/molbev/msq021. PubMed DOI
Felber F. Phenology of Flowering in Diploid and Tetraploid Populations of Anthoxanthum alpinum and Anthoxanthum odoratum. Can. J. Bot. Rev. Can. Bot. 1988;66:2258–2264. doi: 10.1139/b88-308. DOI
Felber F. Sensitivity of the Four Cytodemes of Anthoxanthum odoratum L. s. Lat. (Poaceae) to Puccinia sardonensis Gaumann (Uredinales) Taxon. 1987;36:573–577. doi: 10.2307/1221848. DOI
Zeroual-Humbert-Droz C., Felber F. Evidence from Isozyme Analysis of Autopolyploidy in Anthoxanthum alpinum A. & D. Löve. Bot. Helvetica. 1999;109:217–227.
Greilhuber J., Dolezel J., Lysak M.A., Bennett M.D. The Origin, Evolution and Proposed Stabilization of the Terms “genome Size” and “C-Value” to Describe Nuclear DNA Contents. Ann. Bot. 2005;95:255–260. doi: 10.1093/aob/mci019. PubMed DOI PMC
Otto S.P. The Evolutionary Consequences of Polyploidy. Cell. 2007;131:452–462. doi: 10.1016/j.cell.2007.10.022. PubMed DOI
Doležel J., Greilhuber J., Suda J. Estimation of Nuclear DNA Content in Plants Using Flow Cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Trávníček P., Ponert J., Urfus T., Jersáková J., Vrána J., Hřibová E., Doležel J., Suda J. Challenges of Flow-Cytometric Estimation of Nuclear Genome Size in Orchids, a Plant Group with Both Whole-Genome and Progressively Partial Endoreplication. Cytom. A. 2015;87A:958–966. doi: 10.1002/cyto.a.22681. PubMed DOI
Suda J., Krahulcová A., Trávníček P., Krahulec F. Ploidy Level versus DNA Ploidy Level: An Appeal for Consistent Terminology. Taxon. 2006;55:447–450. doi: 10.2307/25065591. DOI
R Core Team . A Language and Environment for Statistical Computing R Foundation for Statistical Computing. R Core Team; Vienna, Austria: 2020.
Taberlet P., Gielly L., Pautou G., Bouvet J. Universal Primers for Amplification of 3 Noncoding Regions of Chloroplast DNA. Plant Mol. Biol. 1991;17:1105–1109. doi: 10.1007/BF00037152. PubMed DOI
Shaw J., Lickey E.B., Schilling E.E., Small R.L. Comparison of Whole Chloroplast Genome Sequences to Choose Noncoding Regions for Phylogenetic Studies in Angiosperms: The Tortoise and the Hare III. Am. J. Bot. 2007;94:275–288. doi: 10.3732/ajb.94.3.275. PubMed DOI
Mason-Gamer R.J., Weil C.F., Kellogg E.A. Granule-Bound Starch Synthase: Structure, Function, and Phylogenetic Utility. Mol. Biol. Evol. 1998;15:1658–1673. doi: 10.1093/oxfordjournals.molbev.a025893. PubMed DOI
Záveská E., Fér T., Šída O., Krak K., Marhold K., Leong-Škorničková J. Phylogeny of Curcuma (Zingiberaceae) Based on Plastid and Nuclear Sequences: Proposal of the New Subgenus Ecomata. Taxon. 2012;61:747–763. doi: 10.1002/tax.614004. DOI
Katoh K., Standley D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Hall T. BioEdit, Biological Sequence Alignment Editor for Win95/98/NT/2K/XP, Version 7.0.4.1. [(accessed on 12 December 2020)];2004 Available online: http://www.Mbio.Ncsu.Edu/BioEdit/Bioedit.Html.
Popp M., Erixon P., Eggens F., Oxelman B. Origin and Evolution of a Circumpolar Polyploid Species Complex in Silene (Caryophyllaceae) Inferred from Low Copy Nuclear RNA Polymerase Introns, RDNA, and Chloroplast DNA. Syst. Bot. 2005;30:302–313. doi: 10.1600/0363644054223648. DOI
Huelsenbeck J.P., Ronquist F. MRBAYES: Bayesian Inference of Phylogenetic Trees. Bioinformatics. 2001;17:754–755. doi: 10.1093/bioinformatics/17.8.754. PubMed DOI
Posada D.J. ModelTest: Phylogenetic Model Averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Schwarz G. Estimating the Dimension of a Model. Ann. Stat. 1978;6:461–464. doi: 10.1214/aos/1176344136. DOI
Posada D., Buckley T.R. Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches over Likelihood Ratio Tests. Syst. Biol. 2004;53:793–808. doi: 10.1080/10635150490522304. PubMed DOI
Dellaporta S.L., Wood J., Hicks J.B. A Plant DNA Minipreparation: Version II. Plant Mol. Biol. Report. 1983;1:19–21. doi: 10.1007/BF02712670. DOI
Mandáková T., Lysak M.A. Current Protocols in Plant Biology. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2016. Painting of Arabidopsis chromosomes with chromosome-specific BAC clones. PubMed
Greilhuber J. Intraspecific Variation in Genome Size in Angiosperms: Identifying Its Existence. Ann. Bot. 2005;95:91–98. doi: 10.1093/aob/mci004. PubMed DOI PMC
Šmarda P., Bureš P. Understanding Intraspecific Variation in Genome Size in Plants. Preslia. 2010;82:41–61.
