Fine structure and transcription dynamics of bread wheat ribosomal DNA loci deciphered by a multi-omics approach
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35092350
DOI
10.1002/tpg2.20191
Knihovny.cz E-resources
- MeSH
- Bread * MeSH
- Polyploidy MeSH
- Triticum * genetics MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Ribosomal genetics MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA, Ribosomal MeSH
- RNA, Ribosomal MeSH
Three out of four RNA components of ribosomes are encoded by 45S ribosomal DNA (rDNA) loci, which are organized as long head-to-tail tandem arrays of nearly identical units, spanning several megabases of sequence. Due to this structure, the rDNA loci are the major sources of gaps in genome assemblies, and gene copy number, sequence composition, and expression status of particular arrays remain elusive, especially in complex genomes harboring multiple loci. Here we conducted a multi-omics study to decipher the 45S rDNA loci in hexaploid bread wheat. Coupling chromosomal genomics with optical mapping, we reconstructed individual rDNA arrays, enabling locus-specific analyses of transcription activity and methylation status from RNA- and bisulfite-sequencing data. We estimated a total of 6,650 rDNA units in the bread wheat genome, with approximately 2,321, 3,910, 253, and 50 gene copies located in short arms of chromosomes 1B, 6B, 5D, and 1A, respectively. Only 1B and 6B loci contributed substantially to rRNA transcription at a roughly 2:1 ratio. The ratio varied among five tissues analyzed (embryo, coleoptile, root tip, primary leaf, mature leaf), being the highest (2.64:1) in mature leaf and lowest (1.72:1) in coleoptile. Cytosine methylation was considerably higher in CHG context in the silenced 5D locus as compared with the active 1B and 6B loci. In conclusion, a fine genomic organization and tissue-specific expression of rDNA loci were deciphered, for the first time, in a complex polyploid species. The results are discussed in the context of wheat evolution and transcription regulation.
See more in PubMed
Akpinar, B. A., Yuce, M., Lucas, S., Vrána, J., Burešová, V., Doležel, J., & Budak, H. (2015). Molecular organization and comparative analysis of chromosome 5B of the wild wheat ancestor Triticum dicoccoides. Scientific Reports, 5, 10763. https://doi.org/10.1038/srep10763
Alonge, M., Shumate, A., Puiu, D., Zimin, A. V., & Salzberg, S. L. (2020). Chromosome-scale assembly of the bread wheat genome reveals thousands of additional gene copies. Genetics, 216(2), 337-348. https://doi.org/10.1007/BF00303905
Appels, R., & Dvořák, J. (1982). The wheat ribosomal DNA spacer: Its structure and variation in populations and among species. Theoretical and Applied Genetics, 63, 337-348. https://doi.org/10.1007/BF00303905
Cermeño, M. C., Orellana, J., Santos, J. L., & Lacadena, J. R. (1974). Nucleolar organizer activity in wheat, rye, and derivatives analyzed by a silver-staining procedure. Chromosoma, 89(5), 370-376. https://doi.org/10.1007/BF00331254
Chandrasekhara, C., Mohannath, G., Blevins, T., Pontvianne, F., & Pikaard, C. S. (2016). Chromosome-specific NOR inactivation explains selective rRNA gene silencing and dosage control in Arabidopsis. Genes and Development, 30(2), 177-190. https://doi.org/10.1101/gad.273755.115
Chapman, J. A., Mascher, M., Buluc, A., Barry, K., Georganas, E., Session, A., Strnadova, V., Jenkins, J., Sehgal, S., Oliker, L., Schmutz, J., Yelick, K. A., Scholz, U., Waugh, R., Poland, J. A., Muehlbauer, G. J., Stein, N., & Rokhsar, D. S. (2015). A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biology, 16, 26. https://doi.org/10.1186/s13059-015-0582-8
Chen, Z. J., & Pikaard, C. S. (1997). Transcriptional analysis of nucleolar dominance in polyploid plants: Biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proceedings of the National Academy of Science of the United States of America, 94(7), 3442-3447. https://doi.org/10.1073/pnas.94.7.3442
Clavijo, B. J., Venturini, L., Schudoma, C., Accinelli, G. G., Kaithakottil, G., Wright, J., Borrill, P., Kettleborough, G., Heavens, D., Chapman, H., Lipscombe, J., Barker, T., Lu, F. H., McKenzie, N., Raats, D., Ramirez-Gonzalez, R. H., Coince, A., Peel, N., Percival-Alwyn, L., …, & Clark, M. D. (2017). An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations. Genome Research, 27(5), 885-896. https://doi.org/10.1101/gr.217117.116
Crosby, A. R. (1957). Nucleolar activity of lagging chromosomes in wheat. American Journal of Botany, 44(10), 813-822. https://doi.org/10.1002/j.1537-2197.1957.tb08268.x
