Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

. 2016 Jun 23 ; 6 () : 28464. [epub] 20160623

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27334232

Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs.

Zobrazit více v PubMed

Bhushan B. Springer Handbook of Nanotechnology (Springer, Verlag, 2004).

Batzill M. & Diebold U. The surface and materials science of tin oxide. Prog. Surf. Sci. 79, 47–154 (2005).

Pan J., Shen H. & Mathur S. One-Dimensional SnO2 Nanostructures: Synthesis and Applications. J. Nanothecnology 2012, 12 (2012).

Barth S., Hernandez-Ramirez F., Holmes J. D. & Romano-Rodriguez A. Synthesis and applications of one-dimensional semiconductors. Prog. Mater Sci. 55, 563–627 (2010).

McAleer J. F., Moseley P. T., Norris J. O. W., Williams D. E. & Tofield B. C. Tin Dioxide Gas Sensors. Part 2.-The Role of Surface Additives. J. Chem. Soc., Faraday Trans. 1, 84, 441–457 (1988).

Vallejos S., Di Maggio F., Shujah T. & Blackman C. Chemical vapour deposition of gas sensitive metal oxides. Chemosensors 4, 4 (2016).

Ma Y.-J., Zhou F., Lu L. & Zhang Z. Low-temperature transport properties of individual SnO2 nanowires. Solid State Commun. 130, 313–316 (2004).

Mathur S., Barth S., Shen H., Pyun J.-C. & Werner U. Size-Dependent Photoconductance in SnO2 Nanowires. Small 1, 713–717 (2005). PubMed

Pan J., Xiao L., Shen H. & Mathur S. In Nanostructured Materials and Nanotechnology III 9–15 (John Wiley & Sons, Inc., 2010).

Thabethe B. S., Malgas G. F., Motaung D. E., Malwela T. & Arendse C. J. Self-Catalytic Growth of Tin Oxide Nanowires by Chemical Vapor Deposition Process. J. Nanomaterials 2013, 7 (2013).

Qu D. M. et al.. Nanowires and nanowire–nanosheet junctions of SnO2 nanostructures. Mater. Lett. 61, 2255–2258 (2007).

Qin D., Yan P., Li G., Xing J. & An Y. Self-construction of SnO2 cubes based on aggration of nanorods. Mater. Lett. 62, 2411–2414 (2008).

Ahn J.-H., Wang G. & Kim Y.-J. Facile synthesis of tin oxide nanofibres. Current Applied Physics 9, e176–e179 (2009).

Butt F. K. et al.. Metal-catalyzed synthesis of ultralong tin dioxide nanobelts: Electrical and optical properties with oxygen vacancy-related orange emission. Mater. Sci. Semicond. Process. 26, 388–394 (2014).

Müller R. et al.. Influence of precursor chemistry on morphology and composition of CVD-grown SnO2 nanowires. Chem. Mater. 24, 4028–4035 (2012).

Dai Z. R., Pan Z. W. & Wang Z. L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13, 9–24 (2003).

Budak S., Miao G. X., Ozdemir M., Chetry K. B. & Gupta A. Growth and characterization of single crystalline tin oxide (SnO2) nanowires. J. Cryst. Growth 291, 405–411 (2006).

Dai Z. R., Gole J. L., Stout J. D. & Wang Z. L. Tin oxide nanowires, nanoribbons, and nanotubes. J. Phys. Chem. B 106, 1274–1279 (2002).

Wang B., Yang Y. H., Wang C. X. & Yang G. W. Nanostructures and self-catalyzed growth of SnO2. J. Appl. Phys. 98 (2005).

Liu Z. et al.. Laser ablation synthesis and electron transport studies of tin oxide nanowires. Adv. Mater. 15, 1754–1757 (2003).

Kolmakov A., Zhang Y., Cheng G. & Moskovits M. Detection of CO and O2 using tin oxide nanowire sensors. Adv. Mater. 15, 997–1000 (2003).

Zheng M. et al.. Fabrication and structural characterization of large-scale uniform SnO2 nanowire array embedded in anodic alumina membrane. Chem. Mater. 13, 3859–3861 (2001).

Jiang X., Wang Y., Herricks T. & Xia Y. Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 14, 695–703 (2004).

