The Mediterranean: the cradle of Anthoxanthum (Poaceae) diploid diversity
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
PubMed
28444200
PubMed Central
PMC5737530
DOI
10.1093/aob/mcx021
PII: 3748213
Knihovny.cz E-zdroje
- Klíčová slova
- Anthoxanthum, Mediterranean, incomplete lineage sorting, phylogeography, rDNA FISH,
- MeSH
- biologická evoluce * MeSH
- diploidie * MeSH
- DNA chloroplastová genetika MeSH
- fylogeneze * MeSH
- lipnicovité klasifikace MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Středomoří MeSH
- Názvy látek
- DNA chloroplastová MeSH
BACKGROUND AND AIMS: Knowledge of diploid phylogeny and ecogeography provide a foundation for understanding plant evolutionary history, diversification patterns and taxonomy. The genus Anthoxanthum (vernal grasses, Poaceae) represents a taxonomically intricate polyploid complex with large phenotypic variation and poorly resolved evolutionary relationships. The aims of the study were to reveal: (1) evolutionary lineages of the diploid taxa and their genetic differentiation; (2) the past distribution of the rediscovered 'Mediterranean diploid'; and (3) possible migration routes of diploids in the Mediterranean. METHODS: A combined approach involving sequencing of two plastid regions ( trnL-trnF and rpl32-trnL ), nrDNA ITS, rDNA FISH analyses, climatic niche characterization and spatio-temporal modelling was used. KEY RESULTS: Among the examined diploid species, only two well-differentiated evolutionary lineages were recognized: Anthoxanthum gracile and A. alpinum . The other taxa - A. aristatum, A. ovatum, A. maderense and the 'Mediterranean diploid' - form a rather intermixed group based on the examined molecular data. In situ rDNA localization enabled identification of the ancestral Anthoxanthum karyotype, shared by A. gracile and two taxa from the crown group. For the studied taxa, ancestral location probabilities for six discrete geographical regions in the Mediterranean were proposed and likely scenarios of gradual expansion from them were suggested. Modelling past and present distributions shows that the 'Mediterranean diploid' has already been occurring in the same localities for 120 000 years. CONCLUSIONS: Highly congruent results were obtained and dated the origin and first diversification of Anthoxanthum to the Miocene. The later divergence probably took place in the Pleistocene and started polyploid evolution within the genus. The most recent diversification event is still occurring, and incomplete lineage sorting prevents full diversification of taxa at the molecular level, despite clear separation based on climatic niches. The 'Mediterranean diploid' is hypothesized to be a possible relic of the most recent common ancestor of Anthoxanthum due to their sharing of ancestral features.
Institute of Botany The Czech Academy of Sciences Zámek 1 CZ 252 43 Pruhonice Czech Republic
Institute of Botany The Czech Academy of Sciences Zámek 1 CZ 252 43 Průhonice Czech Republic
Institute of Botany University of Innsbruck AT 6020 Innsbruck Austria
Zobrazit více v PubMed
Alvarez I, Wendel JF.. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Molecular Phylogenetics and Evolution 29: 417–434. PubMed
Avise JC. 1994. Molecular markers, natural history and evolution. New York: Springer US.
Borrill M. 1963. Experimental studies of evolution in Anthoxanthum (Gramineae). Genetica 34: 183–210.
Briquet J. 1910. Anthoxanthum L In: Briquet J, ed. Prodrome de la Corse. Genève, Bale, Lyon: Georg & Co, Libraires – éditeurs, 72–74.
Bryant D, Moulton V.. 2004. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Molecular Biology and Evolution 21: 255–265. PubMed
Chen C, Qi Z-C, Xu X-H, et al.2014. Understanding the formation of Mediterranean–African–Asian disjunctions: evidence for Miocene climate-driven vicariance and recent long-distance dispersal in the Tertiary relict Smilax aspera (Smilacaceae). New Phytologist 204: 243–255. PubMed
Chumová Z, Krejčíková J, Mandáková T, Suda J, Trávníček P.. 2015. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). PLoS One 10: e0133748. PubMed PMC
Chumová Z, Mandáková T, Trávníček P.. 2016. Are B-chromosomes responsible for the extraordinary genome size variation in selected Anthoxanthum annuals? Plant Systematics and Evolution 302: 731–738.