Darvey, N. L., & Driscoll, C. J. (1972). Nucleolar behavior in Triticum. Chromosoma, 36, 131-139. https://doi.org/10.1007/bf00285208
Dobešová, E., Malinská, H., Matyášek, R., Leitch, A. R., Soltis, D. E., Soltis, P. S., & Kovařík, A. (2015). Silenced rRNA genes are activated and substitute for partially eliminated active homeologs in the recently formed allotetraploid, Tragopogon mirus (Asteraceae). Heredity, 114(3), 356-365. https://doi.org/10.1038/hdy.2014.111
Doležel, J., Čížková, J., Šimková, H., & Bartoš, J. (2018). One major challenge of sequencing large plant genomes is to know how big they really are. International Journal of Molecular Sciences, 19(11), 3554. https://doi.org/10.3390/ijms19113554
Flavell, R. B., & O'Dell, M. (1976). Ribosomal RNA genes on homoeologous chromosomes of groups 5 and 6 in hexaploid wheat. Heredity, 37, 377-385. https://doi.org/10.1038/hdy.1976.102
Flavell, R. B., O'Dell, M., & Thompson, W. F. (1988). Regulation of cytosine methylation in ribosomal DNA and nucleolus organizer expression in wheat. Journal of Molecular Biology, 204(3), 523-534. https://doi.org/10.1016/0022-2836(88)90352-X
Fluch, S., Kopecky, D., Burg, K., Šimokvá, H., Taudien, S., Petzold, A., Kubalakova, M., Platzer, M., Berenyi, M., Krainer, S., Dolezel, J., & Lelley, T. (2012). Sequence composition and gene content of the short arm of rye (Secale cereale) chromosome 1. Plos One, 7(2), E30784. https://doi.org/10.1371/journal.pone.0030784
Garcia, S., Garnate, T., & Kovařík, A. (2012). Plant rDNA database: Ribosomal DNA loci information goes online. Chromosoma, 121(4), 389-394. https://doi.org/10.1007/s00412-012-0368-7
Gerlach, W. L., & Bedbrook, J. R. (1979). Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Research, 7(7), 1869-1885. https://doi.org/10.1093/nar/7.7.1869
Guo, X., & Han, F. (2014). Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell, 26(11), 4311-4327. https://doi.org/10.1105/tpc.114.129841
Handa, H., Kanamori, H., Tanaka, T., Murata, K., Kobayashi, F., Robinson, S. J., Koh, C. S., Pozniak, C. J., Sharpe, A. G., Paux, E., Consortium I. W. G. S., Wu, J., & Nasuda, S. (2018). Structural features of two major nucleolar organizer regions (NORs), Nor-B1 and Nor-B2, and chromosome-specific rRNA gene expression in wheat. Plant Journal, 96(6), 1148-1159. https://doi.org/10.1111/tpj.14094
International Wheat Genome Sequencing Consortium. (2014). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science, 345(6194), 1251788. https://doi.org/10.1126/science.1251788
International Wheat Genome Sequencing Consortium. (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361(6403), eaar7191. https://doi.org/10.1126/science.aar7191
Kapustová, V., Tulpová, Z., Toegelová, H., Novák, P., Macas, J., Karafiátová, M., Hřibová, E., Doležel, J., & Šimková, H. (2019). The dark matter of large cereal genomes: Long tandem repeats. International Journal of Molecular Sciences, 20(10), 2483. https://doi.org/10.3390/ijms20102483
Komarova, N. Y., Grabe, T., Huigen, D. J., Hemleben, V., & Volkov, R. A. (2004). Organization, differential expression, and methylation of rDNA in artificial Solanum allopolyploids. Plant Molecular Biology, 56(3), 439-463. https://doi.org/10.1007/s11103-004-4678-x
Krueger, F., & Andrews, S. R. (2011). Bismark: A flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics, 27(11), 1571-1572. https://doi.org/10.1093/bioinformatics/btr167
Kubaláková, M., Vrána, J., Čihalíková, J., Šimková, H., & Doležel, J. (2002). Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 104(8), 1362-1372. https://doi.org/10.1007/s00122-002-0888-2
Lam, E. T., Hastie, A., Lin, C., Ehrlich, D., Das, S. K., Austin, M. D., Deshpande, P., Cao, H., Nagarajan, N., Xiao, M., & Kwok, P. Y. (2012). Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nature Biotechnology, 30(8), 771-776. https://doi.org/10.1038/nbt.2303
Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357-359. https://doi.org/10.1038/nmeth.1923
Lassner, M., Anderson, O., & Dvořák, J. (1987). Hypervariation associated with a 12-nucleotide direct repeat and inferences on intergenomic homogenization of ribosomal-RNA gene spacers based on the DNA-sequence of a clone from the wheat NOR-D3 locus. Genome, 29(5), 770-781. https://doi.org/10.1139/g87-130
Leitch, A. R., Mosgoller, W., Shi, M., & Heslop-Harrison, J. S. (1992). Different patterns of rDNA organization at interphase in nuclei of wheat and rye. Journal of Cell Science, 101, 751-757.
