Heteroepitaxy of Cerium Oxide Thin Films on Cu(111)

. 2015 Sep 18 ; 8 (9) : 6346-6359. [epub] 20150918

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28793567

An important part of fundamental research in catalysis is based on theoretical and modeling foundations which are closely connected with studies of single-crystalline catalyst surfaces. These so-called model catalysts are often prepared in the form of epitaxial thin films, and characterized using advanced material characterization techniques. This concept provides the fundamental understanding and the knowledge base needed to tailor the design of new heterogeneous catalysts with improved catalytic properties. The present contribution is devoted to development of a model catalyst system of CeO₂ (ceria) on the Cu(111) substrate. We propose ways to experimentally characterize and control important parameters of the model catalyst-the coverage of the ceria layer, the influence of the Cu substrate, and the density of surface defects on ceria, particularly the density of step edges and the density and the ordering of the oxygen vacancies. The large spectrum of controlled parameters makes ceria on Cu(111) an interesting alternative to a more common model system ceria on Ru(0001) that has served numerous catalysis studies, mainly as a support for metal clusters.

Zobrazit více v PubMed

Trovarelli A., Fornasiero P. Catalysis by Ceria and Related Materials. 2nd ed. World Scientific; Singapore: 2013.

Mullins D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 2015;70:42–85. doi: 10.1016/j.surfrep.2014.12.001. DOI

Gandhi H.S., Graham G.W., McCabe R.W. Automotive exhaust catalysis. J. Catal. 2003;216:433–442. doi: 10.1016/S0021-9517(02)00067-2. DOI

Hatanaka M., Takahashi N., Takahashi N., Tanabe T., Nagai Y., Suda A., Shinjoh H. Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt. J. Catal. 2009;266:182–190. doi: 10.1016/j.jcat.2009.06.005. DOI

Thomas J.M. Heterogeneous catalysis: Enigmas, illusions, challenges, realities, and emergent strategies of design. J. Chem. Phys. 2008;128 doi: 10.1063/1.2832309. PubMed DOI

Fu Q., Saltsburg H., Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science. 2003;301:935–938. doi: 10.1126/science.1085721. PubMed DOI

Matolín V. Method for Preparing Oxidation Catalyst and Catalyst Prepared by the Oxidation. 8435921 B2. U.S. Patent. 2013 May 7;

Fiala R., Vaclavu M., Rednyk A., Khalakhan I., Vorokhta M., Lavkova J., Potin V., Matolinova I., Matolin V. Pt-CeOx thin film catalysts for PEMFC. Catal. Today. 2015;240:236–241. doi: 10.1016/j.cattod.2014.03.069. DOI

Matolín V., Matolínová I., Václavů M., Khalakhan I., Vorokhta M., Fiala R., Pis I., Sofer Z., Poltierová-Vejpravová J., Mori T., et al. Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering. Langmuir. 2010;26:12824–12831. doi: 10.1021/la100399t. PubMed DOI

Bruix A., Lykhach Y., Matolínová I., Neitzel A., Skála T., Tsud N., Vorokhta M., Stetsovych V., Ševčíková K., Mysliveček J., et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem. Int. Ed. Engl. 2014;53:10525–10530. doi: 10.1002/anie.201402342. PubMed DOI

Hegde M.S., Madras G., Patil K.C. Noble metal ionic catalysts. Acc. Chem. Res. 2009;42:704–712. doi: 10.1021/ar800209s. PubMed DOI

Freund H.J., Bäumer M., Libuda J., Risse T., Rupprechter G., Shaikhutdinov S. Preparation and characterization of model catalysts: From ultrahigh vacuum to in situ conditions at the atomic dimension. J. Catal. 2003;216:223–235. doi: 10.1016/S0021-9517(02)00073-8. DOI