Clayton WD, Govaerts R, Harman KT, Williamson H, Vorontsova M.. 2016. World checklist of Poaceae. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://apps.kew.org/wcsp/ (last accessed 6 December 2016).
Clement M, Posada D, Crandall KA.. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9: 1657–1659. PubMed
Collins WD, Bitz CM, Blackmon ML, et al.2006. The community climate system model version 3 (CCSM3). Journal of Climate 19: 2122–2143.
Comes HP, Abbott RJ.. 2001. Molecular phylogeography, reticulation, and lineage sorting in Mediterranean Senecio sect. Senecio (Asteraceae). Evolution 55: 1943–1962. PubMed
De Maio N, Wu C-H, O’Reilly KM, Wilson D.. 2015. New routes to phylogeography: a Bayesian structured coalescent approximation. PLoS Genetics 11: e1005421. PubMed PMC
Diaz-Pérez AJ, Sharifi-Tahrani M, Inda LA, Catalán P.. 2014. Polyphyly, gene-duplication and extensive allopolyploidy framed the evolution of the ephemeral Vulpia grasses and other fine-leaved Loliinae (Poaceae). Molecular Phylogenetics and Evolution 79: 92–105. PubMed
Drapikowska M, Susek K, Hasterok R, Szkudlarz P, Celka Z, Jackowiak B.. 2013. Variability of stomata and 45S and 5S rDNAs loci characteristics in two species of Anthoxanthum genus: A. aristatum and A. odoratum (Poaceae). Acta Biologica Hungarica 64: 352–363. PubMed
Drummond AJ, Rambaut A.. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214. PubMed PMC
Elith J, Graham CH, Anderson RP, et al.2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.
Evans MEK, Hearn DJ, Hahn WJ, Spangle JM, Venable DL.. 2005. Climate and life-history evolution in evening primroses (Oenothera, Onagraceae): a phylogenetic comparative analysis. Evolution 59: 1914–1927. PubMed
Felber F. 1987. Contribution à l’étude phytogéographique, biosystématique et experimentale du complexe polyploïd Anthoxanthum odoratum L. s. lat. PhD Thesis, University of Neuchâtel, Switzerland.
Felber F. 1993. Présence de trois taxon pérennes d’Anthoxanthum L. en Corse. Candollea 48: 582–591.
Feliner GN. 2014. Patterns and processes in plant phylogeography in the Mediterranean Basin. A review. Perspectives in Plant Ecology, Evolution and Systematics 16: 265–278.
Flower BP, Kennett JP.. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108: 537–555.
Frajman B, Schneeweiss GM.. 2009. A campanulaceous fate: the Albanian stenoendemic Asyneuma comosiforme in fact belongs to isophyllous Campanula. Systematic Botany 34: 595–601.
Frajman B, Eggens F, Oxelman B.. 2009. Hybrid origins and homoploid reticulate evolution within Heliosperma (Sileneae, Caryophyllaceae) – A multigene phylogenetic approach with relative dating. Systematic Biology 58: 328–345. PubMed
Gaudeul M, Véla E, Rouhan G.. 2016. Eastward colonization of the Mediterranean Basin by two geographically structured clades: the case of Odontites Ludw. (Orobanchaceae). Molecular Phylogenetics and Evolution 96: 140–149. PubMed
Grime JP. 1977. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. The American Naturalist 111: 1169–1194.
Hall T. 2004. BioEdit, Biological sequence alignment editor for Win95/98/NT/2K/XP, version 7.0.4.1. http://www.mbio.ncsu.edu/BioEdit/bioedit.html.
Hasumi H, Emori S.. 2004. K1-coupled GCM (MIROC) description. K1 Technical report No. 1. Tokyo: Center for Climate System Research.
Hedberg I. 1967. Cytotaxonomic studies on Anthoxanthum odoratum L. s. lat. 2. Investigations of some Swedish and of a few Swiss population samples. Symbolae Botanicae Upsalienses 18: 5–97.
Hedberg I. 1986. The genesis of tetraploid Anthoxanthum odoratum. Symbolae Botanicae Upsalienses 27: 147–154.
