Evolutionary plasticity of restorer-of-fertility-like proteins in rice
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27775031
PubMed Central
PMC5075784
DOI
10.1038/srep35152
PII: srep35152
Knihovny.cz E-zdroje
- MeSH
- Brachypodium genetika MeSH
- chromozomy rostlin genetika MeSH
- genom rostlinný genetika MeSH
- neplodnost rostlin genetika MeSH
- rostlinné geny genetika MeSH
- rostlinné proteiny genetika MeSH
- rýže (rod) genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
Hybrid seed production in rice relies on cytoplasmic male sterility (CMS) induced by specific mitochondrial proteins, whose deleterious effects are suppressed by nuclear Restorer of Fertility (RF) genes. The majority of RF proteins belong to a specific clade of the RNA-binding pentatricopeptide repeat protein family. We have characterised 'restorer-of-fertility-like' (RFL) sequences from 13 Oryza genomes and the Brachypodium distachyon genome. The majority of the RFL sequences are found in genomic clusters located at two or three chromosomal loci with only a minor proportion being present as isolated genes. The RFL genomic cluster located on Oryza chromosome 10, the location of almost all known active rice RF genes, shows extreme variation in structure and gene content between species. We show evidence for homologous recombination events as an efficient mechanism for generating the huge repertoire of RNA sequence recognition motifs within RFL proteins and a major driver of RFL sequence evolution. The RFL sequences identified here will improve our understanding of the molecular basis of CMS and fertility restoration in plants and will accelerate the development of new breeding strategies.
Zobrazit více v PubMed
Birky C. W. The inheritance of genes in mitochondria and chloroplasts: Laws, mechanisms, and models. Annu Rev Genet 35, 125–148, 10.1146/annurev.genet.35.102401.090231 (2001). PubMed DOI
Greiner S. & Bock R. Tuning a menage a trois: Co-evolution and co-adaptation of nuclear and organellar genomes in plants. Bioessays 35, 354–365, 10.1002/bies.201200137 (2013). PubMed DOI
Touzet P. & Budar F. Unveiling the molecular arms race between two conflicting genomes in cytoplasmic male sterility? Trends Plant Sci 9, 568–570, 10.1016/j.tplants.2004.10.001 (2004). PubMed DOI
Chase C. D. Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends Genet 23, 81–90, 10.1016/j.tig.2006.12.004 (2007). PubMed DOI
Chen L. & Liu Y. G. Male sterility and fertility restoration in crops. Annu Rev Plant Biol 65, 579–606, 10.1146/annurev-arplant-050213-040119 (2014). PubMed DOI
Hanson M. R. & Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16, S154–169, 10.1105/tpc.015966 (2004). PubMed DOI PMC
Akagi H., Sakamoto M., Shinjyo C., Shimada H. & Fujimura T. A unique sequence located downstream from the rice mitochondrial atp6 may cause male-sterility. Curr Genet 25, 52–58, 10.1007/Bf00712968 (1994). PubMed DOI
Wang Z. H. et al.. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell 18, 676–687, 10.1105/tpc.105.038240 (2006). PubMed DOI PMC
Guo J. X. & Liu Y. G. The genetic and molecular basis of cytoplasmic male sterility and fertility restoration in rice. Chin Sci Bull 54, 2404–2409, 10.1007/s11434-009-0322-0 (2009). DOI
Schnable P. S. & Wise R. P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci 3, 175–180, 10.1016/S1360-1385(98)01235-7 (1998). DOI
Dahan J. & Mireau H. The Rf and Rf-like PPR in higher plants, a fast-evolving subclass of PPR genes. RNA Biol 10, 1469–1476, 10.4161/rna.25568 (2013). PubMed DOI PMC
