Heteroepitaxy of Cerium Oxide Thin Films on Cu(111)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28793567
PubMed Central
PMC5512914
DOI
10.3390/ma8095307
PII: ma8095307
Knihovny.cz E-zdroje
- Klíčová slova
- active site, energy conversion and storage, fuel cell, heterogeneous catalysis, monoatomic step, oxygen storage capacity, single-atom catalyst, surface oxygen vacancy,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
An important part of fundamental research in catalysis is based on theoretical and modeling foundations which are closely connected with studies of single-crystalline catalyst surfaces. These so-called model catalysts are often prepared in the form of epitaxial thin films, and characterized using advanced material characterization techniques. This concept provides the fundamental understanding and the knowledge base needed to tailor the design of new heterogeneous catalysts with improved catalytic properties. The present contribution is devoted to development of a model catalyst system of CeO₂ (ceria) on the Cu(111) substrate. We propose ways to experimentally characterize and control important parameters of the model catalyst-the coverage of the ceria layer, the influence of the Cu substrate, and the density of surface defects on ceria, particularly the density of step edges and the density and the ordering of the oxygen vacancies. The large spectrum of controlled parameters makes ceria on Cu(111) an interesting alternative to a more common model system ceria on Ru(0001) that has served numerous catalysis studies, mainly as a support for metal clusters.
Zobrazit více v PubMed
Trovarelli A., Fornasiero P. Catalysis by Ceria and Related Materials. 2nd ed. World Scientific; Singapore: 2013.
Mullins D.R. The surface chemistry of cerium oxide. Surf. Sci. Rep. 2015;70:42–85. doi: 10.1016/j.surfrep.2014.12.001. DOI
Gandhi H.S., Graham G.W., McCabe R.W. Automotive exhaust catalysis. J. Catal. 2003;216:433–442. doi: 10.1016/S0021-9517(02)00067-2. DOI
Hatanaka M., Takahashi N., Takahashi N., Tanabe T., Nagai Y., Suda A., Shinjoh H. Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt. J. Catal. 2009;266:182–190. doi: 10.1016/j.jcat.2009.06.005. DOI
Thomas J.M. Heterogeneous catalysis: Enigmas, illusions, challenges, realities, and emergent strategies of design. J. Chem. Phys. 2008;128 doi: 10.1063/1.2832309. PubMed DOI
Fu Q., Saltsburg H., Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science. 2003;301:935–938. doi: 10.1126/science.1085721. PubMed DOI
Matolín V. Method for Preparing Oxidation Catalyst and Catalyst Prepared by the Oxidation. 8435921 B2. U.S. Patent. 2013 May 7;
Fiala R., Vaclavu M., Rednyk A., Khalakhan I., Vorokhta M., Lavkova J., Potin V., Matolinova I., Matolin V. Pt-CeOx thin film catalysts for PEMFC. Catal. Today. 2015;240:236–241. doi: 10.1016/j.cattod.2014.03.069. DOI
Matolín V., Matolínová I., Václavů M., Khalakhan I., Vorokhta M., Fiala R., Pis I., Sofer Z., Poltierová-Vejpravová J., Mori T., et al. Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering. Langmuir. 2010;26:12824–12831. doi: 10.1021/la100399t. PubMed DOI