Lauritsen J.V., Vang R.T., Besenbacher F. From atom-resolved scanning tunneling microscopy (STM) studies to the design of new catalysts. Catal. Today. 2006;111:34–43. doi: 10.1016/j.cattod.2005.10.015. DOI

Ertl G. Reactions at surfaces: From atoms to complexity (nobel lecture) Angew. Chem. Int. Ed. Engl. 2008;47:3524–3535. doi: 10.1002/anie.200800480. PubMed DOI

Diebold U., Li S.-C., Schmid M. Oxide surface science. Ann. Rev. Phys. Chem. 2010;61:129–148. doi: 10.1146/annurev.physchem.012809.103254. PubMed DOI

Rodriguez J.A., Stacchiola D. Catalysis and the nature of mixed-metal oxides at the nanometer level: Special properties of MOx/TiO2(110) {M = V, W, Ce} surfaces. Phys. Chem. Chem. Phys. 2010;12:9557–9565. doi: 10.1039/c003665j. PubMed DOI

Surnev S., Fortunelli A., Netzer F.P. Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. Chem. Rev. 2013;113:4314–4372. doi: 10.1021/cr300307n. PubMed DOI

Dvořák F., Stetsovych O., Steger M., Cherradi E., Matolínová I., Tsud N., Škoda M., Skála T., Mysliveček J., Matolín V. Adjusting morphology and surface reduction of CeO2(111) thin films on Cu(111) J. Phys. Chem. C. 2011;115:7496–7503. doi: 10.1021/jp1121646. DOI

Duchoň T., Dvořák F., Aulická M., Stetsovych V., Vorokhta M., Mazur D., Veltruská K., Skála T., Mysliveček J., Matolínová I., et al. Ordered phases of reduced ceria as epitaxial films on Cu(111) J. Phys. Chem. C. 2014;118:357–365. doi: 10.1021/jp409220p. DOI

Matolín V., Matolínová I., Dvořák F., Johánek V., Mysliveček J., Prince K.C., Skála T., Stetsovych O., Tsud N., Václavů M., et al. Water interaction with CeO2(111)/Cu(111) model catalyst surface. Catal. Today. 2012;181:124–132. doi: 10.1016/j.cattod.2011.05.032. DOI

Vayssilov G.N., Lykhach Y., Migani A., Staudt T., Petrova G.P., Tsud N., Skála T., Bruix A., Illas F., Prince K.C., et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011;10:310–315. doi: 10.1038/nmat2976. PubMed DOI

Goodman D.W. Correlations between surface science models and “real-world” catalysts. J. Phys. Chem. 1996;100:13090–13102. doi: 10.1021/jp953755e. DOI

Kuhlenbeck H., Shaikhutdinov S., Freund H. Well-ordered transition metal oxide layers in model catalysis-a series of case studies. Chem. Rev. 2013;113:3986–4034. doi: 10.1021/cr300312n. PubMed DOI

Mullins D.R., Radulovic P.V., Overbury S.H. Ordered cerium oxide thin films grown on Ru(0001) and Ni(111) Surf. Sci. 1999;429:186–198. doi: 10.1016/S0039-6028(99)00369-6. DOI

Lu J.-L., Gao H.-J., Shaikhutdinov S., Freund H.-J. Morphology and defect structure of the CeO2(111) films grown on Ru(0001) as studied by scanning tunneling microscopy. Surf. Sci. 2006;600:5004–5010. doi: 10.1016/j.susc.2006.08.023. DOI

Kaemena B., Senanayake S.D., Meyer A., Sadowski J.T., Falta J., Flege J.I. Growth and Morphology of Ceria on Ruthenium (0001) J. Phys. Chem. C. 2013;117:221–232. doi: 10.1021/jp3081782. DOI

Jerratsch J.-F., Shao X., Nilius N., Freund H.-J., Popa C., Ganduglia-Pirovano M.V., Burow A.M., Sauer J. Electron localization in defective ceria films: A study with scanning-tunneling microscopy and density-functional theory. Phys. Rev. Lett. 2011;106 doi: 10.1103/PhysRevLett.106.246801. PubMed DOI