Hedberg I. 1990. Morphological, cytotaxonomic and evolutionary studies in Anthoxanthum odoratum L. s. lat. – a critical review. Sommerfeltia 11: 97–107.
Heled J, Drummond AJ.. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570–580. PubMed PMC
Hewitt G. 2011. Mediterranean peninsulas: the evolution of hotspots In: Zachos FE, Habel JC, eds. Biodiversity hotspots. Berlin: Springer, 123–147.
Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A.. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965–1978.
Hijmans RJ, Etten J van, Cheng J, et al.2016. Raster: geographic data analysis and modelling. https://cran.r-project.org/web/packages/raster/index.html (last accessed 2 June 2016).
Holderegger R, Abbott RJ.. 2003. Phylogeography of the Arctic-Alpine Saxifraga oppositifolia (Saxifragaceae) and some related taxa based on cpDNA and ITS sequence variation. American Journal of Botany 90: 931–936. PubMed
Hsiao C, Chatterton N, Asay K, Jensen K.. 1995. Molecular phylogeny of the Pooideae (Poaceae) based on nuclear rDNA (ITS) sequences. Theoretical and Applied Genetics 90: 389–398. PubMed
Huelsenbeck JP, Ronquist F.. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. PubMed
Hunt HV, Badakshi F, Romanova O, Howe CJ, Jones MK, Heslop-Harrison JSP.. 2014. Reticulate evolution in Panicum (Poaceae): the origin of tetraploid broomcorn millet, P. miliaceum. Journal of Experimental Botany 65: 3165–3175. PubMed PMC
Huson DH, Bryant D.. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254–267. PubMed
Inda LA, Sanmartín I, Buerki S, Catalán P.. 2014. Mediterranean origin and Miocene-Holocene Old World diversification of meadow fescues and ryegrasses (Festuca subgenus Schedonorus and Lolium). Journal of Biogeography 41: 600–614.
Joly S. 2012. JML: testing hybridization from species trees. Molecular Ecology Resources 12: 179–184. PubMed
Joly S, McLenachan PA, Lockhart PJ.. 2009. A statistical approach for distinguishing hybridization and incomplete lineage sorting. American Naturalist 174: E54–E70. PubMed
Jones K. 1964. Chromosomes and the origin of Anthoxanthum odoratum L. Chromosoma 15: 248–274.
Knowles LL, Kubatko LS (eds). 2010. Estimating species trees: practical and theoretical aspects. Oxford: Wiley-Blackwell.
Koch MA, Kiefer C, Ehrich D, Vogel J, Brochmann C, Mummenhoff K.. 2006. Three times out of Asia Minor: the phylogeography of Arabis alpina L. (Brassicaceae). Molecular Ecology 15: 825–839. PubMed
Koutecký P. 2015. MorphoTools: a set of R functions for morphometric analysis. Plant Systematics and Evolution 301: 1115–1121.
Lambinon J, Deschatres R.. 1991. Les Anthoxanthum annuels de Corse. Candollea 46: 217–221.
Leigh JW, Susko E, Baumgartner M, Roger AJ.. 2008. Testing congruence in phylogenomic analysis. Systematic Biology 57: 104–115. PubMed
Lemey P, Rambaut A, Drummond AJ, Suchard MA.. 2009. Bayesian phylogeography finds its roots. PLoS Computational Biology 5: e1000520. PubMed PMC
Liu CR, Berry PM, Dawson TP, Pearson RG.. 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.
Lowe A, Munro R, Samuel S, Cottrell J.. 2004. The utility and limitations of chloroplast DNA analysis for identifying native British oak stands and for guiding replanting strategy. Forestry 77: 335–347.
Mamidi D, Rossi M, Moghaddam SM, et al.2013. Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity 110: 267–276. PubMed PMC
Mandáková T, Lysak MA.. 2016. Painting of Arabidopsis chromosomes with chromosome-specific BAC clones In: Current Protocols in Plant Biology, published online. Chichester: John Wiley & Sons, Inc. PubMed
Médail F, Diadema K.. 2009. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. Journal of Biogeography 36: 1333–1345.
Neteler M, Bowman MH, Landa M, Metz M.. 2012. Grass GIS: a multi-purpose open source GIS. Environmental Modelling & Software 31: 124–130.