Bruix A., Lykhach Y., Matolínová I., Neitzel A., Skála T., Tsud N., Vorokhta M., Stetsovych V., Ševčíková K., Mysliveček J., et al. Maximum noble-metal efficiency in catalytic materials: Atomically dispersed surface platinum. Angew. Chem. Int. Ed. Engl. 2014;53:10525–10530. doi: 10.1002/anie.201402342. PubMed DOI
Hegde M.S., Madras G., Patil K.C. Noble metal ionic catalysts. Acc. Chem. Res. 2009;42:704–712. doi: 10.1021/ar800209s. PubMed DOI
Freund H.J., Bäumer M., Libuda J., Risse T., Rupprechter G., Shaikhutdinov S. Preparation and characterization of model catalysts: From ultrahigh vacuum to in situ conditions at the atomic dimension. J. Catal. 2003;216:223–235. doi: 10.1016/S0021-9517(02)00073-8. DOI
Lauritsen J.V., Vang R.T., Besenbacher F. From atom-resolved scanning tunneling microscopy (STM) studies to the design of new catalysts. Catal. Today. 2006;111:34–43. doi: 10.1016/j.cattod.2005.10.015. DOI
Ertl G. Reactions at surfaces: From atoms to complexity (nobel lecture) Angew. Chem. Int. Ed. Engl. 2008;47:3524–3535. doi: 10.1002/anie.200800480. PubMed DOI
Diebold U., Li S.-C., Schmid M. Oxide surface science. Ann. Rev. Phys. Chem. 2010;61:129–148. doi: 10.1146/annurev.physchem.012809.103254. PubMed DOI
Rodriguez J.A., Stacchiola D. Catalysis and the nature of mixed-metal oxides at the nanometer level: Special properties of MOx/TiO2(110) {M = V, W, Ce} surfaces. Phys. Chem. Chem. Phys. 2010;12:9557–9565. doi: 10.1039/c003665j. PubMed DOI
Surnev S., Fortunelli A., Netzer F.P. Structure-property relationship and chemical aspects of oxide-metal hybrid nanostructures. Chem. Rev. 2013;113:4314–4372. doi: 10.1021/cr300307n. PubMed DOI
Dvořák F., Stetsovych O., Steger M., Cherradi E., Matolínová I., Tsud N., Škoda M., Skála T., Mysliveček J., Matolín V. Adjusting morphology and surface reduction of CeO2(111) thin films on Cu(111) J. Phys. Chem. C. 2011;115:7496–7503. doi: 10.1021/jp1121646. DOI
Duchoň T., Dvořák F., Aulická M., Stetsovych V., Vorokhta M., Mazur D., Veltruská K., Skála T., Mysliveček J., Matolínová I., et al. Ordered phases of reduced ceria as epitaxial films on Cu(111) J. Phys. Chem. C. 2014;118:357–365. doi: 10.1021/jp409220p. DOI
Matolín V., Matolínová I., Dvořák F., Johánek V., Mysliveček J., Prince K.C., Skála T., Stetsovych O., Tsud N., Václavů M., et al. Water interaction with CeO2(111)/Cu(111) model catalyst surface. Catal. Today. 2012;181:124–132. doi: 10.1016/j.cattod.2011.05.032. DOI
Vayssilov G.N., Lykhach Y., Migani A., Staudt T., Petrova G.P., Tsud N., Skála T., Bruix A., Illas F., Prince K.C., et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 2011;10:310–315. doi: 10.1038/nmat2976. PubMed DOI
Goodman D.W. Correlations between surface science models and “real-world” catalysts. J. Phys. Chem. 1996;100:13090–13102. doi: 10.1021/jp953755e. DOI
Kuhlenbeck H., Shaikhutdinov S., Freund H. Well-ordered transition metal oxide layers in model catalysis-a series of case studies. Chem. Rev. 2013;113:3986–4034. doi: 10.1021/cr300312n. PubMed DOI
Mullins D.R., Radulovic P.V., Overbury S.H. Ordered cerium oxide thin films grown on Ru(0001) and Ni(111) Surf. Sci. 1999;429:186–198. doi: 10.1016/S0039-6028(99)00369-6. DOI
