• This record comes from PubMed

VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials

. 2021 Feb 22 ; 11 (2) : . [epub] 20210222

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
20-20123S Grantová Agentura České Republiky
PID2019-107697RB-C42 (AEI/FEDER, EU), Ramón y Cajal Programme Ministerio de Ciencia, Innovación y Universidades

This review summarizes the recent research efforts and developments in nanomaterials for sensing volatile organic compounds (VOCs). The discussion focuses on key materials such as metal oxides (e.g., ZnO, SnO2, TiO2 WO3), conductive polymers (e.g., polypyrrole, polythiophene, poly(3,4-ethylenedioxythiophene)), and carbon-based materials (e.g., graphene, graphene oxide, carbon nanotubes), and their mutual combination due to their representativeness in VOCs sensing. Moreover, it delves into the main characteristics and tuning of these materials to achieve enhanced functionality (sensitivity, selectivity, speed of response, and stability). The usual synthesis methods and their advantages towards their integration with microsystems for practical applications are also remarked on. The literature survey shows the most successful systems include structured morphologies, particularly hierarchical structures at the nanometric scale, with intentionally introduced tunable "decorative impurities" or well-defined interfaces forming bilayer structures. These groups of modified or functionalized structures, in which metal oxides are still the main protagonists either as host or guest elements, have proved improvements in VOCs sensing. The work also identifies the need to explore new hybrid material combinations, as well as the convenience of incorporating other transducing principles further than resistive that allow the exploitation of mixed output concepts (e.g., electric, optic, mechanic).

See more in PubMed

Barsan N., Weimar U. Conduction Model of Metal Oxide Gas Sensors. J. Electroceram. 2001;7:143–167. doi: 10.1023/A:1014405811371. DOI

Yamazoe N., Shimanoe K. Receptor Function and Response of Semiconductor Gas Sensor. J. Sens. 2009;2009 doi: 10.1155/2009/875704. DOI

Korotcenkov G. Metal oxides for solid-state gas sensors: What determines our choice? Mater. Sci. Eng. B. 2007;139:1–23. doi: 10.1016/j.mseb.2007.01.044. DOI

Wong Y.C.Y.H., Ang B.C., Haseeb A.S.M.A., Baharuddin A.A., Wong Y.C.Y.H. Review—Conducting Polymers as Chemiresistive Gas Sensing Materials: A Review. J. Electrochem. Soc. 2020;167:037503. doi: 10.1149/2.0032003JES. DOI

Bai H., Shi G. Gas sensors based on conducting polymers. Sensors. 2007;7:267–307. doi: 10.3390/s7030267. DOI

Li C., Bai H., Shi G. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009;38:2397–2409. doi: 10.1039/b816681c. PubMed DOI

Yan Y., Yang G., Xu J.L., Zhang M., Kuo C.C., Wang S.D. Conducting polymer-inorganic nanocomposite-based gas sensors: A review. Sci. Technol. Adv. Mater. 2020;21:768–786. doi: 10.1080/14686996.2020.1820845. PubMed DOI PMC

Clément P., Llobet E. Semiconductor Gas Sensors. Woodhead Publishing; Cambridge, UK: 2019. Carbon nanomaterials functionalized with macrocyclic compounds for sensing vapors of aromatic VOCs; pp. 223–237.

Lee S.W., Lee W., Hong Y., Lee G., Yoon D.S. Recent advances in carbon material-based NO2 gas sensors. Sens. Actuators B Chem. 2018;255:1788–1804. doi: 10.1016/j.snb.2017.08.203. DOI

Llobet E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013;179:32–45. doi: 10.1016/j.snb.2012.11.014. DOI

Mahajan S., Jagtap S. Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: A review. Appl. Mater. Today. 2020;18:100483–100513. doi: 10.1016/j.apmt.2019.100483. DOI

Li T., Shen Y., Zhao S., Zhong X., Zhang W., Han C., Wei D., Meng D., Ao Y. Sub-ppm level NO2 sensing properties of polyethyleneimine-mediated WO3 nanoparticles synthesized by a one-pot hydrothermal method. J. Alloys Compd. 2019;783:103–112. doi: 10.1016/j.jallcom.2018.12.287. DOI

Peterson P.J.D., Aujla A., Grant K.H., Brundle A.G., Thompson M.R., Hey J.V., Leigh R.J. Practical use of metal oxide semiconductor gas sensors for measuring nitrogen dioxide and ozone in urban environments. Sensors. 2017;17:1653. doi: 10.3390/s17071653. PubMed DOI PMC

Punetha D., Kar M., Pandey S.K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep. 2020;10:2151–2162. doi: 10.1038/s41598-020-58965-w. PubMed DOI PMC

Shen W.C., Shih P.J., Tsai Y.C., Hsu C.C., Dai C.L. Low-concentration ammonia gas sensors manufactured using the CMOS-MEMS technique. Micromachines. 2020;11:92. doi: 10.3390/mi11010092. PubMed DOI PMC

Peng F., Wang S., Yu W., Huang T., Sun Y., Cheng C., Chen X., Hao J., Dai N. Ultrasensitive ppb-level H2S gas sensor at room temperature based on WO3/rGO hybrids. J. Mater. Sci. Mater. Electron. 2020;31:5008–5016. doi: 10.1007/s10854-020-03067-6. DOI

Binions R., Naik A.J.T. Semiconductor Gas Sensors. Woodhead Publishing; Cambridge, UK: 2013. Metal oxide semiconductor gas sensors in environmental monitoring; pp. 433–466.