Vayssieres L. & Graetzel M. Highly ordered SnO2 nanorod arrays from controlled aqueous growth. Angew. Chem. Int. Ed. 43, 3666–3670 (2004). PubMed

Liu Y. & Liu M. Growth of aligned square-shaped SnO2 tube arrays. Adv. Funct. Mater. 15, 57–62 (2005).

Yamazoe N., Sakai G. & Shimanoe K. Oxide semiconductor gas sensors. Catal. Surv. Asia 7, 63–75 (2003).

Vallejos S., Gràcia I., Figueras E. & Cané C. Catalyst-free vapor-phase method for direct Integration of gas sensing nanostructures with polymeric transducing platforms. J Nanomaterials 2014, 9 (2014).

Hou X. & Choy K. L. Processing and Applications of Aerosol-Assisted Chemical Vapor Deposition. Chem. Vap. Deposition 12, 583–596 (2006).

Vallejos S. et al.. Au nanoparticle-functionalised WO3 nanoneedles and their application in high sensitivity gas sensor devices. Chem. Commun. 47, 565–567 (2011). PubMed

Vallejos S. et al.. Single-step deposition of Au- and Pt-nanoparticle-functionalized tungsten oxide nanoneedles synthesized via aerosol-assisted CVD, and used for fabrication of selective gas microsensor arrays. Adv. Funct. Mater. 23, 1313–1322 (2013).

Annanouch F. E. et al.. Aerosol-assisted CVD-grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity-resilient detection of H2S. ACS Appl. Mater. Inter. 7, 6842–6851 (2015). PubMed

Vallejos S., Gràcia I., Figueras E. & Cané C. Nanoscale heterostructures based on Fe2O3@WO3-x nanoneedles and their direct integration into flexible transducing platforms for toluene sensing. ACS Appl. Mater. Inter. 7, 18638–18649 (2015). PubMed

Zhao J. et al.. Tin oxide thin films prepared by aerosol-assisted chemical vapor deposition and the characteristics on gas detection. Sens. Actuators, B 145, 788–793 (2010).

Stoycheva T. T. et al.. Aerosol-assisted CVD of SnO2 thin films for gas-sensor applications. Chem. Vap. Deposition 17, 247–252 (2011).

Wildsmith T., Hill M. S., Johnson A. L., Kingsley A. J. & Molloy K. C. Exclusive formation of SnO by low temperature single-source AACVD. Chem. Commun. 49, 8773–8775 (2013). PubMed

Syed Mansoor A., Syed Tajammul H., Shahzad Abu B., Jan M. & Naeem ur R. Effect of doping on the structural and optical properties of SnO2 thin films fabricated by aerosol assisted chemical vapor deposition. J. Phys.: Conf. Ser. 439, 012013 (2013).

Khan N. et al.. Synthesis and characterization of iron tin oxide thin films from single source bimetallic precursors. Polyhedron 69, 40–47 (2014).

Chew C., Bishop P., Salcianu C., Carmalt C. J. & Parkin I. P. Aerosol-assisted deposition of gold nanoparticle-tin dioxide composite films. RSC Adv. 4, 13182–13190 (2014).

Dharmadasa R., Wijayantha K. G. U. & Tahir A. A. ZnO–SnO2 composite anodes in extremely thin absorber layer (ETA) solar cells. J. Electroanal. Chem. 646, 124–132 (2010).

Bhachu D. S., Waugh M. R., Zeissler K., Branford W. R. & Parkin I. P. Textured fluorine-doped tin dioxide films formed by chemical vapour deposition. Chemistry – A European Journal 17, 11613–11621 (2011). PubMed

van Mol A. M. B., Chae Y., McDaniel A. H. & Allendorf M. D. Chemical vapor deposition of tin oxide: Fundamentals and applications. Thin Solid Films 502, 72–78 (2006).

Tucic A., Marinkovic Z. V., Mancic L., Cilense M. & Miloševic O. Pyrosol preparation and structural characterization of SnO2 thin films. J. Mater. Process. Technol. 143–144, 41–45 (2003).

Ling M. & Blackman C. Growth mechanism of planar or nanorod structured tungsten oxide thin films deposited via aerosol assisted chemical vapour deposition (AACVD). Phys. Status Solidi C 12, 869–877 (2015).

Dawei Y. & Baojun L. The study of rf plasma activated processes for stannic oxide thin film deposition. Vacuum 42, 919–922 (1991).