Hu J. et al.. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic male-sterile lines via a complex with the glycine-rich protein GRP162. Plant Cell 24, 109–122, 10.1105/tpc.111.093211 (2012). PubMed DOI PMC
Huang W. et al.. Pentatricopeptide-repeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc Natl Acad Sci USA 112, 14984–14989, 10.1073/pnas.1511748112 (2015). PubMed DOI PMC
Fujii S. et al.. The Restorer-of-fertility-like 2 pentatricopeptide repeat protein and RNase P are required for the processing of mitochondrial orf291 RNA in Arabidopsis. Plant J, 10.1111/tpj.13185 (2016). PubMed DOI
Stoll B. & Binder S. Two NYN domain containing putative nucleases are involved in transcript maturation in Arabidopsis mitochondria. Plant J, 10.1111/tpj.13111 (2015). PubMed DOI
Fujii S., Bond C. S. & Small I. D. Selection patterns on restorer-like genes reveal a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc Natl Acad Sci USA 108, 1723–1728, 10.1073/pnas.1007667108 (2011). PubMed DOI PMC
Barkan A. & Small I. Pentatricopeptide repeat proteins in plants. Annu Rev Plant Biol 65, 415–442, 10.1146/annurev-arplant-050213-040159 (2014). PubMed DOI
Schmitz-Linneweber C. & Small I. Pentatricopeptide repeat proteins: a socket set for organelle gene expression. Trends Plant Sci 13, 663–670, 10.1016/j.tplants.2008.10.001 (2008). PubMed DOI
Lurin C. et al.. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16, 2089–2103, 10.1105/tpc.104.022236 (2004). PubMed DOI PMC
Barkan A. et al.. A combinatorial amino acid code for RNA recognition by pentatricopeptide repeat proteins. PLoS Genet 8, 10.1371/journal.pgen.1002910 (2012). PubMed DOI PMC
Nakamura T., Yagi Y. & Kobayashi K. Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. Plant Cell Physiol 53, 1171–1179, 10.1093/pcp/pcs069 (2012). PubMed DOI
Yagi Y., Hayashi S., Kobayashi K., Hirayama T. & Nakamura T. Elucidation of the RNA recognition code for pentatricopeptide repeat proteins involved in organelle RNA editing in plants. PLoS One 8, 10.1371/journal.pone.0057286 (2013). PubMed DOI PMC
Shen C. C. et al.. Specific RNA recognition by designer pentatricopeptide repeat protein. Mol Plant 8, 667–670, 10.1016/j.molp.2015.01.001 (2015). PubMed DOI
Yagi Y., Nakamura T. & Small I. The potential for manipulating RNA with pentatricopeptide repeat proteins. Plant J 78, 772–782, 10.1111/tpj.12377 (2014). PubMed DOI
Shen C. et al.. Structural basis for specific single-stranded RNA recognition by designer pentatricopeptide repeat proteins. Nat Commun 7, 11285, 10.1038/ncomms11285 (2016). PubMed DOI PMC
Akagi H. et al.. Positional cloning of the rice Rf-1 gene, a restorer of BT-type cytoplasmic male sterility that encodes a mitochondria-targeting PPR protein. Theor Appl Genet 108, 1449–1457, 10.1007/s00122-004-1591-2 (2004). PubMed DOI
Kazama T. & Toriyama K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett 544, 99–102, 10.1016/S0014-5793(03)00480-0 (2003). PubMed DOI
Komori T. et al.. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J 37, 315–325, 10.1111/j.1365-313X.2004.01961.x (2004). PubMed DOI
Luo D. P. et al.. A detrimental mitochondrial-nuclear interaction causes cytoplasmic male sterility in rice. Nat Genet 45, 573–U157, 10.1038/ng.2570 (2013). PubMed DOI
Ahmadikhah A. & Karlov G. I. Molecular mapping of the fertility-restoration gene Rf4 for WA-cytoplasmic male sterility in rice. Plant Breed 125, 363–367, 10.1111/j.1439-0523.2006.01246.x (2006). DOI