Llobet E., Brunet J., Pauly A., Ndiaye A., Varenne C. Nanomaterials for the selective detection of hydrogen sulfide in air. Sensors. 2017;17:391. doi: 10.3390/s17020391. PubMed DOI PMC

Sun J., Shen Z.X., Zhang L.M., Zhang Y., Zhang T., Lei Y.L., Niu X.Y., Zhang Q., Dang W., Han W.P., et al. Volatile organic compounds emissions from traditional and clean domestic heating appliances in Guanzhong Plain, China: Emission factors, source profiles, and effects on regional air quality. Environ. Int. 2019;133:1052522–1052534. doi: 10.1016/j.envint.2019.105252. PubMed DOI

Mohd Ali M., Hashim N., Abd Aziz S., Lasekan O. Principles and recent advances in electronic nose for quality inspection of agricultural and food products. Trends Food Sci. Technol. 2020;99:1–10. doi: 10.1016/j.tifs.2020.02.028. DOI

Hanna G.B., Boshier P.R., Markar S.R., Romano A. Accuracy and Methodologic Challenges of Volatile Organic Compound-Based Exhaled Breath Tests for Cancer Diagnosis A Systematic Review and Meta-analysis. JAMA Oncol. 2019;5:e182815. doi: 10.1001/jamaoncol.2018.2815. PubMed DOI PMC

Berenjian A., Chan N., Malmiri H.J. Volatile Organic Compounds removal methods: A review. Am. J. Biochem. Biotechnol. 2012;8:220–229. doi: 10.3844/ajbbsp.2012.220.229. DOI

Wille S.M.R., Lambert W.E.E. Volatile substance abuse—Post-mortem diagnosis. Forensic Sci. Int. 2004;142:135–156. doi: 10.1016/j.forsciint.2004.02.015. PubMed DOI

Koppmann R. Volatile Organic Compounds in the Atmosphere. Blackwell Publishing Ltd.; Oxford, UK: 2008.

ACGIH 2019 TLVs and BEIs. American Conference of Governmental Industrial Hygienists; Cincinnati, OH, USA: 2019.

Tomer V.K., Singh K., Kaur H., Shorie M., Sabherwal P. Rapid acetone detection using indium loaded WO3/SnO2 nanohybrid sensor. Sens. Actuators B Chem. 2017;253:703–713. doi: 10.1016/j.snb.2017.06.179. DOI

Buszewski B., Ligor T., Jezierski T., Wenda-Piesik A., Walczak M., Rudnicka J. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: Comparison with discrimination by canines. Anal. Bioanal. Chem. 2012;404:141–146. doi: 10.1007/s00216-012-6102-8. PubMed DOI PMC

Kumar S., Huang J.Z., Abbassi-Ghadi N., Mackenzie H.A., Veselkov K.A., Hoare J.M., Lovat L.B., Spanel P., Smith D., Hanna G.B. Mass Spectrometric Analysis of Exhaled Breath for the Identification of Volatile Organic Compound Biomarkers in Esophageal and Gastric Adenocarcinoma. Ann. Surg. 2015;262:981–990. doi: 10.1097/SLA.0000000000001101. PubMed DOI

Kumar S., Huang J.Z., Abbassi-Ghadi N., Spanel P., Smith D., Hanna G.B. Selected Ion Flow Tube Mass Spectrometry Analysis of Exhaled Breath for Volatile Organic Compound Profiling of Esophago-Gastric Cancer. Anal. Chem. 2013;85:6121–6128. doi: 10.1021/ac4010309. PubMed DOI

Amal H., Leja M., Funka K., Lasina I., Skapars R., Sivins A., Ancans G., Kikuste I., Vanags A., Tolmanis I., et al. Breath testing as potential colorectal cancer screening tool. Int. J. Cancer. 2016;138:229–236. doi: 10.1002/ijc.29701. PubMed DOI

Seiyama T., Kato A., Fujiishi K., Nagatani M. A New Detector for Gaseous Components Using Semiconductive Thin Films. Anal. Chem. 1962;34:1502–1503. doi: 10.1021/ac60191a001. DOI

Miller D.R., Akbar S.A., Morris P.A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B Chem. 2014;204:250–272. doi: 10.1016/j.snb.2014.07.074. DOI

Malik R., Tomer V.K., Mishra Y.K., Lin L. Functional gas sensing nanomaterials: A panoramic view. Appl. Phys. Rev. 2020;7:21301. doi: 10.1063/1.5123479. DOI

Joshi N., Hayasaka T., Liu Y., Liu H., Oliveira O.N., Lin L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta. 2018;185 doi: 10.1007/s00604-018-2750-5. PubMed DOI

Kamarulzaman N., Kasim M.F., Chayed N.F. Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0.99Cu0.01O band gap changes. Results Phys. 2016;6:217–230. doi: 10.1016/j.rinp.2016.04.001. DOI

Song H., Yang H., Ma X. A comparative study of porous ZnO nanostructures synthesized from different zinc salts as gas sensor materials. J. Alloys Compd. 2013;578:272–278. doi: 10.1016/j.jallcom.2013.05.211. DOI

Meng F., Hou N., Ge S., Sun B., Jin Z., Shen W., Kong L., Guo Z., Sun Y., Wu H., et al. Flower-like hierarchical structures consisting of porous single-crystalline ZnO nanosheets and their gas sensing properties to volatile organic compounds (VOCs) J. Alloys Compd. 2015;626:124–130. doi: 10.1016/j.jallcom.2014.11.175. DOI

Al-Salman H., Abdullah M.J. Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application. Measurement. 2015;59:248–257. doi: 10.1016/j.measurement.2014.08.011. DOI

Zhang S.-L., Lim J.-O., Huh J.-S., Noh J.-S., Lee W. Two-step fabrication of ZnO nanosheets for high-performance VOCs gas sensor. Curr. Appl. Phys. 2013;13:S156–S161. doi: 10.1016/j.cap.2012.12.021. DOI

Zhang S., Byun H., Lim J., Huh J., Lee W. Controlled Synthesis of ZnO Nanostructures for Sub-ppm-Level VOC Detection. IEEE Sens. J. 2012;12:3149–3155. doi: 10.1109/JSEN.2012.2208950. DOI

Kang Y., Yu F., Zhang L., Wang W., Chen L., Li Y. Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics. 2021;360:115544–115566. doi: 10.1016/j.ssi.2020.115544. DOI

Zhou W., Liu Y., Yang Y., Wu P. Band gap engineering of SnO2 by epitaxial strain: Experimental and theoretical investigations. J. Phys. Chem. C. 2014;118:6448–6453. doi: 10.1021/jp500546r. DOI

Rothschild A., Komem Y. The effect of grain size on the sensitivity of nanocrystalline metal-oxide gas sensors. J. Appl. Phys. 2004;95:6374–6380. doi: 10.1063/1.1728314. DOI

Shimizu Y., Kai S., Takao Y., Hyodo T., Egashira M. Correlation between methylmercaptan gas-sensing properties and its surface chemistry of SnO2-based sensor materials. Sens. Actuator B Chem. 2000;65:349–357. doi: 10.1016/S0925-4005(99)00438-4. DOI

Ren F., Gao L., Yuan Y., Zhang Y., Alqrni A., Aldossary O. Enhanced BTEX gas-sensing performance of CuO/SnO2 composite. Sens. Actuators B Chem. 2015;223:914–920. doi: 10.1016/j.snb.2015.09.140. DOI

Wang H., Qu Y., Chen H., Lin Z., Dai K. Highly selective n-butanol gas sensor based on mesoporous SnO2 prepared with hydrothermal treatment. Sens. Actuators B Chem. 2014;201:153–159. doi: 10.1016/j.snb.2014.04.049. DOI

Gu C., Xu X., Huang J., Wang W., Sun Y., Liu J. Porous flower-like SnO2 nanostructures as sensitive gas sensors for volatile organic compounds detection. Sens. Actuators B Chem. 2012;174:31–38. doi: 10.1016/j.snb.2012.08.039. DOI

Vallejos S., Gràcia I., Bravo J., Figueras E., Hubálek J., Cané C. Detection of volatile organic compounds using flexible gas sensing devices based on tungsten oxide nanostructures functionalized with Au and Pt nanoparticles. Talanta. 2015;139:27–34. doi: 10.1016/j.talanta.2015.02.034. PubMed DOI

Vallejos S., Gràcia I., Figueras E., Cané C. Nanoscale Heterostructures Based on Fe2O3@WO3-x Nanoneedles and Their Direct Integration into Flexible Transducing Platforms for Toluene Sensing. ACS Appl. Mater. Interfaces. 2015;7:18638–18649. doi: 10.1021/acsami.5b05081. PubMed DOI

Dong H., Liu Y., Li G., Wang X., Xu D., Chen Z., Zhang T., Wang J., Zhang L. Hierarchically rosette-like In2O3 microspheres for volatile organic compounds gas sensors. Sens. Actuators B Chem. 2013;178:302–309. doi: 10.1016/j.snb.2012.12.103. DOI

Bhowmik B., Manjuladevi V., Gupta R., Bhattacharyya P. Highly Selective Low-Temperature Acetone Sensor Based on Hierarchical 3-D TiO2 Nanoflowers. IEEE Sens. J. 2016;16:3488–3495. doi: 10.1109/JSEN.2016.2530827. DOI

Şennik E., Alev O., Ozturk Z. The effect of Pd on H2 and VOCs sensing properties of TiO2 nanorods. Sens. Actuators B Chem. 2016;229:692–700. doi: 10.1016/j.snb.2016.01.089. DOI

Li B., Liu J., Shi G., Liu J. A research on detection and identification of volatile organic compounds utilizing cataluminescence-based sensor array. Sens. Actuators B Chem. 2013;177:1167–1172. doi: 10.1016/j.snb.2012.12.049. DOI

Baccar H., Thamri A., Clément P., Llobet E., Abdelghani A. Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature. Beilstein J. Nanotechnol. 2015;6:919–927. doi: 10.3762/bjnano.6.95. PubMed DOI PMC

Thamri A., Baccar H., Struzzi C., Bittencourt C., Abdelghani A., Llobet E. MHDA-functionalized multiwall carbon nanotubes for detecting non-aromatic VOCs. Sci. Rep. 2016;6:35130–35142. doi: 10.1038/srep35130. PubMed DOI PMC

Pargoletti E., Cappelletti G. Breakthroughs in the design of novel carbon-based metal oxides nanocomposites for vocs gas sensing. Nanomaterials. 2020;10:1485. doi: 10.3390/nano10081485. PubMed DOI PMC

Hasani A., Dehsari H.S., Gavgani J.N., Shalamzari E.K., Salehi A., Afshar Taromi F., Mahyari M. Sensor for volatile organic compounds using an interdigitated gold electrode modified with a nanocomposite made from poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) and ultra-large graphene oxide. Microchim. Acta. 2015;182:1551–1559. doi: 10.1007/s00604-015-1487-7. DOI

Sun J., Shu X., Tian Y., Tong Z., Bai S., Luo R., Li D., Liu C.C. Facile preparation of polypyrrole-reduced graphene oxide hybrid for enhancing NH3 sensing at room temperature. Sens. Actuators B Chem. 2017;241:658–664. doi: 10.1016/j.snb.2016.10.047. DOI

Gurlo A. Nanosensors: Towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale. 2011;3:154–165. doi: 10.1039/C0NR00560F. PubMed DOI

Sabu Joshi T., Nirav Tomer V.K., editors. Functional Nanomaterials. Springer; Singapore: 2020.

Lingmin Y., Xinhui F., Lijun Q., Lihe M., Wen Y. Dependence of morphologies for SnO2 nanostructures on their sensing property. Appl. Surf. Sci. 2011;257:3140–3144. doi: 10.1016/j.apsusc.2010.11.013. DOI

Batzill M., Diebold U. The surface and materials science of tin oxide. Prog. Surf. Sci. 2005;79:47–154. doi: 10.1016/j.progsurf.2005.09.002. DOI

Hassan H.S., Elkady M.F. Environmental Nanotechnology Volume 3. Environmental Chemistry for a Sustainable World. Springer; Cham, Switzerland: 2020. Semiconductor Nanomaterials for Gas Sensor Applications; pp. 305–355.

Nunes D., Pimentel A., Goncalves A., Pereira S., Branquinho R., Barquinha P., Fortunato E., Martins R. Metal oxide nanostructures for sensor applications. Semicond. Sci. Technol. 2019 doi: 10.1088/1361-6641/ab011e. DOI

Han X., Sun Y., Feng Z., Zhang G., Chen Z., Zhan J. Au-deposited porous single-crystalline ZnO nanoplates for gas sensing detection of total volatile organic compounds. RSC Adv. 2016;6:37750–37756. doi: 10.1039/C6RA05941D. DOI

Nengsih S., Ali Umar A., Mat Salleh M., Yahaya M. Detection of Volatile Organic Compound Gas Using Localized Surface Plasmon Resonance of Gold Nanoparticles. Sains Malays. 2011;40:231–235.

Cheng C.-S., Chen Y.-Q., Lu C.-J. Organic vapour sensing using localized surface plasmon resonance spectrum of metallic nanoparticles self assemble monolayer. Talanta. 2007;73:358–365. doi: 10.1016/j.talanta.2007.03.058. PubMed DOI

Subramanian E., Jeyarani B.M.L., Murugan C.P.D. Crucial role of undoped/doped state of polyaniline-b-cyclodextrin composite materials in determining sensor functionality toward benzene/toluene toxic vapor. J. Chem. Mater. Res. 2016;5:129–134.

Lü Y., Zhan W., He Y., Wang Y., Kong X., Kuang Q., Xie Z., Zheng L. MOF-Templated Synthesis of Porous Co3O4 Concave Nanocubes with High Specific Surface Area and Their Gas Sensing Properties. ACS Appl. Mater. Interfaces. 2014;6:4186–4195. doi: 10.1021/am405858v. PubMed DOI

Park H.J., Kim J., Choi N.-J., Song H., Lee D.-S. Nonstoichiometric Co-rich ZnCo2O4 Hollow Nanospheres for High Performance Formaldehyde Detection at ppb Levels. ACS Appl. Mater. Interfaces. 2016;8:3233–3240. doi: 10.1021/acsami.5b10862. PubMed DOI

Öztürk S., Kösemen A., Kösemen Z.A., Kılınç N., Öztürk Z.Z., Penza M. Electrochemically growth of Pd doped ZnO nanorods on QCM for room temperature VOC sensors. Sens. Actuators B Chem. 2016;222:280–289. doi: 10.1016/j.snb.2015.08.083. DOI

Lee C.-S., Dai Z., Jeong S.-Y., Kwak C.-H., Kim B.-Y., Kim D.H., Jang H.W., Park J.-S., Lee J.-H. Monolayer Co3O4 Inverse Opals as Multifunctional Sensors for Volatile Organic Compounds. Chem. A Eur. J. 2016;22:7102–7107. doi: 10.1002/chem.201505210. PubMed DOI

Liu D., Liu T., Zhang H., Lv C., Zeng W., Zhang J. Gas sensing mechanism and properties of Ce-doped SnO2 sensors for volatile organic compounds. Mater. Sci. Semicond. Process. 2012;15:438–444. doi: 10.1016/j.mssp.2012.02.015. DOI

Deng H., Li H., Wang F., Yuan C., Liu S., Wang P., Xie L., Sun Y., Chang F. A high sensitive and low detection limit of formaldehyde gas sensor based on hierarchical flower-like CuO nanostructure fabricated by sol–gel method. J. Mater. Sci. Mater. Electron. 2016;27:6766–6772. doi: 10.1007/s10854-016-4626-y. DOI

Behera B., Chandra S. An innovative gas sensor incorporating ZnO–CuO nanoflakes in planar MEMS technology. Sens. Actuators B Chem. 2016;229:414–424. doi: 10.1016/j.snb.2016.01.079. DOI

Xu F., Zhou C., Ho H.P. A rule for operation temperature selection of a conductometric VOC gas sensor based on ZnO nanotetrapods. J. Alloys Compd. 2021;858:158294–158303. doi: 10.1016/j.jallcom.2020.158294. DOI

Rella R., Spadavecchia J., Manera M.G., Capone S., Taurino A., Martino M., Caricato A.P., Tunno T. Acetone and ethanol solid-state gas sensors based on TiO2 nanoparticles thin film deposited by matrix assisted pulsed laser evaporation. Sens. Actuators B Chem. 2007;127:426–431. doi: 10.1016/j.snb.2007.04.048. DOI

Tiwari J.N., Tiwari R.N., Kim K.S. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Prog. Mater. Sci. 2012;57:724–803. doi: 10.1016/j.pmatsci.2011.08.003. DOI

Lee J.H. Gas sensors using hierarchical and hollow oxide nanostructures: Overview. Sens. Actuators B Chem. 2009;140:319–336. doi: 10.1016/j.snb.2009.04.026. DOI

Park J.Y., Choi S.W., Kim S.S. Junction-tuned SnO2 nanowires and their sensing properties. J. Phys. Chem. C. 2011;115:12774–12781. doi: 10.1021/jp202113x. DOI

Vallejos S., Grácia I., Chmela O., Figueras E., Hubálek J., Cané C. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens. Actuators B Chem. 2016;235:525–534. doi: 10.1016/j.snb.2016.05.102. DOI

Battie Y., Ducloux O., Thobois P., Dorval N., Lauret J.S., Attal-Trétout B., Loiseau A. Gas sensors based on thick films of semi-conducting single walled carbon nanotubes. Carbon N. Y. 2011;49:3544–3552. doi: 10.1016/j.carbon.2011.04.054. DOI

Tasaltin C., Basarir F. Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuators B Chem. 2014;194:173–179. doi: 10.1016/j.snb.2013.12.063. DOI

Šetka M., Drbohlavová J., Hubálek J. Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors. 2017;17:562. doi: 10.3390/s17030562. PubMed DOI PMC

Penza M., Antolini F., Antisari Vittori M. Carbon nanotubes as SAW chemical sensors materials. Sens. Actuators B Chem. 2004;100:47–59. doi: 10.1016/j.snb.2003.12.019. DOI

Chen W.Y., Jiang X., Lai S.N., Peroulis D., Stanciu L. Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nat. Commun. 2020;11:1302–1312. doi: 10.1038/s41467-020-15092-4. PubMed DOI PMC

Rajkumar K., Kumar R.T.R. Fundamentals and Sensing Applications of 2D Materials. Woodhead Publishing; Cambridge, UK: 2019. Gas sensors based on two-dimensional materials and its mechanisms; pp. 205–258.

Cho S.Y., Koh H.J., Yoo H.W., Kim J.S., Jung H.T. Tunable Volatile-Organic-Compound Sensor by Using Au Nanoparticle Incorporation on MoS2. ACS Sens. 2017;2:183–189. doi: 10.1021/acssensors.6b00801. PubMed DOI

Gu D., Li X., Wang H., Li M., Xi Y., Chen Y., Wang J., Rumyntseva M.N., Gaskov A.M. Light enhanced VOCs sensing of WS2 microflakes based chemiresistive sensors powered by triboelectronic nangenerators. Sens. Actuators B Chem. 2018;256:992–1000. doi: 10.1016/j.snb.2017.10.045. DOI

Liu T., Cui Z., Li X., Cui H., Liu Y. Al-Doped MoSe2 Monolayer as a Promising Biosensor for Exhaled Breath Analysis: A DFT Study. ACS Omega. 2021;6:988–995. doi: 10.1021/acsomega.0c05654. PubMed DOI PMC

Wan Q., Chen X., Gui Y. First-Principles Insight into a Ru-Doped SnS2 Monolayer as a Promising Biosensor for Exhale Gas Analysis. ACS Omega. 2020;5:8919–8926. doi: 10.1021/acsomega.0c00651. PubMed DOI PMC

Anasori B., Gogotsi Y. 2D Metal Carbides and Nitrides (MXenes): Structure, Properties and Applications. Springer International Publishing; New York, NY, USA: 2019.

Lee E., Kim D.-J. Review—Recent Exploration of Two-Dimensional MXenes for Gas Sensing: From a Theoretical to an Experimental View. J. Electrochem. Soc. 2020;167:37515. doi: 10.1149/2.0152003JES. DOI

Aghaei S.M., Aasi A., Farhangdoust S., Panchapakesan B. Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: A DFT study. Appl. Surf. Sci. 2021;536:147756–147769. doi: 10.1016/j.apsusc.2020.147756. DOI

Donarelli M., Ottaviano L. 2d materials for gas sensing applications: A review on graphene oxide, MoS2, WS2 and phosphorene. Sensors. 2018;18:3638. doi: 10.3390/s18113638. PubMed DOI PMC

Ou P., Song P., Liu X., Song J. Superior Sensing Properties of Black Phosphorus as Gas Sensors: A Case Study on the Volatile Organic Compounds. Adv. Theory Simul. 2019;2:1800103. doi: 10.1002/adts.201800103. DOI

Choi J.R., Yong K.W., Choi J.Y., Nilghaz A., Lin Y., Xu J., Lu X. Black phosphorus and its biomedical applications. Theranostics. 2018;8:1005–1026. doi: 10.7150/thno.22573. PubMed DOI PMC

Fukuoka S., Taen T., Osada T. Electronic structure and the properties of phosphorene and few-layer black phosphorus. J. Phys. Soc. Japan. 2015;84:121004–121016. doi: 10.7566/JPSJ.84.121004. DOI

Yang A., Wang D., Wang X., Zhang D., Koratkar N., Rong M. Recent advances in phosphorene as a sensing material. Nano Today. 2018;20:13–32. doi: 10.1016/j.nantod.2018.04.001. DOI

Yamazoe N., Sakai G., Shimanoe K. Oxide semiconductor gas sensors. Catal. Surv. Asia. 2003;7:63–75. doi: 10.1023/A:1023436725457. DOI

Nikolic M.V., Milovanovic V., Vasiljevic Z.Z., Stamenkovic Z. Semiconductor gas sensors: Materials, technology, design, and application. Sensors. 2020;20:6694. doi: 10.3390/s20226694. PubMed DOI PMC

Sha W., Ni S., Zheng C. Development of cataluminescence sensor system for benzene and toluene determination. Sens. Actuators B Chem. 2015;209:297–305. doi: 10.1016/j.snb.2014.11.093. DOI

Bendahmane B., Tomić M., Touidjen N.E.H., Gràcia I., Vallejos S., Mansour F. Influence of Mg doping levels on the sensing properties of SnO2 films. Sensors. 2020;20:2158. doi: 10.3390/s20072158. PubMed DOI PMC

Clément P., Hafaiedh I., Parra E.J., Thamri A., Guillot J., Abdelghani A., Llobet E. Iron oxide and oxygen plasma functionalized multi-walled carbon nanotubes for the discrimination of volatile organic compounds. Carbon N. Y. 2014;78:510–520. doi: 10.1016/j.carbon.2014.07.032. DOI

Chen N., Li Q., Li Y., Deng D., Xiao X., Wang Y. Facile synthesis and gas sensing performances based on nickel oxide nanoparticles/multi-wall carbon nanotube composite. J. Mater. Sci. Mater. Electron. 2015;26:8240–8248. doi: 10.1007/s10854-015-3487-0. DOI

Farbod M., Joula M.H., Vaezi M. Promoting effect of adding carbon nanotubes on sensing characteristics of ZnO hollow sphere-based gas sensors to detect volatile organic compounds. Mater. Chem. Phys. 2016;176:12–23. doi: 10.1016/j.matchemphys.2016.03.004. DOI

Šetka M., Bahos F.A., Matatagui D., Gràcia I., Figueras E., Drbohlavová J., Vallejos S. Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring. Sensors. 2020;20:1432. doi: 10.3390/s20051432. PubMed DOI PMC

Šetka M., Bahos F.A., Chmela O., Matatagui D., Gràcia I., Drbohlavová J., Vallejos S. Cadmium telluride/polypyrrole nanocomposite based Love wave sensors highly sensitive to acetone at room temperature. Sens. Actuators B Chem. 2020;321:128573–128582. doi: 10.1016/j.snb.2020.128573. DOI

Rujisamphan N., Murray R.E., Deng F., Supasai T. Co-sputtered metal and polymer nanocomposite films and their electrical responses for gas sensing application. Appl. Surf. Sci. 2016;368:114–121. doi: 10.1016/j.apsusc.2016.01.177. DOI

Ge S., Zheng H., Sun Y., Jin Z., Shan J., Wang C., Wu H., Li M., Meng F. Ag/SnO2/graphene ternary nanocomposites and their sensing properties to volatile organic compounds. J. Alloys Compd. 2016;659:127–131. doi: 10.1016/j.jallcom.2015.11.046. DOI

Vessalli B.A., Zito C.A., Perfecto T.M., Volanti D.P., Mazon T. ZnO nanorods/graphene oxide sheets prepared by chemical bath deposition for volatile organic compounds detection. J. Alloys Compd. 2017;696:996–1003. doi: 10.1016/j.jallcom.2016.12.075. DOI

Zito C.A., Perfecto T.M., Volanti D.P. Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 2017;244:466–474. doi: 10.1016/j.snb.2017.01.015. DOI

Šetka M., Bahos F.A., Matatagui D., Potoček M., Kral Z., Drbohlavová J., Gràcia I., Vallejos S. Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sens. Actuators B Chem. 2020;304:127337–127346. doi: 10.1016/j.snb.2019.127337. DOI

Vessman J., Stefan R.I., Van Staden J.F., Danzer K., Lindner W., Burns D.T., Fajgelj A., Müller H. Selectivity in analytical chemistry: (IUPAC Recommendations 2001) Pure Appl. Chem. 2001 doi: 10.1351/pac200173081381. DOI

Bedia C., Cardoso P., Dalmau N., Garreta-Lara E., Gómez-Canela C., Gorrochategui E., Navarro-Reig M., Ortiz-Villanueva E., Puig-Castellví F., Tauler R. Chapter Nineteen—Applications of Metabolomics Analysis in Environmental Research. In: Jaumot J., Bedia C., Tauler R., editors. Comprehensive Analytical Chemistry. Volume 82. Elsevier; Amsterdam, The Netherlands: 2018. pp. 533–582.

Tung T.T., Losic D., Park S.J., Feller J.F., Kim T. Core-shell nanostructured hybrid composites for volatile organic compound detection. Int. J. Nanomed. 2015;10:203–214. doi: 10.2147/IJN.S88305. PubMed DOI PMC

Heli B., Morales-Narváez E., Golmohammadi H., Ajji A., Merkoçi A. Modulation of population density and size of silver nanoparticles embedded in bacterial cellulose: Via ammonia exposure: Visual detection of volatile compounds in a piece of plasmonic nanopaper. Nanoscale. 2016;8:7984–7991. doi: 10.1039/C6NR00537C. PubMed DOI

Yang L., Zhou X., Song L., Wang Y., Wu X., Han N., Chen Y. Noble Metal/Tin Dioxide Hierarchical Hollow Spheres for Low-Concentration Breath Methane Sensing. ACS Appl. Nano Mater. 2018;1:6327–6336. doi: 10.1021/acsanm.8b01529. DOI

Li B., Zhang Y., Liu J., Xie X., Zou D., Li M., Liu J. Sensitive and selective system of benzene detection based on a cataluminescence sensor. Luminescence. 2014;29:332–337. doi: 10.1002/bio.2548. PubMed DOI

Sarkar T., Srinives S., Rodriquez A., Mulchandani A. Single-walled Carbon Nanotube-Calixarene Based Chemiresistor for Volatile Organic Compounds. Electroanalysis. 2018;30:2077–2084. doi: 10.1002/elan.201800199. DOI

Li W., Wu X., Han N., Chen J., Qian X., Deng Y., Tang W., Chen Y. MOF-derived hierarchical hollow ZnO nanocages with enhanced low-concentration VOCs gas-sensing performance. Sens. Actuators B Chem. 2016;225:158–166. doi: 10.1016/j.snb.2015.11.034. DOI

Zhao W., Al-Nasser L.F., Shan S., Li J., Skeete Z., Kang N., Luo J., Lu S., Zhong C.J., Grausgruber C.J., et al. Detection of mixed volatile organic compounds and lung cancer breaths using chemiresistor arrays with crosslinked nanoparticle thin films. Sens. Actuators B Chem. 2016;232:292–299. doi: 10.1016/j.snb.2016.03.121. DOI

Penza M., Cassano G., Aversa P., Antolini F., Cusano A., Consales M., Giordano M., Nicolais L. Carbon nanotubes-coated multi-transducing sensors for VOCs detection. Sens. Actuators B Chem. 2005;111–112:171–180. doi: 10.1016/j.snb.2005.06.055. DOI

Joseph Y., Guse B., Vossmeyer T., Yasuda A. Gold nanoparticle/organic networks as chemiresistor coatings: The effect of film morphology on vapor sensitivity. J. Phys. Chem. C. 2008;112:12507–12514. doi: 10.1021/jp8013546. DOI

Fatima Q., Haidry A.A., Yao Z., He Y., Li Z., Sun L., Xie L. The critical role of hydroxyl groups in water vapor sensing of graphene oxide. Nanoscale Adv. 2019;1:1319–1330. doi: 10.1039/C8NA00135A. PubMed DOI PMC

Ahmadi M.T., Ismail R., Anwar S. Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global; Hershey, PA, USA: 2016.

Wang J., Yang P., Wei X. High-Performance, Room-Temperature, and No-Humidity-Impact Ammonia Sensor Based on Heterogeneous Nickel Oxide and Zinc Oxide Nanocrystals. ACS Appl. Mater. Interfaces. 2015;7:3816–3824. doi: 10.1021/am508807a. PubMed DOI

Kim H.-R., Haensch A., Kim I.-D., Barsan N., Weimar U., Lee J.-H. The Role of NiO Doping in Reducing the Impact of Humidity on the Performance of SnO2-Based Gas Sensors: Synthesis Strategies, and Phenomenological and Spectroscopic Studies. Adv. Funct. Mater. 2011;21:4456–4463. doi: 10.1002/adfm.201101154. DOI

Choi K.-I., Kim H.-J., Kang Y.C., Lee J.-H. Ultraselective and ultrasensitive detection of H2S in highly humid atmosphere using CuO-loaded SnO2 hollow spheres for real-time diagnosis of halitosis. Sens. Actuators B Chem. 2014;194:371–376. doi: 10.1016/j.snb.2013.12.111. DOI

Annanouch F.E., Haddi Z., Vallejos S., Umek P., Guttmann P., Bittencourt C., Llobet E. Aerosol-Assisted CVD-Grown WO3 Nanoneedles Decorated with Copper Oxide Nanoparticles for the Selective and Humidity-Resilient Detection of H2S. ACS Appl. Mater. Interfaces. 2015;7:6842–6851. doi: 10.1021/acsami.5b00411. PubMed DOI

Niarchos G., Dubourg G., Afroudakis G., Georgopoulos M., Tsouti V., Makarona E., Crnojevic-Bengin V., Tsamis C. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications. Sensors. 2017;17:516. doi: 10.3390/s17030516. PubMed DOI PMC

Itoh T., Matsubara I., Tamaki J., Kanematsu K., Shin W., Izu N., Nishibori M. Effect of High-Humidity Aging on Performance of Tungsten Oxide-Type Aromatic Compound Sensors. Sens. Mater. 2012;24:13–19.

Itoh T., Matsubara I., Kadosaki M., Sakai Y., Shin W., Izu N., Nishibori M. Effects of high-humidity aging on platinum, palladium, and gold loaded tin oxide--volatile organic compound sensors. Sensors. 2010;10:6513–6521. doi: 10.3390/s100706513. PubMed DOI PMC

Vallejos S., Gràcia I., Pizúrová N., Figueras E., Čechal J., Hubálek J., Cané C. Gas sensitive ZnO structures with reduced humidity-interference. Sens. Actuators B Chem. 2019;301:127054–127063. doi: 10.1016/j.snb.2019.127054. DOI

Hierlemann A., Baltes H. CMOS-based chemical microsensors. Analyst. 2003;128:15–28. doi: 10.1039/b208563c. PubMed DOI

Janata J. Principles of Chemical Sensors. Springer; New York, NY, USA: 2009.

Markiewicz N., Casals O., Fabrega C., Gràcia I., Cané C., Wasisto H.S., Waag A., Prades J.D. Micro light plates for low-power photoactivated (gas) sensors. Appl. Phys. Lett. 2019;114:53508–53514. doi: 10.1063/1.5078497. DOI

Hagleitner C., Hierlemann A., Lange D., Kummer A., Kerness N., Brand O., Baltes H. Smart single-chip gas sensor microsystem. Nature. 2001;414:293–296. doi: 10.1038/35104535. PubMed DOI

Gao W., Ota H., Kiriya D., Takei K., Javey A. Flexible Electronics toward Wearable Sensing. Acc. Chem. Res. 2019;52:523–533. doi: 10.1021/acs.accounts.8b00500. PubMed DOI

Comini E. Integration of Metal Oxide Nanowires in Flexible Gas Sensing Devices. Sensors. 2013;13:10659–10673. doi: 10.3390/s130810659. PubMed DOI PMC

Vallejos S., Gràcia I., Lednický T., Vojkuvka L., Figueras E., Hubálek J., Cané C. Highly hydrogen sensitive micromachined sensors based on aerosol-assisted chemical vapor deposited ZnO rods. Sens. Actuators B Chem. 2018;268:15–21. doi: 10.1016/j.snb.2018.04.033. DOI

Li Y., Delaunay J.-J.J. Nanowires. InTech; London, UK: 2010. Progress Toward Nanowire Device Assembly Technology.

Chmela O., Sadílek J., Domènech-Gil G., Samà J., Somer J., Mohan R., Romano-Rodriguez A., Hubálek J., Vallejos S. Selectively arranged single-wire based nanosensor array systems for gas monitoring. Nanoscale. 2018;10:9087–9096. doi: 10.1039/C8NR01588K. PubMed DOI

Fan Z., Ho J.C., Takahashi T., Yerushalmi R., Takei K., Ford A.C., Chueh Y.-L., Javey A. Toward the Development of Printable Nanowire Electronics and Sensors. Adv. Mater. 2009;21:3730–3743. doi: 10.1002/adma.200900860. DOI

Pavelko R.G., Yuasa M., Kida T., Shimanoe K., Yamazoe N. Impurity level in SnO2 materials and its impact on gas sensing properties. Sens. Actuators B Chem. 2015;210:719–725. doi: 10.1016/j.snb.2015.01.038. DOI

Mottram D.S., Elmore J.S. Encyclopedia of Food Sciences and Nutrition. Academic Press; Cambridge, UK: 2003. SENSORY EVALUATION | Aroma; pp. 5174–5180.

Turner A.P.F., Magan N. Electronic noses and disease diagnostics. Nat. Rev. Microbiol. 2004;2:160–166. doi: 10.1038/nrmicro823. PubMed DOI

Karakaya D., Ulucan O., Turkan M. Electronic Nose and Its Applications: A Survey. Int. J. Autom. Comput. 2020;17:179–209. doi: 10.1007/s11633-019-1212-9. DOI

Cipriano D., Capelli L. Evolution of electronic noses from research objects to engineered environmental odour monitoring systems: A review of standardization approaches. Biosensors. 2019;9:75. doi: 10.3390/bios9020075. PubMed DOI PMC

Bonah E., Huang X., Aheto J.H., Osae R. Application of electronic nose as a non-invasive technique for odor fingerprinting and detection of bacterial foodborne pathogens: A review. J. Food Sci. Technol. 2020;57:1977–1990. doi: 10.1007/s13197-019-04143-4. PubMed DOI PMC

Loutfi A., Coradeschi S., Mani G.K., Shankar P., Rayappan J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015;144:103–111. doi: 10.1016/j.jfoodeng.2014.07.019. DOI

Licht J.C., Grasemann H. Potential of the electronic nose for the detection of respiratory diseases with and without infection. Int. J. Mol. Sci. 2020;21:9416. doi: 10.3390/ijms21249416. PubMed DOI PMC

Haddi Z., El Barbri N., Tahri K., Bougrini M., El Bari N., Llobet E., Bouchikhi B. Instrumental assessment of red meat origins and their storage time using electronic sensing systems. Anal. Methods. 2015;7:5193–5203. doi: 10.1039/C5AY00572H. DOI

Rahimzadeh H., Sadeghi M., Ghasemi-Varnamkhasti M., Mireei S.A., Tohidi M. On the feasibility of metal oxide gas sensor based electronic nose software modification to characterize rice ageing during storage. J. Food Eng. 2019;245:1–10. doi: 10.1016/j.jfoodeng.2018.10.001. DOI

Santos J.P., Lozano J., Aleixandre M. Brewing Technology. InTech; London, UK: 2017. Electronic Noses Applications in Beer Technology; pp. 177–203.

Giungato P., Laiola E., Nicolardi V. Evaluation of Industrial Roasting Degree of Coffee Beans by Using an Electronic Nose and a Stepwise Backward Selection of Predictors. Food Anal. Methods. 2017;10:3424–3433. doi: 10.1007/s12161-017-0909-z. DOI

Liao Y.H., Shih C.H., Abbod M.F., Shieh J.S., Hsiao Y.J. Development of an E-nose system using machine learning methods to predict ventilator-associated pneumonia. Microsyst. Technol. 2020 doi: 10.1007/s00542-020-04782-0. DOI

Yang H.Y., Wang Y.C., Peng H.Y., Huang C.H. Breath biopsy of breast cancer using sensor array signals and machine learning analysis. Sci. Rep. 2021;11:103–112. doi: 10.1038/s41598-020-80570-0. PubMed DOI PMC

Tozlu B.H., Şimşek C., Aydemir O., Karavelioglu Y. A High performance electronic nose system for the recognition of myocardial infarction and coronary artery diseases. Biomed. Signal Process. Control. 2021;64:102247–102255. doi: 10.1016/j.bspc.2020.102247. DOI

Singh H., Raj V.B., Kumar J., Mittal U., Mishra M., Nimal A.T., Sharma M.U., Gupta V. Metal oxide SAW E-nose employing PCA and ANN for the identification of binary mixture of DMMP and methanol. Sens. Actuators B Chem. 2014;200:147–156. doi: 10.1016/j.snb.2014.04.065. DOI

Zhang J., Xue Y., Sun Q., Zhang T., Chen Y., Yu W., Xiong Y., Wei X., Yu G., Wan H., et al. A miniaturized electronic nose with artificial neural network for anti-interference detection of mixed indoor hazardous gases. Sens. Actuators B Chem. 2021;326:128822–128831. doi: 10.1016/j.snb.2020.128822. DOI

Lozano J., Santos J.P., Su’rez J.I., Herrero J.L., Aleixandre M. Detection of pollutants in water using a wireless network of electronic noses. Chem. Eng. Trans. 2016;54:157–162. doi: 10.3303/CET1654027. DOI

Chen L.Y., Wu C.C., Chou T.I., Chiu S.W., Tang K.T. Development of a dual MOS electronic nose/camera system for improving fruit ripeness classification. Sensors. 2018;18:3256. doi: 10.3390/s18103256. PubMed DOI PMC

Chen Q., Chen Z., Liu D., He Z., Wu J. Constructing an E-Nose Using Metal-Ion-Induced Assembly of Graphene Oxide for Diagnosis of Lung Cancer via Exhaled Breath. ACS Appl. Mater. Interfaces. 2020;12:17713–17724. doi: 10.1021/acsami.0c00720. PubMed DOI

Moufid M., Hofmann M., El Bari N., Tiebe C., Bartholmai M., Bouchikhi B. Wastewater monitoring by means of e-nose, VE-tongue, TD-GC-MS, and SPME-GC-MS. Talanta. 2021;221:121450–121461. doi: 10.1016/j.talanta.2020.121450. PubMed DOI

Goschnick J., Koronczi I., Frietsch M., Kiselev I. Water pollution recognition with the electronic nose KAMINA. Sens. Actuators B Chem. 2005;106:182–186. doi: 10.1016/j.snb.2004.05.055. DOI

He J., Xu L., Wang P., Wang Q. A high precise E-nose for daily indoor air quality monitoring in living environment. Integr. VLSI J. 2017;58:286–294. doi: 10.1016/j.vlsi.2016.12.010. DOI

Ragazzo-Sanchez J.A., Chalier P., Chevalier-Lucia D., Calderon-Santoyo M., Ghommidh C. Off-flavours detection in alcoholic beverages by electronic nose coupled to GC. Sens. Actuators B Chem. 2009;140:29–34. doi: 10.1016/j.snb.2009.02.061. DOI

Jiarpinijnun A., Osako K., Siripatrawan U. Visualization of volatomic profiles for early detection of fungal infection on storage Jasmine brown rice using electronic nose coupled with chemometrics. Meas. J. Int. Meas. Confed. 2020;157:107561–107571. doi: 10.1016/j.measurement.2020.107561. DOI

Seesaard T., Thippakorn C., Kerdcharoen T., Kladsomboon S. A hybrid electronic nose system for discrimination of pathogenic bacterial volatile compounds. Anal. Methods. 2020;12:5671–5683. doi: 10.1039/D0AY01255F. PubMed DOI

Güntner A.T., Koren V., Chikkadi K., Righettoni M., Pratsinis S.E. E-Nose Sensing of Low-ppb Formaldehyde in Gas Mixtures at High Relative Humidity for Breath Screening of Lung Cancer? ACS Sens. 2016;1:528–535. doi: 10.1021/acssensors.6b00008. DOI

Potyrailo R.A. Multivariable Sensors for Ubiquitous Monitoring of Gases in the Era of Internet of Things and Industrial Internet. Chem. Rev. 2016;116:11877–11923. doi: 10.1021/acs.chemrev.6b00187. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...