Chumová Z., Mandáková T., Trávníček P. Are B-Chromosomes Responsible for the Extraordinary Genome Size Variation in Selected Anthoxanthum Annuals? Plant Syst. Evol. 2016;302:731–738. doi: 10.1007/s00606-016-1295-5. DOI
Bennett Michael David Nuclear DNA Content and Minimum Generation Time in Herbaceous Plants. Proc. R. Soc. Lond. B Biol. Sci. 1972;181:109–135. doi: 10.1098/rspb.1972.0042. PubMed DOI
Creber H.M.C., Davies M.S., Francis D., Walker H.D. Variation in DNA C Value in Natural Populations of Dactylis glomerata L. New Phytol. 1994;128:555–561. doi: 10.1111/j.1469-8137.1994.tb03001.x. PubMed DOI
Reeves G., Francis D., Davies M.S., Rogers H.J., Hodkinson T.R. Genome Size Is Negatively Correlated with Altitude in Natural Populations of Dactylis glomerata. Ann. Bot. 1998;82:99–105. doi: 10.1006/anbo.1998.0751. DOI
Šmarda P., Bureš P. Intraspecific DNA Content Variability in Festuca pallens on Different Geographical Scales and Ploidy Levels. Ann. Bot. 2006;98:665–678. doi: 10.1093/aob/mcl150. PubMed DOI PMC
Pečinka A., Suchánková P., Lysak M.A., Trávníček B., Doležel J. Nuclear DNA Content Variation among Central European Koeleria Taxa. Ann. Bot. 2006;98:117–122. doi: 10.1093/aob/mcl077. PubMed DOI PMC
Laurie D.A., Bennett M.D. Nuclear DNA Content in the Genera Zea and Sorghum. Intergeneric, Interspecific and Intraspecific Variation. Heredity. 1985;55:307–313. doi: 10.1038/hdy.1985.112. DOI
Stritt C., Wyler M., Gimmi E.L., Pippel M., Roulin A.C. Diversity, Dynamics and Effects of Long Terminal Repeat Retrotransposons in the Model Grass Brachypodium distachyon. New Phytol. 2020;227:1736–1748. doi: 10.1111/nph.16308. PubMed DOI PMC
Zwyrtková J., Němečková A., Čížková J., Holušová K., Kapustová V., Svačina R., Kopecký D., Till B.J., Doležel J., Hřibová E. Comparative Analyses of DNA Repeats and Identification of a Novel Fesreba Centromeric Element in Fescues and Ryegrasses. BMC Plant Biol. 2020;20:280. doi: 10.1186/s12870-020-02495-0. PubMed DOI PMC
Giraud D., Lima O., Huteau V., Coriton O., Boutte J., Kovarik A., Leitch A.R., Leitch I.J., Aïnouche M., Salmon A. Evolutionary Dynamics of Transposable Elements and Satellite DNAs in Polyploid Spartina Species. Plant Sci. 2021;302:110671. doi: 10.1016/j.plantsci.2020.110671. PubMed DOI
Vaio M., Speranza P., Valls J.F., Guerra M., Mazzella C. Localization of the 5S and 45S RDNA Sites and CpDNA Sequence Analysis in Species of the Quadrifaria Group of Paspalum (Poaceae, Paniceae) Ann. Bot. 2005;96:191–200. doi: 10.1093/aob/mci168. PubMed DOI PMC
González M.L., Urdampilleta J.D., Fasanella M., Premoli A.C., Chiapella J.O. Distribution of RDNA and Polyploidy in Deschampsia antarctica E. Desv. in Antarctic and Patagonic Populations. Polar Biol. 2016;39:1663–1677. doi: 10.1007/s00300-016-1890-5. DOI
González M.L., Chiapella J.O., Urdampilleta J.D. The Antarctic and South American Species of Deschampsia: Phylogenetic Relationships and Cytogenetic Differentiation. Syst. Biodivers. 2021:1–40. doi: 10.1080/14772000.2020.1860151. DOI
Amosova A.V., Bolsheva N.L., Zoshchuk S.A., Twardovska M.O., Yurkevich O.Y., Andreev I.O., Samatadze T.E., Badaeva E.D., Kunakh V.A., Muravenko O.V. Comparative Molecular Cytogenetic Characterization of Seven Deschampsia (Poaceae) Species. PLoS ONE. 2017;12:e0175760. doi: 10.1371/journal.pone.0175760. PubMed DOI PMC
Drapikowska M., Susek K., Hasterok R., Szkudlarz P., Celka Z., Jackowiak B. Variability of Stomata and 45s and 5s Rdnas Loci Characteristics in Two Species of Anthoxanthum Genus: A. aristatum and A. odoratum (Poaceae) Acta Biol. Hung. 2013;64:352–363. doi: 10.1556/ABiol.64.2013.3.8. PubMed DOI