Lu Y., Virmani S. S., Zhang G., Bharaj T. S. & Huang N. Mapping of the Rf-3 nuclear fertility-restoring gene for WA cytoplasmic male sterility in rice using RAPD and RFLP markers. Theor Appl Genet 94, 27–33, 10.1007/s001220050377 (1997). PubMed DOI
Kazama T. & Toriyama K. A fertility restorer gene, Rf4, widely used for hybrid rice breeding encodes a pentatricopeptide repeat protein. Rice (N Y) 7, 10.1186/s12284-014-0028-z (2014). PubMed DOI PMC
Tang H. W. et al.. The rice restorer Rf4 for wild-abortive cytoplasmic male sterility encodes a mitochondrial-localized PPR protein that functions in reduction of WA352 transcripts. Mol Plant 7, 1497–1500, 10.1093/mp/ssu047 (2014). PubMed DOI
Jordan D. R., Mace E. S., Henzell R. G., Klein P. E. & Klein R. R. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor Appl Genet 120, 1279–1287, 10.1007/s00122-009-1255-3 (2010). PubMed DOI
Jordan D. R. et al.. Mapping and characterization of Rf 5: a new gene conditioning pollen fertility restoration in A1 and A2 cytoplasm in sorghum (Sorghum bicolor (L.) Moench). Theor Appl Genet 123, 383–396, 10.1007/s00122-011-1591-y (2011). PubMed DOI
Klein R. R. et al.. Fertility restorer locus Rf1 [corrected] of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the colinear region of rice chromosome 12. Theor Appl Genet 111, 994–1012, 10.1007/s00122-005-2011-y (2005). PubMed DOI
Ui H. et al.. High-resolution genetic mapping and physical map construction for the fertility restorer Rfm1 locus in barley. Theor Appl Genet 128, 283–290, 10.1007/s00122-014-2428-2 (2015). PubMed DOI
Duvick D. N., Snyder R. J. & Anderson E. G. The chromosomal location of Rfl, a restorer gene for cytoplasmic pollen sterile maize. Genetics 46, 1245–1252 (1961). PubMed PMC
Kamps T. L. & Chase C. D. RFLP mapping of the maize gametophytic restorer-of-fertility locus (rf3) and aberrant pollen transmission of the nonrestoring rf3 allele. Theor Appl Genet 95, 525–531, DOI 10.1007/s001220050593 (1997). DOI
Sisco P. H. Duplications complicate genetic-mapping of Rf4, a restorer gene for cms-C cytoplasmic male-sterility in corn. Crop Sci 31, 1263–1266 (1991).
Cheng S. F. et al.. Redefining the structural motifs that determine RNA binding and RNA editing by pentatricopeptide repeat proteins in land plants. Plant J 85, 532–547, 10.1111/tpj.13121 (2016). PubMed DOI
Sykes T. et al.. In-silico identification of candidate genes for fertility restoration in cytoplasmic male sterile perennial ryegrass (Lolium perenne L.). Genome Biol Evol, 10.1093/gbe/evw047 (2016). PubMed DOI PMC
Li L., Stoeckert C. J. Jr. & Roos D. S. OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13, 2178–2189, 10.1101/gr.1224503 (2003). PubMed DOI PMC
Emms D. M. & Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16, 157, 10.1186/s13059-015-0721-2 (2015). PubMed DOI PMC
Li W. & Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659, 10.1093/bioinformatics/btl158 (2006). PubMed DOI
Kazama T., Nakamura T., Watanabe M., Sugita M. & Toriyama K. Suppression mechanism of mitochondrial ORF79 accumulation by Rf1 protein in BT-type cytoplasmic male sterile rice. Plant J 55, 619–628, 10.1111/j.1365-313X.2008.03529.x (2008). PubMed DOI
Geddy R. & Brown G. G. Genes encoding pentatricopeptide repeat (PPR) proteins are not conserved in location in plant genomes and may be subject to diversifying selection. BMC Genomics 8, 130, 10.1186/1471-2164-8-130 (2007). PubMed DOI PMC
Mora J. R. H., Rivals E., Mireau H. & Budar F. Sequence analysis of two alleles reveals that intra-and intergenic recombination played a role in the evolution of the radish fertility restorer (Rfo). BMC Plant Biol 10, 10.1186/1471-2229-10-35 (2010). PubMed DOI PMC