Han X. et al.. Synthesis of tin dioxide octahedral nanoparticles with exposed high-energy {221} facets and enhanced gas-sensing properties. Angew. Chem. 121, 9344–9347 (2009). PubMed

Das S., Kim D.-Y., Choi C.-M. & Hahn Y. B. Structural evolution of SnO2 nanostructure from core–shell faceted pyramids to nanorods and its gas-sensing properties. J. Cryst. Growth 314, 171–179 (2011).

Liu X., Zhang J., Guo X., Wang S. & Wu S. Core-shell [small alpha]-Fe2O3@SnO2/Au hybrid structures and their enhanced gas sensing properties. RSC Adv. 2, 1650–1655 (2012).

Patil P. S., Kawar R. K., Seth T., Amalnerkar D. P. & Chigare P. S. Effect of substrate temperature on structural, electrical and optical properties of sprayed tin oxide (SnO2) thin films. Ceram. Int. 29, 725–734 (2003).

McAleer J. F. et al.. Tin oxide based gas sensors. Mater. Chem. Phys. 17, 577–583 (1987).

Sergio T. Work function, electronegativity, and electrochemical behaviour of metals: II. Potentials of zero charge and “electrochemical” work functions. J. Electroanal. Chem. Interfacial Electrochem. 33, 351–378 (1971).

He T. & Yao J. Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547–4557 (2007).

McNesby J. R., Davis T. W. & Gordon A. S. Pyrolisis of mixtures of acetone and acetone-d6. J. Am. Chem. Soc. 76, 823–827 (1954).

Jasper A. W., Klippenstein S. J., Harding L. B. & Ruscic B. Kinetics of the reaction of methyl radical with hydroxyl radical methanol decomposition. J. Phys. Chem. A. 111, 3932–3950 (2007). PubMed

Norton T. S. & Dryer F. L. Towards a comprehensive mechanism for methanol pyrolisis. Int. J. Chem. Kinet. 22, 219–241 (1990).

An W. J., Thimsen E. & Biswas P. Aerosol-chemical vapor deposition method for synthesis of nanostructured metal oxide thin films with controlled morphology. J. Phys. Chem. Lett. 1, 249–253 (2009).

Pavelko R. G., Yuasa M., Kida T., Shimanoe K. & Yamazoe N. Impurity level in SnO2 materials and its impact on gas sensing properties. Sens. Actuators, B 210, 719–725 (2015).

Korotcenkov G., Blinov I., Brinzari V. & Stetter J. R. Effect of air humidity on gas response of SnO2 thin film ozone sensors. Sens. Actuators, B 122, 519–526 (2007).

Roldan Cuenya B. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films 518, 3127–3150 (2010).

Hübner M. et al.. The structure and behavior of platinum in SnO2-based sensors under working conditions. Angew. Chem. Int. Ed. 50, 2841–2844 (2011). PubMed

Miller D. R., Akbar S. A. & Morris P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: a review. Sens. Actuator, B 204, 250–272 (2014).

Yin X.-T. & Guo X.-M. Sensitivity and selectivity of (Au, Pt, Pd)-loaded and (In, Fe)-doped SnO2 sensors for H2 and CO detection. J Mater Sci: Mater Electron 25, 4960–4966 (2014).

Vallejos S. et al.. Micro-machined WO3-based sensors selective to oxidizing gases. Sens. Actuator B 132, 209–215 (2008).

Ansari S. G., Gosavi S. W., Gangal S. A., Karekar R. N. & Aiyer R. C. Characterization of SnO2-based H2 gas sensors fabricated by different deposition techniques. J Mater Sci: Mater Electron 8, 23–27 (1997).

Shen Y. et al.. Synthesis of SnO2 nanorods and application to H2 sensor. J. Alloys Compd. 593, 271–274 (2014).

Li C., Lv M., Zuo J. & Huang X. SnO2 highly sensitive CO gas sensor based on quasi-molecular-imprinting mechanism design. Sensors 15, 3789 (2015). PubMed PMC

Trung D. D. et al.. Effective decoration of Pd nanoparticles on the surface of SnO2 nanowires for enhancement of CO gas-sensing performance. J. Hazard. Mater. 265, 124–132 (2014). PubMed

Katoch A., Byun J.-H., Choi S.-W. & Kim S. S. One-pot synthesis of Au-loaded SnO2 nanofibers and their gas sensing properties. Sens. Actuators, B 202, 38–45 (2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...