Nylander JA, Wilgenbusch JC, Warren DL, Swofford DL.. 2008. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581–583. PubMed
Otto-Bliesner BL, Marsha SJ, Overpeck JT, Miller GH, Hu AX.. 2006. Simulating arctic climate warmth and icefield retreat in the last interglaciation. Science 311: 1751–1753. PubMed
Özüdoğru B, Akaydın G, Erik S, Al-Shehbaz IA, Mummenhoff K.. 2015. Phylogeny, diversification and biogeographic implications of the eastern Mediterranean endemic genus Ricotia (Brassicaceae). Taxon 64: 727–740.
Peterson AT, Papes M, Soberon J.. 2008. Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling 213: 63–72.
Petrova G, Moyankova D, Nishii K, et al.2015. The European paleoendemic Haberlea rhodopensis (Gesneriaceae) has an Oligocene origin and a Pleistocene diversification and occurs in a long-persisting refugial area in Southeastern Europe. International Journal of Plant Sciences 176: 499–514.
Phillips SJ, Anderson RP, Schapire RE.. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231–259.
Pimentel M, Sahuquillo E.. 2003. An approach to the study of morphological relationships among the sweet vernal grass (Anthoxanthum L. Poaceae, Pooideae) in the Iberian Peninsula. Bocconea 16: 731–737.
Pimentel M, Sahuquillo E.. 2008. Relationships between the close congeners Anthoxanthum odoratum and A. alpinum (Poaceae, Pooideae) assessed by morphological and molecular methods. Botanical Journal of the Linnean Society 156: 237–252.
Pimentel MP, Perez GE, Balbuena E.. 2007a. European sweet vernal grasses (Anthoxanthum : Poaceae, Pooideae, Aveneae): a morphometric taxonomical approach. Systematic Botany 32: 43–59.
Pimentel M, Sahuquillo E, Catalan P.. 2007b. Genetic diversity and spatial correlation patterns unravel the biogeographical history of the European sweet vernal grasses (Anthoxanthum L., Poaceae). Molecular Phylogenetics and Evolution 44: 667–684. PubMed
Pimentel M, Catalan P, Sahuquillo E.. 2010. Morphological and molecular taxonomy of the annual diploids Anthoxanthum aristatum and A. ovatum (Poaceae) in the Iberian Peninsula. Evidence of introgression in natural populations. Botanical Journal of the Linnean Society 164: 53–71.
Pimentel M, Sahuquillo E, Torrecilla Z, Popp M, Catalan P, Brochmann C.. 2013. Hybridization and long-distance colonization at different time scales: towards resolution of long-term controversies in the sweet vernal grasses (Anthoxanthum). Annals of Botany 112: 1015–1030. PubMed PMC
Popp M, Erixon P, Eggens F, Oxelman B.. 2005. Origin and evolution of a circumpolar polyploid species complex in Silene (Caryophyllaceae) inferred from low copy nuclear RNA polymerase introns, rDNA, and chloroplast DNA. Systematic Botany 30: 302–313.
Popp M, Gizaw A, Nemomissa S, Suda J, Brochmann C.. 2008. Colonization and diversification in the African ‘sky islands’ by Eurasian Lychnis L. (Caryophyllaceae). Journal of Biogeography 35: 1016–1029.
Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256. PubMed
Posada D, Buckley TR.. 2004. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology 53: 793–808. PubMed
Quan C, Liu Y-S, Tang H, Utescher T.. 2014. Miocene shift of European atmospheric circulation from trade wind to westerlies. Scientific Reports 4: 5660. PubMed PMC
Rojas-Andres BM, Albach DC, Montserrat Martinez-Ortega M.. 2015. Exploring the intricate evolutionary history of the diploid-polyploid complex Veronica subsection Pentasepalae (Plantaginaceae). Botanical Journal of the Linnean Society 179: 670–692.
Röser M. 1997. Patterns of diversification in Mediterranean oat grasses (Poaceae: Aveneae). Lagascalia 19: 101–120.
Schaal BA, Hayworth DA, Olsen KM, Rauscher JT, Smith WA.. 1998. Phylogeographic studies in plants: problems and prospects. Molecular Ecology 7: 465–474.
Schwarz G. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461–464.