Lu J.-L., Gao H.-J., Shaikhutdinov S., Freund H.-J. Morphology and defect structure of the CeO2(111) films grown on Ru(0001) as studied by scanning tunneling microscopy. Surf. Sci. 2006;600:5004–5010. doi: 10.1016/j.susc.2006.08.023. DOI
Kaemena B., Senanayake S.D., Meyer A., Sadowski J.T., Falta J., Flege J.I. Growth and Morphology of Ceria on Ruthenium (0001) J. Phys. Chem. C. 2013;117:221–232. doi: 10.1021/jp3081782. DOI
Jerratsch J.-F., Shao X., Nilius N., Freund H.-J., Popa C., Ganduglia-Pirovano M.V., Burow A.M., Sauer J. Electron localization in defective ceria films: A study with scanning-tunneling microscopy and density-functional theory. Phys. Rev. Lett. 2011;106 doi: 10.1103/PhysRevLett.106.246801. PubMed DOI
Nilius N., Kozlov S.M., Jerratsch J.-F., Baron M., Shao X., Viñes F., Shaikhutdinov S., Neyman K.M., Freund H.-J. Formation of one-dimensional electronic states along the step edges of CeO2(111) ACS Nano. 2012;6:1126–1133. doi: 10.1021/nn2036472. PubMed DOI
Kozlov S.M., Viñes F., Nilius N., Shaikhutdinov S., Neyman K.M. Absolute surface step energies: Accurate theoretical methods applied to ceria nanoislands. J. Phys. Chem. Lett. 2012;3:1956–1961. doi: 10.1021/jz3006942. DOI
Berner U., Schierbaum K., Jones G., Wincott P., Haq S., Thornton G. Ultrathin ordered CeO2 overlayers on Pt(111): Interaction with NO2, NO, H2O and CO. Surf. Sci. 2000;467:201–213. doi: 10.1016/S0039-6028(00)00770-6. DOI
Grinter D.C., Ithnin R., Pang C.L., Thornton G. Defect structure of ultrathin ceria films on Pt(111): Atomic views from scanning tunnelling microscopy. J. Phys. Chem. C. 2010;114:17036–17041. doi: 10.1021/jp102895k. DOI
Luches P., Pagliuca F., Valeri S. Morphology, stoichiometry, and interface structure of CeO2 ultrathin films on Pt(111) J. Phys. Chem. C. 2011;115:10718–10726. doi: 10.1021/jp201139y. DOI
Luches P., Pagliuca F., Valeri S. Structural and morphological modifications in thermally reduced cerium oxide ultrathin epitaxial films on Pt(111) Phys. Chem. Chem. Phys. 2014;16:18848–18857. doi: 10.1039/C4CP02723J. PubMed DOI
Rodriguez J.A., Ma S., Liu P., Hrbek J., Evans J., Pérez M. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science. 2007;318:1757–1760. doi: 10.1126/science.1150038. PubMed DOI
Šutara F., Cabala M., Sedláček L., Skála T., Škoda M., Matolín V., Prince K.C., Cháb V. Epitaxial growth of continuous CeO2(111) ultra-thin films on Cu(111) Thin Solid Films. 2008;516:6120–6124. doi: 10.1016/j.tsf.2007.11.013. DOI
Staudt T., Lykhach Y., Hammer L., Schneider M.A., Matolín V., Libuda J. A route to continuous ultra-thin cerium oxide films on Cu(111) Surf. Sci. 2009;603:3382–3388. doi: 10.1016/j.susc.2009.09.031. DOI
Szabová L., Camellone M.F., Huang M., Matolín V., Fabris S. Thermodynamic, electronic and structural properties of Cu/CeO2 surfaces and interfaces from first-principles DFT+U calculations. J. Chem. Phys. 2010;133 doi: 10.1063/1.3515424. PubMed DOI
Szabová L., Skála T., Matolínová I., Fabris S., Farnesi Camellone M., Matolín V. Copper-ceria interaction: A combined photoemission and DFT study. Appl. Surf. Sci. 2013;267:12–16. doi: 10.1016/j.apsusc.2012.04.098. DOI
Szabová L., Stetsovych O., Dvořák F., Farnesi Camellone M., Fabris S., Mysliveček J., Matolín V. Distinct physicochemical properties of the first ceria monolayer on Cu(111) J. Phys. Chem. C. 2012;116:6677–6684. doi: 10.1021/jp211955v. DOI