Lindenbaum, P. (2015). JVarkit: Java-based utilities for Bioinformatics. Figshare. https://doi.org/10.6084/m9.figshare.1425030.v1
Lindroth, A. M., Shultis, D., Jasencakova, Z., Fuchs, J., Johnson, L., Schubert, D., Patnaik, D., Pradhan, S., Goodrich, J., Schbert, I., Jenuwein, T., Khorasanizadeh, S., & Jacobsen, S. E. (2004). Dual histone H3 methylation marks at lysines 9 and 27 required for interaction with CHROMOMETHYLASE3. EMBO Journal, 23(21), 4286-96. https://doi.org/10.1038/sj.emboj.7600430
Mathieu, O., Jasebcakova, Z., Vaillant, I., Gendrel, A. V., Colot, V., Schubert, I., & Tourmente, S. (2003). Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell, 15(12), 2929-2939. https://doi.org/10.1105/tpc.017467
Martini, G., & Flavell, R. (1985). The control of nucleolus volume in wheat, a genetic study at three developmental stages. Heredity, 54, 111-120. https://doi.org/10.1038/hdy.1985.15
Middleton, C. P., Senerchia, N., Stein, N., Akhunov, E. D., Keller, B., Wicker, T., & Kilian, B. (2014). Sequencing of chloroplast genomes from wheat, barley, rye, and their relatives provides a detailed insight into the evolution of the Triticeae tribe. Plos One, 9(3), e85761. https://doi.org/10.1371/journal.pone.0085761
Mukai, Y., Endo, T. R., & Gill, B. S. (1991). Physical mapping of the 18S.26S rRNA multigene family in common wheat: Identification of a new locus. Chromosoma, 100, 71-78. https://doi.org/10.1007/bf00418239
Nelson, J. O., Watase, G. J., Warsinger-Pepe, N., & Yamashita, Y. M. (2019). Mechanisms of rDNA copy number maintenance. Trends in Genetics, 32(10), 734-742. https://doi.org/10.1016/j.tig.2019.07.006
Novák, P., Neumann, P., Pech, J., Steinhaisl, J., & Macas, J. (2013). RepeatExplorer: A Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics, 29(6), 792-793. https://doi.org/10.1093/bioinformatics/btt054
Nurk, S., Koren, S., Rhie, A., Rautiainen, M., Bzikadze, A. V., Mikheenko, A., Vollger, M. R., Altemose, N., Uralsky, L., Gershman, A., Aganezov, S., Hoyt, S. J., Diekhans, M., Logsdon, G. A., Alonge, M., Antonarakis, S. E., Borchess, M., Bouffard, G. G., Brooks, S. Y., …, & Phillipy, A. M. (2021). The complete sequence of human genome. bioRxiv, https://doi.org/10.1101/2021.05.26.445798
Pontvianne, F., Abou-Ellail, M., Douet, J., Comella, P., Matia, I., Chandrasekhana, C., Debures, A., Blevins, T., Cooke, R., Medina, F. J., Tourmemte, S., Pikaard, C. S., & Sáez-Vásquez, J. (2010). Nucleolin is required for DNA methylation state and the expression of rRNA gene variants in Arabidopsis thaliana. PLoS Genetics, 6(11), e1001225. https://doi.org/10.1371/journal.pgen.1001225
Pruitt, R. E., & Meyerowitz, E. M. (1986). Characterization of the genome of Arabidopsis thaliana. Journal of Molecular Biology, 187(2), 169-183. https://doi.org/10.1016/0022-2836(86)90226-3
Rabanal, F. A., Nizhynska, V., Mandáková, T., Novikova, P. Y., Lysak, M. A., Mott, R., & Nordborg, M. (2017). Unstable inheritance of 45S rRNA genes in Arabidopsis thaliana. G3-Genes Genome Genetics, 7(4), 1201-1209. https://doi.org/10.1534/g3.117.040204
Rogers, S. O., & Bendich, A. J. (1987). Heritability and variability in ribosomal RNA genes of Vicia faba. Genetics, 117(2), 285-295.