Nilius N., Kozlov S.M., Jerratsch J.-F., Baron M., Shao X., Viñes F., Shaikhutdinov S., Neyman K.M., Freund H.-J. Formation of one-dimensional electronic states along the step edges of CeO2(111) ACS Nano. 2012;6:1126–1133. doi: 10.1021/nn2036472. PubMed DOI

Kozlov S.M., Viñes F., Nilius N., Shaikhutdinov S., Neyman K.M. Absolute surface step energies: Accurate theoretical methods applied to ceria nanoislands. J. Phys. Chem. Lett. 2012;3:1956–1961. doi: 10.1021/jz3006942. DOI

Berner U., Schierbaum K., Jones G., Wincott P., Haq S., Thornton G. Ultrathin ordered CeO2 overlayers on Pt(111): Interaction with NO2, NO, H2O and CO. Surf. Sci. 2000;467:201–213. doi: 10.1016/S0039-6028(00)00770-6. DOI

Grinter D.C., Ithnin R., Pang C.L., Thornton G. Defect structure of ultrathin ceria films on Pt(111): Atomic views from scanning tunnelling microscopy. J. Phys. Chem. C. 2010;114:17036–17041. doi: 10.1021/jp102895k. DOI

Luches P., Pagliuca F., Valeri S. Morphology, stoichiometry, and interface structure of CeO2 ultrathin films on Pt(111) J. Phys. Chem. C. 2011;115:10718–10726. doi: 10.1021/jp201139y. DOI

Luches P., Pagliuca F., Valeri S. Structural and morphological modifications in thermally reduced cerium oxide ultrathin epitaxial films on Pt(111) Phys. Chem. Chem. Phys. 2014;16:18848–18857. doi: 10.1039/C4CP02723J. PubMed DOI

Rodriguez J.A., Ma S., Liu P., Hrbek J., Evans J., Pérez M. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science. 2007;318:1757–1760. doi: 10.1126/science.1150038. PubMed DOI

Šutara F., Cabala M., Sedláček L., Skála T., Škoda M., Matolín V., Prince K.C., Cháb V. Epitaxial growth of continuous CeO2(111) ultra-thin films on Cu(111) Thin Solid Films. 2008;516:6120–6124. doi: 10.1016/j.tsf.2007.11.013. DOI

Staudt T., Lykhach Y., Hammer L., Schneider M.A., Matolín V., Libuda J. A route to continuous ultra-thin cerium oxide films on Cu(111) Surf. Sci. 2009;603:3382–3388. doi: 10.1016/j.susc.2009.09.031. DOI

Szabová L., Camellone M.F., Huang M., Matolín V., Fabris S. Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT+U calculations. J. Chem. Phys. 2010;133 doi: 10.1063/1.3515424. PubMed DOI

Szabová L., Skála T., Matolínová I., Fabris S., Farnesi Camellone M., Matolín V. Copper-ceria interaction: A combined photoemission and DFT study. Appl. Surf. Sci. 2013;267:12–16. doi: 10.1016/j.apsusc.2012.04.098. DOI

Szabová L., Stetsovych O., Dvořák F., Farnesi Camellone M., Fabris S., Mysliveček J., Matolín V. Distinct physicochemical properties of the first ceria monolayer on Cu(111) J. Phys. Chem. C. 2012;116:6677–6684. doi: 10.1021/jp211955v. DOI

Stetsovych O., Dvořák F., Szabová L., Fabris S., Mysliveček J., Matolín V. Nanometer-range strain distribution in layered incommensurate systems. Phys. Rev. Lett. 2012;109 doi: 10.1103/PhysRevLett.109.266102. PubMed DOI