Shaw J, Lickey EB, Schilling EE, Small RL.. 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. American Journal of Botany 94: 275–288. PubMed
Siqueiros-Delgado EM, Ainouche M, Columbus JT, Ainouche A.. 2013. Phylogeny of the Bouteloua curtipendula complex (Poaceae: Chloridoideae) based on nuclear ribosomal and plastid DNA sequences from diploid taxa. Systematic Botany 38: 379–389.
Stapf O. 1899. Anthoxanthum In: Harvey WH, Sonder OW, eds. Flora Capensis. Dublin: Hodges, Smith and Co, 465–468.
Suc J-P. 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307: 429–432.
Sun G. 2014. Molecular phylogeny revealed complex evolutionary process in Elymus species. Journal of Systematics and Evolution 52: 706–711.
Surina B, Pfanzelt S, Einzmann HJR, Albach DC.. 2014. Bridging the Alps and the Middle East: evolution, phylogeny and systematics of the genus Wulfenia (Plantaginaceae). Taxon 63: 843–858.
Swofford DL. 2002. Phylogenetic analysis using parsimony (*and other methods). Sunderland, MA: Sinauer Associates.
Taberlet P, Gielly L, Pautou G, Bouvet J.. 1991. Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Molecular Biology 17: 1105–1109. PubMed
Teppner H. 1970. Caryotypes of European, perennial species of Gramineae genus Anthoxanthum. Osterreichische Botanische Zeitschrift 118: 280–292.
Teppner H. 1998. Anthoxanthum maderense spec. nova and A. odoratum (Poaceae-Aveneae) from Madeira and their chromosome morphology. Phyton-Annales Rei Botanicae 38: 307–321.
Thompson JD. 2005. Plant evolution in the Mediterranean. Oxford: Oxford University Press.
Tomasello S, Álvarez I, Vargas P, Oberprieler C.. 2015. Is the extremely rare Iberian endemic plant species Castrilanthemum debeauxii (Compositae, Anthemideae) a ‘living fossil’? Evidence from a multi-locus species tree reconstruction. Molecular Phylogenetics and Evolution 82: 118–130. PubMed
Triplett JK, Clark LG, Fisher AE, Wen J.. 2014. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytologist 204: 66–73. PubMed
Tutin T. 1980. Anthoxanthum L In: Tutin T, Heywood V, Burges N, et al., eds. Flora Europaea, Vol.5 Cambridge: Cambridge University Press.
Valdés B. 1973. Revisión de las especies anuales del género Anthoxanthum (Graminae). Lagascalia 3: 99–141.
Watson L, Dallwitz MJ.. 1992. The grass genera of the world. Wallingford: CAB International.
Winkler M, Tribsch A, Schneeweiss GM, et al.2012. Tales of the unexpected: phylogeography of the arctic-alpine model plant Saxifraga oppositifolia (Saxifragaceae) revisited. Molecular Ecology 21: 4618–4630. PubMed
Wissemann V. 2002. Molecular evidence for allopolyploid origin of the Rosa canina-complex (Rosaceae, Rosoideae). Journal of Applied Botany 76: 176–178.
Wolfe KH, Li WH, Sharp PM.. 1987. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proceedings of the National Academy of Sciences of the United States of America 84: 9054–9058. PubMed PMC
Wölk A, Winterfeld G, Röser M.. 2015. Genome evolution in a Mediterranean species complex: phylogeny and cytogenetics of Helictotrichon (Poaceae) allopolyploids based on nuclear DNA sequences (rDNA, topoisomerase gene) and FISH. Systematics and Biodiversity 13: 326–345.
Zachos J, Pagani M, Sloan L, Thomas E, Billups K.. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292: 686–693. PubMed
Záveská E, Fér T, Šída O, Krak K, Marhold K, Leong-Skornickova J.. 2012. Phylogeny of Curcuma (Zingiberaceae) based on plastid and nuclear sequences: proposal of the new subgenus Ecomata. Taxon 61: 747–763.
Zuo H, Wu P, Wu D, Sun G.. 2015. Origin and reticulate evolutionary process of wheatgrass Elymus trachycaulus (Triticeae: Poaceae). PLoS One 10: e0125417. PubMed PMC