Stetsovych O., Dvořák F., Szabová L., Fabris S., Mysliveček J., Matolín V. Nanometer-range strain distribution in layered incommensurate systems. Phys. Rev. Lett. 2012;109 doi: 10.1103/PhysRevLett.109.266102. PubMed DOI
Skorodumova N., Simak S., Lundqvist B., Abrikosov I., Johansson B. Quantum origin of the oxygen storage capability of ceria. Phys. Rev. Lett. 2002;89 doi: 10.1103/PhysRevLett.89.166601. PubMed DOI
Matolín V., Matolínová I., Sedláček L., Prince K.C., Skála T. A resonant photoemission applied to cerium oxide based nanocrystals. Nanotechnology. 2009;20 doi: 10.1088/0957-4484/20/21/215706. PubMed DOI
Matolín V., Cabala M., Cháb V., Matolínová I., Prince K.C., Škoda M., Šutara F., Skála T., Veltruská K. A resonant photoelectron spectroscopy study of Sn(Ox) doped CeO2 catalysts. Surf. Interface Anal. 2008;40:225–230. doi: 10.1002/sia.2625. DOI
Matsumoto M., Soda K., Ichikawa K., Tanaka S., Taguchi Y., Jouda K., Aita O., Tezuka Y., Shin S. Resonant photoemission study of CeO2. Phys. Rev. B. 1994;50:11340–11346. doi: 10.1103/PhysRevB.50.11340. PubMed DOI
Skála T., Šutara F., Prince K.C., Matolín V. Cerium oxide stoichiometry alteration via Sn deposition: Influence of temperature. J. Electron Spectrosc. Relat. Phenome. 2009;169:20–25. doi: 10.1016/j.elspec.2008.10.003. DOI
Kucherenko Y., Molodtsov S., Heber M., Laubschat C. 4f-derived electronic structure at the surface and in the bulk of α-Ce metal. Phys. Rev. B. 2002;66 doi: 10.1103/PhysRevB.66.155116. DOI
Hüfner S. Photoelectron Spectroscopy, Principles and Applications. Springer-Verlag; Berlin, Germany: 2003.
Happel M., Mysliveček J., Johánek V., Dvořák F., Stetsovych O., Lykhach Y., Matolín V., Libuda J. Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. J. Catal. 2012;289:118–126. doi: 10.1016/j.jcat.2012.01.022. DOI
Stetsovych V., Pagliuca F., Dvořák F., Duchoň T., Vorokhta M., Aulická M., Lachnitt J., Schernich S., Matolínová I., Veltruská K., et al. Epitaxial cubic Ce2O3 films via Ce-CeO2 interfacial reaction. J. Phys. Chem. Lett. 2013;4:866–871. PubMed
Weststrate C.J., Westerström R., Lundgren E., Mikkelsen A., Andersen J.N., Resta A. Influence of oxygen vacancies on the properties of ceria-supported gold. J. Phys. Chem. C. 2009;113:724–728. doi: 10.1021/jp8088116. DOI
Baron M., Bondarchuk O., Stacchiola D., Shaikhutdinov S., Freund H.-J. Interaction of Gold with Cerium Oxide Supports: CeO2(111) Thin Films vs CeOx Nanoparticles. J. Phys. Chem. C. 2009;113:6042–6049. doi: 10.1021/jp9001753. DOI
Senanayake S.D., Zhou J., Baddorf A.P., Mullins D.R. The reaction of carbon monoxide with palladium supported on cerium oxide thin films. Surf. Sci. 2007;601:3215–3223.
Lu J.-L., Gao H.-J., Shaikhutdinov S., Freund H.-J. Gold supported on well-ordered ceria films: Nucleation, growth and morphology in CO oxidation reaction. Catal. Lett. 2007;114:8–16. doi: 10.1007/s10562-007-9039-3. DOI
Duchoň T., Dvořák F., Aulická M., Stetsovych V., Vorokhta M., Mazur D., Veltruská K., Skála T., Mysliveček J., Matolínová I., et al. Comment on “Ordered phases of reduced ceria as epitaxial films on Cu(111)”. J. Phys. Chem. C. 2014;118:5058–5059. doi: 10.1021/jp412439b. DOI