Skorodumova N., Simak S., Lundqvist B., Abrikosov I., Johansson B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 2002;89 doi: 10.1103/PhysRevLett.89.166601. PubMed DOI

Matolín V., Matolínová I., Sedláček L., Prince K.C., Skála T. A resonant photoemission applied to cerium oxide based nanocrystals. Nanotechnology. 2009;20 doi: 10.1088/0957-4484/20/21/215706. PubMed DOI

Matolín V., Cabala M., Cháb V., Matolínová I., Prince K.C., Škoda M., Šutara F., Skála T., Veltruská K. A resonant photoelectron spectroscopy study of Sn(Ox) doped CeO2 catalysts. Surf. Interface Anal. 2008;40:225–230. doi: 10.1002/sia.2625. DOI

Matsumoto M., Soda K., Ichikawa K., Tanaka S., Taguchi Y., Jouda K., Aita O., Tezuka Y., Shin S. Resonant photoemission study of CeO2. Phys. Rev. B. 1994;50:11340–11346. doi: 10.1103/PhysRevB.50.11340. PubMed DOI

Skála T., Šutara F., Prince K.C., Matolín V. Cerium oxide stoichiometry alteration via Sn deposition: Influence of temperature. J. Electron Spectrosc. Relat. Phenome. 2009;169:20–25. doi: 10.1016/j.elspec.2008.10.003. DOI

Kucherenko Y., Molodtsov S., Heber M., Laubschat C. 4f-derived electronic structure at the surface and in the bulk of α-Ce metal. Phys. Rev. B. 2002;66 doi: 10.1103/PhysRevB.66.155116. DOI

Hüfner S. Photoelectron Spectroscopy, Principles and Applications. Springer-Verlag; Berlin, Germany: 2003.

Happel M., Mysliveček J., Johánek V., Dvořák F., Stetsovych O., Lykhach Y., Matolín V., Libuda J. Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. J. Catal. 2012;289:118–126. doi: 10.1016/j.jcat.2012.01.022. DOI

Stetsovych V., Pagliuca F., Dvořák F., Duchoň T., Vorokhta M., Aulická M., Lachnitt J., Schernich S., Matolínová I., Veltruská K., et al. Epitaxial cubic Ce2O3 films via Ce-CeO2 interfacial reaction. J. Phys. Chem. Lett. 2013;4:866–871. PubMed

Weststrate C.J., Westerström R., Lundgren E., Mikkelsen A., Andersen J.N., Resta A. Influence of oxygen vacancies on the properties of ceria-supported gold. J. Phys. Chem. C. 2009;113:724–728. doi: 10.1021/jp8088116. DOI

Baron M., Bondarchuk O., Stacchiola D., Shaikhutdinov S., Freund H.-J. Interaction of Gold with Cerium Oxide Supports: CeO2(111) Thin Films vs CeOx Nanoparticles. J. Phys. Chem. C. 2009;113:6042–6049. doi: 10.1021/jp9001753. DOI

Senanayake S.D., Zhou J., Baddorf A.P., Mullins D.R. The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surf. Sci. 2007;601:3215–3223.

Lu J.-L., Gao H.-J., Shaikhutdinov S., Freund H.-J. Gold supported on well-ordered ceria films: Nucleation, growth and morphology in CO oxidation reaction. Catal. Lett. 2007;114:8–16. doi: 10.1007/s10562-007-9039-3. DOI

Duchoň T., Dvořák F., Aulická M., Stetsovych V., Vorokhta M., Mazur D., Veltruská K., Skála T., Mysliveček J., Matolínová I., et al. Comment on “Ordered phases of reduced ceria as epitaxial films on Cu(111)”. J. Phys. Chem. C. 2014;118:5058–5059. doi: 10.1021/jp412439b. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cerium Oxide-Tungsten Oxide Core-Shell Nanowire-Based Microsensors Sensitive to Acetone

. 2018 Nov 23 ; 8 (4) : . [epub] 20181123

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace