Aerosol-assisted Chemical Vapor Deposition of Metal Oxide Structures: Zinc Oxide Rods
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články, audiovizuální média
PubMed
28994785
PubMed Central
PMC5752247
DOI
10.3791/56127
Knihovny.cz E-zdroje
- MeSH
- aerosoly MeSH
- katalýza MeSH
- oxid zinečnatý chemie MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- Názvy látek
- aerosoly MeSH
- oxid zinečnatý MeSH
Whilst columnar zinc oxide (ZnO) structures in the form of rods or wires have been synthesized previously by different liquid- or vapor-phase routes, their high cost production and/or incompatibility with microfabrication technologies, due to the use of pre-deposited catalyst-seeds and/or high processing temperatures exceeding 900 °C, represent a drawback for a widespread use of these methods. Here, however, we report the synthesis of ZnO rods via a non-catalyzed vapor-solid mechanism enabled by using an aerosol-assisted chemical vapor deposition (CVD) method at 400 °C with zinc chloride (ZnCl2) as the precursor and ethanol as the carrier solvent. This method provides both single-step formation of ZnO rods and the possibility of their direct integration with various substrate types, including silicon, silicon-based micromachined platforms, quartz, or high heat resistant polymers. This potentially facilitates the use of this method at a large-scale, due to its compatibility with state-of-the-art microfabrication processes for device manufacture. This report also describes the properties of these structures (e.g., morphology, crystalline phase, optical band gap, chemical composition, electrical resistance) and validates its gas sensing functionality towards carbon monoxide.
Institute of Physics of Material Academy of Science of Czech Republic
Instituto de Microelectrónica de Barcelona
Instituto de Microelectrónica de Barcelona ; SIX Research Centre Brno University of Technology;
Zobrazit více v PubMed
Kozuka Y, Tsukazaki A, Kawasaki M. Challenges and opportunities of ZnO-related single crystalline heterostructures. Appl Phys Rev. 2014;1(1):011303.
Wang ZL. Splendid One-Dimensional Nanostructures of Zinc Oxide: A New Nanomaterial Family for Nanotechnology. ACS Nano. 2008;2(10):1987–1992. PubMed
Pal J, Pal T. Faceted metal and metal oxide nanoparticles: design, fabrication and catalysis. Nanoscale. 2015;7(34):14159–14190. PubMed
Sun Y, et al. The Applications of Morphology Controlled ZnO in Catalysis. Catalysts. 2016;6(12):188.
Vallejos S, Umek P, Blackman C. AACVD Control parameters for selective deposition of tungsten oxide nanostrucutres. J Nanosci Nanotechnol. 2011;11:8214–8220. PubMed
Vallejos S, et al. Aerosol assisted chemical vapour deposition of gas sensitive SnO2and Au-functionalised SnO2nanorods via a non-catalysed vapour solid (VS) mechanism. Sci Rep. 2016;6:28464. PubMed PMC
Hou X, Choy KL. Processing and Applications of Aerosol-Assisted Chemical Vapor Deposition. Chem Vap Deposition. 2006;12(10):583–596.
Ling M, Blackman C. Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD) Phys Status Solidi C. 2015;12(7):869–877.
Vallejos S, et al. ZnO Rods with Exposed {100} Facets Grown via a Self-Catalyzed Vapor-Solid Mechanism and Their Photocatalytic and Gas Sensing Properties. ACS Appl Mater Inter. 2016;8(48):33335–33342. PubMed
Srikant V, Clarke DR. On the optical band gap of zinc oxide. J Appl Phys. 1998;83(10):5447–5451.
Gogurla N, Sinha AK, Santra S, Manna S, Ray SK. Multifunctional Au-ZnO Plasmonic Nanostructures for Enhanced UV Photodetector and Room Temperature NO Sensing Devices. Sci Rep. 2014;4:6481–6489. PubMed PMC
Sutka A, et al. A straightforward and "green" solvothermal synthesis of Al doped zinc oxide plasmonic nanocrystals and piezoresistive elastomer nanocomposite. RSC Advances. 2015;5(78):63846–63852.
Vallejos S, et al. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens Actuator B. 2016;235:525–534.
Bhachu DS, Sankar G, Parkin IP. Aerosol Assisted Chemical Vapor Deposition of Transparent Conductive Zinc Oxide Films. Chem Mater. 2012;24(24):4704–4710.
Chen S, Wilson RM, Binions R. Synthesis of highly surface-textured ZnO thin films by aerosol assisted chemical vapour deposition. J Mater Chem. A. 2015;3(11):5794–5797.
Murillo G, Rodríguez-Ruiz I, Esteve J. Selective Area Growth of High-Quality ZnO Nanosheets Assisted by Patternable AlN Seed Layer for Wafer-Level Integration. Cryst Growth Des. 2016;16(9):5059–5066.
Sosnowchik BD, Lin L, Englander O. Localized heating induced chemical vapor deposition for one-dimensional nanostructure synthesis. J Appl Phys. 2010;107(5)
Annanouch FE, et al. Localized aerosol-assisted CVD of nanomaterials for the fabrication of monolithic gas sensor microarrays. Sens Actuators, B. 2015;216:374–383.
Cerium Oxide-Tungsten Oxide Core-Shell Nanowire-Based Microsensors Sensitive to Acetone