Sardana, R., O'Dell, M., & Flavell, R. (1993). Correlation between the size of the intergenic regulatory region, the status of cytosine methylation of rRNA genes, and nucleolar expression in wheat. Molecular and General Genetics, 236(2-3), 155-162. https://doi.org/10.1007/BF00277107
Sato, K., Abe, F., Mascher, M., Haberer, G., Gundlach, H., Spannagl, M., Shirasawa, K., & Isobe, S. (2021). Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Research, 28(3), dsab008. https://doi.org/10.1093/dnares/dsab008
Sears, E. R., & Sears, L. M. S. (1978). The telocentric chromosomes of common wheat: Proceedings of the 5th International Wheat Genetics Symposium, New Delhi, 389-407.
Sims, J., Sestini, G., Elgert, C., von Haeseler, A., & Schlögelhofer, P. (2021). Sequencing of the Arabidopsis NOR2 reveals its distinct organization and tissue-specific rRNA ribosomal variants. Nature Communications, 12(1), 387. https://doi.org/10.1038/s41467-020-20728-6
Sochorová, J., Garcia, S., Galvez, F., Symonova, R., & Kovařík, A. (2018). Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma, 127(1), 141-150. https://doi.org/10.1007/s00412-017-0551-8
Staňková, H., Hastie, A. R., Chan, S., Vrána, J., Tulpová, Z., Kubaláková, M., Visendi, P., Hayashi, S., Luo, M., Batley, J., Edwards, D., Doležel, J., & Šimková, H. (2016). BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes. Plant Biotechnology Journal, 14(7), 1523-1531. https://doi.org/10.1111/pbi.12513
Tanaka, T., Kobayashi, F., Joshi, G. P., Onuki, R., Sakai, H., Kanamori, H., Wu, J., Simkova, H., Nasuda, S., Endo, T. R., Hayakawa, K., Doležel, J., Ogihara, Y., Itoh, T., Matsumoto, T., & Handa, H. (2014). Next-generation survey sequencing and the molecular organization of wheat chromosome 6B. DNA Research, 21(2), 103-114. https://doi.org/10.1093/dnares/dst041
Vincentz, M., & Flavell, R. B. (1989). Mapping of ribosomal RNA transcripts in wheat. Plant Cell, 1(6), 579-589. https://doi.org/10.1105/tpc.1.6.579
Wang, W. C., Wan, T., Becher, H., Kuderova, A., Leitch, I. J., Garcia, S., & Kovařík, A. (2019). Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Annals of Botany, 123(5), 767-781. https://doi.org/10.1093/aob/mcy172
Zhu, T., Wang, L., Rimbert, H., Rodriguez, J. C., Deal, K. R., De Oliviera, R., Choulet, F., Keeble-Gagnère, G., Tibbits, J., Rogers, J., Eversole, K., Appels, R., Gu, Y. Q., Mascher, M., Dvorak, J., & Luo, M. G. (2021). Optical maps refine the bread wheat Triticum aestivum cv. Chinese Spring genome assembly. The Plant Journal, 107(1), 303-314. https://doi.org/10.1111/tpj.15289
Zwyrtková, J., Šimková, H., & Doležel, J. (2021). Chromosome genomics uncovers plant genome organization and function. Biotechnology Advances, 46, 107659. https://doi.org/10.1016/j.biotechadv.2020.107659
Insight into chromatin compaction and spatial organization in rice interphase nuclei
Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between?
Flow Sorting-Assisted Optical Mapping