Martin D. P., Murrell B., Golden M., Khoosal A. & Muhire B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol 1, vev003, 10.1093/ve/vev003 (2015). PubMed DOI PMC
Zhang R., Murat F., Pont C., Langin T. & Salse J. Paleo-evolutionary plasticity of plant disease resistance genes. BMC Genomics 15, 187, 10.1186/1471-2164-15-187 (2014). PubMed DOI PMC
Howell M. D. et al.. Genome-wide analysis of the RNA-DEPENDENT RNA POLYMERASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell 19, 926–942, 10.1105/tpc.107.050062 (2007). PubMed DOI PMC
Lu C. et al.. Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA 105, 4951–4956, 10.1073/pnas.0708743105 (2008). PubMed DOI PMC
Fahlgren N. et al.. High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS One 2, e219, 10.1371/journal.pone.0000219 (2007). PubMed DOI PMC
Li F. et al.. MicroRNA regulation of plant innate immune receptors. Proc Natl Acad Sci USA 109, 1790–1795, 10.1073/pnas.1118282109 (2012). PubMed DOI PMC
Shivaprasad P. V. et al.. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874, 10.1105/tpc.111.095380 (2012). PubMed DOI PMC
Zhai J. X. et al.. MicroRNAs as master regulators of the plant NB-LRR defense gene family via the production of phased, trans-acting siRNAs. Genes Dev 25, 2540–2553, 10.1101/gad.177527.111 (2011). PubMed DOI PMC
Huang J. Z., E Z. G., Zhang H. L. & Shu Q. Y. Workable male sterility systems for hybrid rice: Genetics, biochemistry, molecular biology, and utilization. Rice (N Y) 7, 13, 10.1186/s12284-014-0013-6 (2014). PubMed DOI PMC
Chen J. F. et al.. Whole-genome sequencing of Oryza brachyantha reveals mechanisms underlying Oryza genome evolution. Nat Commun 4, 10.1038/ncomms2596 (2013). PubMed DOI PMC
Zou X. H. et al.. Analysis of 142 genes resolves the rapid diversification of the rice genus. Genome Biol 9, 10.1186/gb-2008-9-3-r49 (2008). PubMed DOI PMC
Wambugu P. W., Brozynska M., Furtado A., Waters D. L. & Henry R. J. Relationships of wild and domesticated rices (Oryza AA genome species) based upon whole chloroplast genome sequences. Sci Rep 5, 10.1038/srep13957 (2015). PubMed DOI PMC
Huang F. et al.. Genetically characterizing a new indica cytoplasmic male sterility with Oryza glaberrima cytoplasm for its potential use in hybrid rice production. Crop Sci 53, 132–140, 10.2135/cropsci2012.07.0444 (2013). DOI
Wei H. & Wang Z. Engineering RNA-binding proteins with diverse activities. Wiley Interdiscip Rev RNA 6, 597–613, 10.1002/wrna.1296 (2015). PubMed DOI
Kersey P. J. et al.. Ensembl Genomes 2013: scaling up access to genome-wide data. Nucleic Acids Res 42, D546–D552, 10.1093/nar/gkt979 (2014). PubMed DOI PMC
Sakai H. et al.. Rice Annotation Project Database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54, e6, 10.1093/pcp/pcs183 (2013). PubMed DOI PMC
Rice P., Longden I. & Bleasby A. EMBOSS: The European molecular biology open software suite. Trends Genet 16, 276–277, 10.1016/S0168-9525(00)02024-2 (2000). PubMed DOI
Katoh K. & Toh H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899–1900, 10.1093/bioinformatics/btq224 (2010). PubMed DOI PMC
Price M. N., Dehal P. S. & Arkin A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490, 10.1371/journal.pone.0009490 (2010). PubMed DOI PMC
Kato H. et al.. Structural diversity and evolution of the Rf-1 locus in the genus Oryza. Heredity (Edinb) 99, 516–524, 10.1038/sj.hdy.6801026 (2007). PubMed DOI
The Role of Non-Coding RNAs in Cytoplasmic Male Sterility in Flowering Plants