Smartdust 3D-Printed Graphene-Based Al/Ga Robots for Photocatalytic Degradation of Explosives

. 2020 Aug ; 16 (33) : e2002111. [epub] 20200707

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32633050

Milli/micro/nanorobots are considered smart devices able to convert energy taken from different sources into mechanical movement and accomplish the appointed tasks. Future advances and realization of these tiny devices are mostly limited by the narrow window of material choices, the fuel requirement, multistep surface functionalization, rational structural design, and propulsion ability in complex environments. All these aspects call for intensive improvements that may speed up the real application of such miniaturized robots. 3D-printed graphene-based smartdust robots provided with a magnetic response and filled with aluminum/gallium molten alloy (Al/Ga) for autonomous motion are presented. These robots can swim by reacting with the surrounding environment without adding any fuel. Because their outer surface is coated with a hydrogel/photocatalyst (chitosan/carbon nitride, C3 N4 ) layer, these robots are used for the photocatalytic degradation of the picric acid as an explosive model molecule under visible light. The results show a fast and efficient degradation of picric acid that is attributed to a synergistic effect between the adsorption capability of the chitosan and the photocatalytic activity of C3 N4 particles. This work provides added insight into the large-scale fabrication, easy functionalization, and propulsion of tiny robots for environmental applications.

Zobrazit více v PubMed

a) S. Sengupta, M. E. Ibele, A. Sen, Angew. Chem., Int. Ed. 2012, 51, 8434;

b) J. Li, I. Rozen, J. Wang, ACS Nano 2016, 10, 5619;

c) M. Seifert, Angew. Chem., Int. Ed. 2017, 56, 7351;

d) A. Credi, Angew. Chem., Int. Ed. 2014, 53, 4274.

a) D. Yamamoto, A. Shioi, KONA Powder Part. J. 2015, 32, 2;

b) W. Z. Teo, M. Pumera, Chem. - Eur. J. 2016, 22, 14796.

a) J. Parmar, X. Ma, J. Katuri, J. Simmchen, M. M. Stanton, C. Trichet-Paredes, L. Soler, S. Sanchez, Sci. Technol. Adv. Mater. 2015, 16, 014802;

b) Y. Tu, F. Peng, D. A. Wilson, Adv. Mater. 2017, 29, 1701970;

c) H. Wang, M. Pumera, Chem. Rev. 2015, 115, 8704.

a) W. Gao, D. Kagan, O. S. Pak, C. Clawson, S. Campuzano, E. Chuluun-Erdene, E. Shipton, E. E. Fullerton, L. Zhang, E. Lauga, J. Wang, Small 2012, 8, 460;

b) C. Chen, E. Karshalev, J. Guan, J. Wang, Small 2018, 14, 1704252;

c) Q. Wang, R. Dong, C. Wang, S. Xu, D. Chen, Y. Liang, B. Ren, W. Gao, Y. Cai, ACS Appl. Mater. Interfaces 2019, 11, 6201.

a) Y. Guo, T. Park, J. W. Yi, J. Henzie, J. Kim, Z. Wang, B. Jiang, Y. Bando, Y. Sugahara, J. Tang, Y. Yamauchi, Adv. Mater. 2019, 31, 1807134;

b) Y. Guo, J. Tang, H. Qian, Z. Wang, Y. Yamauchi, Chem. Mater. 2017, 29, 5566;

c) Y. Guo, J. Tang, Z. Wang, Y.-M. Kang, Y. Bando, Y. Yamauchi, Nano Energy 2018, 47, 494.

a) F. Mou, C. Chen, H. Ma, Y. Yin, Q. Wu, J. Guan, Angew. Chem., Int. Ed. 2013, 52, 7208;

b) J. Li, V. V. Singh, S. Sattayasamitsathit, J. Orozco, K. Kaufmann, R. Dong, W. Gao, B. Jurado-Sanchez, Y. Fedorak, J. Wang, ACS Nano 2014, 8, 11118.

a) W. Gao, A. Pei, J. Wang, ACS Nano 2012, 6, 8432;

b) W. Gao, X. Feng, A. Pei, Y. Gu, J. Li, J. Wang, Nanoscale 2013, 5, 4696;

c) L. Wang, J. Chen, X. Feng, W. Zeng, R. Liu, L. Xiujing, Y. Ma, L. Wang, RSC Adv. 2016, 6, 65624;

d) H. Wang, G. Zhao, M. Pumera, J. Am. Chem. Soc. 2014, 136, 2719.

a) B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D. M. Spence, Anal. Chem. 2014, 86, 3240;

b) T. P. Mpofu, C. Mawere, M. Mukosera, Int. J. Sci. Res. 2014;

c) C. Schubert, M. C. Van Langeveld, L. A. Donoso, Brit. J. Ophthalmol. 2014, 98, 159;

d) C. L. Ventola, Pharm. Ther. 2014, 39, 704;

e) A. Ambrosi, M. Pumera, Chem. Soc. Rev. 2016, 45, 2740;

f) N. Bhattacharjee, A. Urrios, S. Kang, A. Folch, Lab Chip 2016, 16, 1720.

J.-Y. Lee, J. An, C. K. Chua, Appl. Mater. Today 2017, 7, 120.

a) E. Canessa, C. Fonda, M. Zennaro, N. Deadline, Low-Cost 3D Printing 2013, 11;

b) Z. X. Khoo, J. E. M. Teoh, Y. Liu, C. K. Chua, S. Yang, J. An, K. F. Leong, W. Y. Yeong, Virtual Phys. Prototyping 2015, 10, 103;

c) H. Ceylan, I. C. Yasa, O. Yasa, A. F. Tabak, J. Giltinan, M. Sitti, ACS Nano 2019, 13, 3353;

d) R. Bernasconi, E. Carrara, M. Hoop, F. Mushtaq, X. Chen, B. J. Nelson, S. Pané, C. Credi, M. Levi, L. Magagnin, Addit. Manuf. 2019, 28, 127;

e) M. Dong, X. Wang, X.-Z. Chen, F. Mushtaq, S. Deng, C. Zhu, H. Torlakcik, A. Terzopoulou, X.-H. Qin, X. Xiao, J. Puigmartí-Luis, H. Choi, A. P. Pêgo, Q.-D. Shen, B. J. Nelson, S. Pané, Adv. Funct. Mater. 2020, 30, 1910323;

f) X. Wang, X.-H. Qin, C. Hu, A. Terzopoulou, X.-Z. Chen, T.-Y. Huang, K. Maniura-Weber, S. Pané, B. J. Nelson, Adv. Funct. Mater. 2018, 28, 1804107;

g) R. D. Baker, T. Montenegro-Johnson, A. D. Sediako, M. J. Thomson, A. Sen, E. Lauga, I. S. Aranson, Nat. Commun. 2019, 10, 4932;

h) G. Vizsnyiczai, G. Frangipane, C. Maggi, F. Saglimbeni, S. Bianchi, R. Di Leonardo, Nat. Commun. 2017, 8, 15974;

i) C. C. J. Alcântara, S. Kim, S. Lee, B. Jang, P. Thakolkaran, J.-Y. Kim, H. Choi, B. J. Nelson, S. Pané, Small 2019, 15, 1805006.

j) W. Ma, H. Wang, Appl. Mater. Today 2019, 15, 263.

a) S. Baruah, M. N. Khan, J. Dutta, Environ. Chem. Lett. 2016, 14, 1;

b) K. R. Kunduru, M. Nazarkovsky, S. Farah, R. P. Pawar, A. Basu, A. J. Domb, Water Purification, Elsevier, Amsterdam 2017, p. 33;

c) X.-Y. Xue, R. Cheng, L. Shi, Z. Ma, X. Zheng, Environ. Chem. Lett. 2017, 15, 23.

a) J. G. S. Moo, M. Pumera, Chem. - Eur. J. 2015, 21, 58;

b) H. Eskandarloo, A. Kierulf, A. Abbaspourrad, Nanoscale 2017, 9, 13850;

c) B. Jurado-Sánchez, J. Wang, Environ. Sci.: Nano 2018, 5, 1530;

d) J. Parmar, D. Vilela, K. Villa, J. Wang, S. Sánchez, J. Am. Chem. Soc. 2018, 140, 9317;

e) F. Yu, Q. Hu, L. Dong, X. Cui, T. Chen, H. Xin, M. Liu, C. Xue, X. Song, F. Ai, T. Li, X. Wang, Sci. Rep. 2017, 7, 41169.

K. Villa, F. Novotný, J. Zelenka, M. P. Browne, T. Ruml, M. Pumera, ACS Nano 2019, 13, 8135.

R. Dong, Y. Hu, Y. Wu, W. Gao, B. Ren, Q. Wang, Y. Cai, J. Am. Chem. Soc. 2017, 139, 1722.

Y. Wu, R. Dong, Q. Zhang, B. Ren, Nano-Micro Lett. 2017, 9, 30.

B. Jurado-Sánchez, J. Wang, A. Escarpa, ACS Appl. Mater. Interfaces 2016, 8, 19618.

a) R. Dong, C. Wang, Q. Wang, A. Pei, X. She, Y. Zhang, Y. Cai, Nanoscale 2017, 9, 15027;

b) A. M. Pourrahimi, K. Villa, Y. Ying, Z. Sofer, M. Pumera, ACS Appl. Mater. Interfaces 2018, 10, 42688;

c) A. M. Pourrahimi, K. Villa, C. L. Manzanares Palenzuela, Y. Ying, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1808678.

K. Villa, C. L. M. Palenzuela, Z. Sofer, S. Matějková, M. Pumera, ACS Nano 2018, 12, 12482.

Y. Yuan, L. Zhang, J. Xing, M. I. B. Utama, X. Lu, K. Du, Y. Li, X. Hu, S. Wang, A. Genç, R. Dunin-Borkowski, J. Arbiol, Q. Xiong, Nanoscale 2015, 7, 12343.

C. Zhao, Q. Yan, S. Wang, P. Dong, L. Zhang, RSC Adv. 2018, 8, 27516.

A. Nithya, K. Jothivenkatachalam, S. Prabhu, K. Jeganathan, Mater. Sci. Forum 2014.

a) J. Byun, K. Landfester, K. A. I. Zhang, Chem. Mater. 2019, 31, 3381;

b) E. M. Ahmed, J. Adv. Res. 2015, 6, 105.

M. H. Farzana, S. Meenakshi, Ind. Eng. Chem. Res. 2014, 53, 55.

a) J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 2017, 391, 72;

b) C. Hu, Y.-R. Lin, H.-C. Yang, ChemSusChem 2019, 12, 1794.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...