Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors

. 2017 Mar 10 ; 17 (3) : . [epub] 20170310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28287435

The aim of this review is to summarize the recent progress in the fabrication of efficient nanostructured polymer-based sensors with special focus on polypyrrole. The correlation between physico-chemical parameters, mainly morphology of various polypyrrole nanostructures, and their sensitivity towards selected gas and volatile organic compounds (VOC) is provided. The different approaches of polypyrrole modification with other functional materials are also discussed. With respect to possible sensors application in medicine, namely in the diagnosis of diseases via the detection of volatile biomarkers from human breath, the sensor interaction with humidity is described as well. The major attention is paid to analytes such as ammonia and various alcohols.

Zobrazit více v PubMed

Haick H., Cohen-Kaminsky S. Detecting Lung infections in breathprints: Empty promise or next generation diagnosis of infections. Eur. Respir. J. 2015;45:21–24. doi: 10.1183/09031936.00183714. PubMed DOI

Van de Kant K.D.G., van der Sande L., Jobsis Q., van Schayck O.C.P., Dompeling E. Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. Res. 2012;13:1–23. doi: 10.1186/1465-9921-13-117. PubMed DOI PMC

Broza Y.Y., Mochalski P., Ruzsanyi V., Amann A., Haick H. Hybrid Volatolomics and Disease Detection. Angew. Chem. Int. Ed. 2015;54:11036–11048. doi: 10.1002/anie.201500153. PubMed DOI

Broza Y.Y., Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine. 2013;8:785–806. doi: 10.2217/nnm.13.64. PubMed DOI

Konvalina G., Haick H. Sensors for Breath Testing: From Nanomaterials to Comprehensive Disease Detection. Acc. Chem. Res. 2014;47:66–76. doi: 10.1021/ar400070m. PubMed DOI

Peng G., Tisch U., Adams O., Hakim M., Shehada N., Broza Y.Y., Billan S., Abdah-Bortnyak R., Kuten A., Haick H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009;4:669–673. doi: 10.1038/nnano.2009.235. PubMed DOI

Vallejos S., Gràcia I., Bravo J., Figueras E., Hubálek J., Cané C. Detection of volatile organic compounds using flexible gas sensing devices based on tungsten oxide nanostructures functionalized with Au and Pt nanoparticles. Talanta. 2015;139:27–34. doi: 10.1016/j.talanta.2015.02.034. PubMed DOI

Choudhury A. Polyaniline/silver nanocomposites: Dielectric properties and ethanol vapour sensitivity. Sens. Actuators B Chem. 2009;138:318–325. doi: 10.1016/j.snb.2009.01.019. DOI

Kabir L., Mandal A.R., Mandal S.K. Humidity-sensing properties of conducting polypyrrole-silver nanocomposites. J. Exp. Nanosci. 2008;3:297–305. doi: 10.1080/17458080802512494. DOI

Lee J.-S., Yoon N.-R., Kang B.-H., Lee S.-W., Gopalan S.-A., Kim S.-W., Lee S.-H., Kwon D.-H., Kang S.-W. Au-Polypyrrole Framework Nanostructures for Improved Localized Surface Plasmon Resonance Volatile Organic Compounds Gas Sensing. J. Nanosci. Nanotechnol. 2015;15:7738–7742. doi: 10.1166/jnn.2015.11194. PubMed DOI

Athawale A.A., Bhagwat S.V., Katre P.P. Nanocomposite of Pd–polyaniline as a selective methanol sensor. Sens. Actuators B Chem. 2006;114:263–267. doi: 10.1016/j.snb.2005.05.009. DOI

Huang J., Yang T.L., Kang Y.F., Wang Y., Wang S.R. Gas sensing performance of polyaniline/ZnO organic-inorganic hybrids for detecting VOCs at low temperature. J. Nat. Gas Chem. 2011;20:515–519. doi: 10.1016/S1003-9953(10)60230-7. DOI

Joulazadeh M., Navarchian A.H. Ammonia detection of one-dimensional nano-structured polypyrrole/metal oxide nanocomposites sensors. Synth. Met. 2015;210:404–411. doi: 10.1016/j.synthmet.2015.10.026. DOI

Bachhav S.G., Patil D.R. Study of Polypyrrole-Coated MWCNT Nanocomposites for Ammonia Sensing at Room Temperature. J. Mater. Sci. Chem. Eng. 2015;3:30–44. doi: 10.4236/msce.2015.310005. DOI

Daneshkhah A., Shrestha S., Agarwal M., Varahramyan K. Poly(vinylidene fluoride-hexafluoropropylene) composite sensors for volatile organic compounds detection in breath. Sens. Actuators B Chem. 2015;221:635–643. doi: 10.1016/j.snb.2015.06.145. DOI

Tung T.T., Castro M., Pillin I., Kim T.Y., Suh K.S., Feller J.F. Graphene-Fe3O4/PIL-PEDOT for the design of sensitive and stable quantum chemo-resistive VOC sensors. Carbon. 2014;74:104–112. doi: 10.1016/j.carbon.2014.03.009. DOI

Feng X.M., Yan Z.Z., Li R.M., Liu X.F., Hou W.H. The synthesis of shape-controlled polypyrrole/graphene and the study of its capacitance properties. Polym. Bull. 2013;70:2291–2304. doi: 10.1007/s00289-013-0952-x. DOI

Yoon H. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials. 2013;3:524–549. doi: 10.3390/nano3030524. PubMed DOI PMC

Janata J., Josowicz M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003;2:19–24. doi: 10.1038/nmat768. PubMed DOI

Guernion N., Ewen R.J., Pihlainen K., Ratcliffe N.M., Teare G.C. The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities. Synth. Metals. 2002;126:301–310. doi: 10.1016/S0379-6779(01)00572-0. DOI

Zhang L., Meng F., Chen Y., Liu J., Sun Y., Luo T., Li M., Liu J. A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sens. Actuators B Chem. 2009;142:204–209. doi: 10.1016/j.snb.2009.07.042. DOI

Athawale A.A., Kulkarni M.V. Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sens. Actuators B Chem. 2000;67:173–177. doi: 10.1016/S0925-4005(00)00394-4. DOI

Kim J.-S., Sohn S.-O., Huh J.-S. Fabrication and sensing behavior of PVF2 coated-polyaniline sensor for volatile organic compounds. Sens. Actuators B Chem. 2005;108:409–413. doi: 10.1016/j.snb.2004.11.072. DOI

Eaidkong T., Mungkarndee R., Phollookin C., Tumcharern G., Sukwattanasinitt M., Wacharasindhu S. Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds. J. Mater. Chem. 2012;22:5970–5977. doi: 10.1039/c2jm16273c. DOI

Yoon J., Chae S.K., Kim J.M. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. J. Am. Chem. Soc. 2007;129:3038–3039. doi: 10.1021/ja067856+. PubMed DOI

Kim T., Kwak D. Flexible VOC Sensors Using Conductive Polymers and Porous Membranes for Application to Textiles. Fibers Polym. 2012;13:471–474. doi: 10.1007/s12221-012-0471-7. DOI

Park E., Kwon O.S., Park S.J., Lee J.S., You S., Jang J. One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. J. Mater. Chem. 2012;22:1521–1526. doi: 10.1039/C1JM13237G. DOI

Arena A., Donato N., Saitta G., Bonavita A., Rizzo G., Neri G. Flexible ethanol sensors on glossy paper substrates operating at room temperature. Sens. Actuators B Chem. 2010;145:488–494. doi: 10.1016/j.snb.2009.12.053. DOI

Sarfraz J., Ihalainen P., Maattanen A., Peltonen J., Linden M. Printed hydrogen sulfide gas sensor on paper substrate based on polyaniline composite. Thin Solid Films. 2013;534:621–628. doi: 10.1016/j.tsf.2013.02.055. DOI

Lee C.T., Lee H.Y., Chiu Y.S. Performance Improvement of Nitrogen Oxide Gas Sensors Using Au Catalytic Metal on SnO2/WO3 Complex Nanoparticle Sensing Layer. IEEE Sens. J. 2016;16:7581–7585. doi: 10.1109/JSEN.2016.2598349. DOI

Karmaoui M., Leonardi S.G., Latino M., Tobaldi D.M., Donato N., Pullar R.C., Seabra M.P., Labrincha J.A., Neri G. Pt-decorated In2O3 nanoparticles and their ability as a highly sensitive (<10 ppb) acetone sensor for biomedical applications. Sens. Actuators B Chem. 2016;230:697–705.

Bamsaoud S.F., Rane S.B., Karekar R.N., Aiyer R.C. Nano particulate SnO2 based resistive films as a hydrogen and acetone vapour sensor. Sens. Actuators B Chem. 2011;153:382–391. doi: 10.1016/j.snb.2010.11.003. DOI

Tharsika T., Haseeb A., Akbar S.A., Sabri M.F.M., Hoong W.Y. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures. Sensors. 2014;14:14586–14600. doi: 10.3390/s140814586. PubMed DOI PMC

Righettoni M., Tricoli A., Pratsinis S.E. Si:WO3 Sensors for Highly Selective Detection of Acetone for Easy Diagnosis of Diabetes by Breath Analysis. Anal. Chem. 2010;82:3581–3587. doi: 10.1021/ac902695n. PubMed DOI

Singh S., Kaur H., Singh V.N., Jain K., Senguttuvan T.D. Highly sensitive and pulse-like response toward ethanol of Nb doped TiO2 nanorods based gas sensors. Sens. Actuators B Chem. 2012;171–172:899–906. doi: 10.1016/j.snb.2012.06.002. DOI

Geng L., Wu S. Preparation, characterization and gas sensitivity of polypyrrole/γ-Fe2O3 hybrid materials. Mater. Res. Bull. 2013;48:4339–4343. doi: 10.1016/j.materresbull.2013.07.020. DOI

Hamilton S., Hepher M.J., Sommerville J. Polypyrrole materials for detection and discrimination of volatile organic compounds. Sens. Actuators B Chem. 2005;107:424–432. doi: 10.1016/j.snb.2004.11.001. DOI

Bhat N.V., Gadre A.P., Bambole V.A. Structural, mechanical, and electrical properties of electropolymerized polypyrrole composite films. J. Appl. Polym. Sci. 2001;80:2511–2517. doi: 10.1002/app.1359. DOI

Lee S., Cho M.S., Nam J.D., Lee Y. Fabrication of Polypyrrole Nanorod Arrays for Supercapacitor: Effect of Length of Nanorods on Capacitance. J. Nanosci. Nanotechnol. 2008;8:5036–5041. doi: 10.1166/jnn.2008.1066. PubMed DOI

Sun Y.F., Liu S.B., Meng F.L., Liu J.Y., Jin Z., Kong L.T., Liu J.H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors. 2012;12:2610–2631. doi: 10.3390/s120302610. PubMed DOI PMC

Yoon H., Jang J. Conducting-Polymer Nanomaterials for High-Performance Sensor Applications: Issues and Challenges. Adv. Funct. Mater. 2009;19:1567–1576. doi: 10.1002/adfm.200801141. DOI

Hatchett D.W., Josowicz M. Composites of intrinsically conducting polymers as sensing nanomaterials. Chem. Rev. 2008;108:746–769. doi: 10.1021/cr068112h. PubMed DOI

Liu X., Cheng S., Liu H., Hu S., Zhang D., Ning H. A Survey on Gas Sensing Technology. Sensors. 2012;12:9635–9665. doi: 10.3390/s120709635. PubMed DOI PMC

Song H.K., Palmore G.T.R. Redox-active polypyrrole: Toward polymer-based batteries. Adv. Mater. 2006;18:1764–1768. doi: 10.1002/adma.200600375. DOI

Ehsani A., Jaleh B., Nasrollahzadeh M. Electrochemical properties and electrocatalytic activity of conducting polymer/copper nanoparticles supported on reduced graphene oxide composite. J. Power Sources. 2014;257:300–307. doi: 10.1016/j.jpowsour.2014.02.010. DOI

Wei W.F., Cui X.W., Chen W.X., Ivey D.G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011;40:1697–1721. doi: 10.1039/C0CS00127A. PubMed DOI

Wang N., Zhao P., Liang K., Yao M., Yang Y., Hu W. CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem. Eng. J. 2017;307:105–112. doi: 10.1016/j.cej.2016.08.074. DOI

Wu X., Wang Q., Zhang W., Wang Y., Chen W. Nanorod structure of Polypyrrole-covered MoO3 for supercapacitors with excellent cycling stability. Mater. Lett. 2016;182:121–124. doi: 10.1016/j.matlet.2016.05.176. DOI

Liu C., Cai Z., Zhao Y., Zhao H., Ge F. Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose. 2016;23:637–648. doi: 10.1007/s10570-015-0795-8. DOI

Liu Y., Zhou J., Tang J., Tang W.H. Three-Dimensional, Chemically Bonded Polypyrrole/Bacterial Cellulose/Graphene Composites for High-Performance Supercapacitors. Chem. Mater. 2015;27:7034–7041. doi: 10.1021/acs.chemmater.5b03060. DOI

Wang Z.B., Zhang C.L., Xu C.Q., Zhu Z.H., Chen C.N. Hollow polypyrrole nanosphere embedded in nitrogen-doped graphene layers to obtain a three-dimensional nanostructure as electrode material for electrochemical supercapacitor. Ionics. 2017;23:147–156. doi: 10.1007/s11581-016-1803-1. DOI

Rao V., Praveen P., Latha D. A novel method for synthesis of polypyrrole grafted chitin. J. Polym. Res. 2016;23:6. doi: 10.1007/s10965-016-1075-5. DOI

Joulazadeh M., Navarchian A.H. Alcohol Sensibility of One-Dimensional Polyaniline and Polypyrrole Nanostructures. IEEE Sens. J. 2015;15:1697–1704. doi: 10.1109/JSEN.2014.2360915. DOI

Jang J., Bae J. Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sens. Actuator B Chem. 2007;122:7–13. doi: 10.1016/j.snb.2006.05.002. DOI

Basavaraja C., Kim W.J., Kim D.G., Huh D.S. Synthesis and characterization of soluble polypyrrole-poly(epsilon-caprolactone) polymer blends with improved electrical conductivities. Mater. Chem. Phys. 2011;129:787–793. doi: 10.1016/j.matchemphys.2011.05.057. DOI

Tu J.C., Li N., Yuan Q., Wang R., Geng W.C., Li Y.J., Zhang T., Li X.T. Humidity-sensitive property of Fe2+ doped polypyrrole. Synth. Metals. 2009;159:2469–2473. doi: 10.1016/j.synthmet.2009.08.014. DOI

Kang H.C., Geckeler K.E. Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: Effect of the preparation technique and polymer additive. Polymer. 2000;41:6931–6934. doi: 10.1016/S0032-3861(00)00116-6. DOI

Kwon O.S., Hong J.Y., Park S.J., Jang Y., Jang J. Resistive Gas Sensors Based on Precisely Size-Controlled Polypyrrole Nanoparticles: Effects of Particle Size and Deposition Method. J. Phys. Chem. C. 2010;114:18874–18879. doi: 10.1021/jp1083086. DOI

Hong J.Y., Yoon H., Jang J. Kinetic Study of the Formation of Polypyrrole Nanoparticles in Water-Soluble Polymer/Metal Cation Systems: A Light-Scattering Analysis. Small. 2010;6:679–686. doi: 10.1002/smll.200902231. PubMed DOI

Hernandez S.C., Chaudhuri D., Chen W., Myung N.V., Mulchandani A. Single polypyrrole nanowire ammonia gas sensor. Electroanalysis. 2007;19:2125–2130. doi: 10.1002/elan.200703933. DOI

Dubal D.P., Lee S.H., Kim J.G., Kim W.B., Lokhande C.D. Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J. Mater. Chem. 2012;22:3044–3052. doi: 10.1039/c2jm14470k. DOI

Chartuprayoon N., Hangarter C.M., Rheem Y., Jung H., Myung N.V. Wafer-Scale Fabrication of Single Polypyrrole Nanoribbon-Based Ammonia Sensor. J. Phys. Chem. C. 2010;114:11103–11108. doi: 10.1021/jp102858w. DOI

Yang X.M., Zhu Z.X., Dai T.Y., Lu Y. Facile fabrication of functional polypyrrole nanotubes via a reactive self-degraded template. Macromol. Rapid Commun. 2005;26:1736–1740. doi: 10.1002/marc.200500514. DOI

Joulazadeh M., Navarchian A.H., Niroomand M. A Comparative Study on Humidity Sensing Performances of Polyaniline and Polypyrrole Nanostructures. Adv. Polym. Technol. 2014;33 doi: 10.1002/adv.21461. DOI

Dubal D.P., Caban-Huertas Z., Holze R., Gomez-Romero P. Growth of polypyrrole nanostructures through reactive templates for energy storage applications. Electrochim. Acta. 2016;191:346–354. doi: 10.1016/j.electacta.2016.01.078. DOI

Guo Y.B., Tang Q.X., Liu H.B., Zhang Y.J., Li Y.L., Hu W.P., Wang S., Zhu D.B. Light-controlled organic/inorganic P-N junction nanowires. J. Am. Chem. Soc. 2008;130:9198. doi: 10.1021/ja8021494. PubMed DOI

Sankir N.D., Dogan B. Investigation of structural and optical properties of the CdS and CdS/PPy nanowires. J. Mater. Sci. 2010;45:6424–6432. doi: 10.1007/s10853-010-4727-6. DOI

Chitte H.K., Bhat N.V., Gore A.V., Shind G.N. Synthesis of Polypyrrole Using Ammonium Peroxy Disulfate (APS) as Oxidant Together with Some Dopants for Use in Gas Sensors. Mater. Sci. Appl. 2011;2:1491–1498. doi: 10.4236/msa.2011.210201. DOI

Chitte H.K., Bhat N.V., Walunj V.E., Shinde G.N. Synthesis of Polypyrrole Using Ferric Chloride (FeCl3) as Oxidant Together with Some Dopants for Use in Gas Sensors. J. Sens. Technol. 2011;1:47–56. doi: 10.4236/jst.2011.12007. DOI

Kim J., Sohn D., Sung Y., Kim E.-R. Fabrication and characterization of conductive polypyrrole thin film prepared by in situ vapor-phase polymerization. Synth. Met. 2003;132:309–313. doi: 10.1016/S0379-6779(02)00462-9. DOI

Jia H., Wang J., Zhang X., Wang Y. Pen-Writing Polypyrrole Arrays on Paper for Versatile Cheap Sensors. ACS Macro Lett. 2014;3:86–90. doi: 10.1021/mz400523x. PubMed DOI

Liana D.D., Raguse B., Gooding J.J., Chow E. Recent Advances in Paper-Based Sensors. Sensors. 2012;12:11505–11526. doi: 10.3390/s120911505. PubMed DOI PMC

Cunningham J.C., DeGregory P.R., Crooks R.M. New Functionalities for Paper-Based Sensors Lead to Simplified User Operation, Lower Limits of Detection, and New Applications. In: Bohn P.W., Pemberton J.E., editors. Annual Review of Analytical Chemistry. Volume 9. Annual Reviews; Palo Alto, CA, USA: 2016. pp. 183–202. PubMed

Steffens C., Manzoli A., Francheschi E., Corazza M.L., Corazza F.C., Oliveira J.V., Herrmann P.S.P. Low-cost sensors developed on paper by line patterning with graphite and polyaniline coating with supercritical CO2. Synth. Metals. 2009;159:2329–2332. doi: 10.1016/j.synthmet.2009.08.045. DOI

Sarfraz J., Tobjork D., Osterbacka R., Linden M. Low-Cost Hydrogen Sulfide Gas Sensor on Paper Substrates: Fabrication and Demonstration. IEEE Sens. J. 2012;12:1973–1978. doi: 10.1109/JSEN.2011.2181498. DOI

Mousavi S., Kang K., Park J., Park I. Polyaniline-polystyrene nanofibers directly written on cheap flexible substrates by electrospinning, a low-cost and sensitive hydrogen sulfide gas sensor; Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS); Shangai, China. 24–28 January 2016; pp. 917–919.

Huang L.H., Jiang P., Wang D., Luo Y.F., Li M.F., Lee H., Gerhardt R.A. A novel paper-based flexible ammonia gas sensor via silver and SWNT-PABS inkjet printing. Sens. Actuators B Chem. 2014;197:308–313. doi: 10.1016/j.snb.2014.02.081. DOI

Bai H., Shi G.Q. Gas sensors based on conducting polymers. Sensors. 2007;7:267–307. doi: 10.3390/s7030267. DOI

Patois T., Lakard B., Monney S., Roizard X., Fievet P. Characterization of the surface properties of polypyrrole films: Influence of electrodeposition parameters. Synth. Met. 2011;161:2498–2505. doi: 10.1016/j.synthmet.2011.10.003. DOI

Otero T.F., Rodríguez J. Role of protons on the electrochemical polymerization of pyrrole from acetonitrile solutions. J. Electroanal. Chem. 1994;379:513–516. doi: 10.1016/0022-0728(94)87178-7. DOI

Kupila E.L., Kankare J. Electropolymerization of pyrrole in aqueous solvent mixtures studied by in situ conductimetry. Synth. Met. 1996;82:89–95. doi: 10.1016/S0379-6779(97)80040-9. DOI

Patois T., Lakard B., Martin N., Fievet P. Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synth. Met. 2010;160:2180–2185. doi: 10.1016/j.synthmet.2010.08.005. DOI

Paramo-Garcia U., Batina N., Ibanez J.G. The Effect of pH on the Morphology of Electrochemically-grown Polypyrrole Films: An AFM Study. Int. J. Electrochem. Sci. 2012;7:12316–12325.

Nakata M., Taga M., Kise H. Synthesis of Electrical Conductive Polypyrrole Films By Interphase Oxidative Polymerization—Effects of Polymerization Temperature and Oxidizing-Agents. Polym. J. 1992;24:437–441. doi: 10.1295/polymj.24.437. DOI

Karami H., Nezhad A.R. Investigation of Pulse-Electropolymerization of Conductive Polypyrrole Nanostructures. Int. J. Electrochem. Sci. 2013;8:8905–8921.

Li C., Bai H., Shi G.Q. Conducting polymer nanomaterials: Electrosynthesis and applications. Chem. Soc. Rev. 2009;38:2397–2409. doi: 10.1039/b816681c. PubMed DOI

Babaei M., Alizadeh N. Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B Chem. 2013;183:617–626. doi: 10.1016/j.snb.2013.04.045. DOI

Sadki S., Schottland P., Brodie N., Sabouraud G. The mechanisms of pyrrole electropolymerization. Chem. Soc. Rev. 2000;29:283–293.

Genies E.M., Bidan G., Diaz A.F. Spectroelectrochemical study of polypyrrole films. J. Electroanal. Chem. Interfacial Electrochem. 1983;149:101–113. doi: 10.1016/S0022-0728(83)80561-0. DOI

Yang C., Liu P., Guo J., Wang Y. Polypyrrole/vermiculite nanocomposites via self-assembling and in situ chemical oxidative polymerization. Synth. Met. 2010;160:592–598. doi: 10.1016/j.synthmet.2009.12.012. DOI

Joshi A., Gangal S.A., Gupta S.K. Ammonia sensing properties of polypyrrole thin films at room temperature. Sens. Actuators B Chem. 2011;156:938–942. doi: 10.1016/j.snb.2011.03.009. DOI

Bahraeian S., Abron K., Pourjafarian F., Majid R.A. Study on Synthesis of Polypyrrole via Chemical Polymerization Method; Proceedings of the 2nd International Conference on Sustainable Materials; Penang, Malaysia. 26–27 March 2013; pp. 707–710.

Yeole B., Sen T., Hansora D.P., Mishra S. Effect of electrical properties on gas sensitivity of polypyrrole/cds nanocomposites. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42379. DOI

Sanches E.A., Alves S.F., Soares J.C., da Silva A.M., da Silva C.G., de Souza S.M., da Frota H.O. Nanostructured Polypyrrole Powder: A Structural and Morphological Characterization. J. Nanomater. 2015;16:301. doi: 10.1155/2015/129678. DOI

Rawal I., Kaur A. Synthesis of mesoporous polypyrrole nanowires/nanoparticles for ammonia gas sensing application. Sens. Actuators A Phys. 2013;203:92–102. doi: 10.1016/j.sna.2013.08.023. DOI

Macdiarmid A.G., Epstein A.J. The Polyanilines—Potential Technology Based On New Chemistry and New Properties. In: Salaneck W.R., Clark D.T., Samuelsen E.J., editors. Science and Applications of Conducting Polymers. Adam Hilger Ltd.; Bristol, UK: 1991. pp. 117–127.

Mohammadi A., Hasan M.A., Liedberg B., Lundstrom I., Salaneck W.R. Chemical vapor-deposition (cvd) of conducting polymers—Polypyrrole. Synth. Met. 1986;14:189–197. doi: 10.1016/0379-6779(86)90183-9. DOI

Hassanzadeh N., Omidvar H., Tabaian S.H. Chemical synthesis of high density and long polypyrrole nanowire arrays using alumina membrane and their hydrogen sensing properties. Superlattices Microstruct. 2012;51:314–323. doi: 10.1016/j.spmi.2011.12.001. DOI

Eggins B.R. Chemical Sensors and Biosensors. Wiley; West Sussex, UK: 2008.

Hodgkinson J., Tatam R.P. Optical gas sensing: A review. Meas. Sci. Technol. 2013;24:59. doi: 10.1088/0957-0233/24/1/012004. DOI

Rheaume J.M., Pisano A.P. A review of recent progress in sensing of gas concentration by impedance change. Ionics. 2011;17:99–108. doi: 10.1007/s11581-010-0515-1. DOI

Bhatt C.M., Jampana N. Multi frequency interrogation of polypyrrole based gas sensors for organic vapors. Microsyst. Technol. Micro Nanosyst. Inf. Storage Process. Syst. 2011;17:417–423. doi: 10.1007/s00542-011-1249-3. DOI

Musio F., Ferrara M.C. Low frequency A.C. response of polypyrrole gas sensors. Sens. Actuators B Chem. 1997;41:97–103. doi: 10.1016/S0925-4005(97)80282-1. DOI

Trojanowicz M. Application of conducting polymers in chemical analysis. Microchim. Acta. 2003;143:75–91. doi: 10.1007/s00604-003-0066-5. DOI

Brahim S., Wilson A.M., Narinesingh D., Iwuoha E., Guiseppi-Elie A. Chemical and Biological Sensors Based on Electrochemical Detection Using Conducting Electroactive Polymers. Microchim. Acta. 2003;143:123–137. doi: 10.1007/s00604-003-0065-6. DOI

Bazzaoui M., Martins J.I., Machnikova E., Bazzaoui E.A., Martins L. Polypyrrole films electrosynthesized on stainless steel grid from saccharinate aqueous solution and its behaviour toward acetone vapor. Eur. Polym. J. 2007;43:1347–1358. doi: 10.1016/j.eurpolymj.2007.01.013. DOI

Bhat N.V., Gadre A.P., Bambole V.A. Investigation of electropolymerized polypyrrole composite film: Characterization and application to gas sensors. J. Appl. Polym. Sci. 2003;88:22–29. doi: 10.1002/app.11641. DOI

Lin C.W., Liu Y.L., Thangamuthu R. Investigation of the relationship between surface thermodynamics of the chemically synthesized polypyrrole films and their gas-sensing responses to BTEX compounds. Sens. Actuators B Chem. 2003;94:36–45. doi: 10.1016/S0925-4005(03)00323-X. DOI

Kumar G., Mishra S., Jain A. Development of breath ammonia analysis system for disease diagnosis. Asian J. Biochem. Pharm. Res. 2013;3:36–43.

Jang W.-K., Yun J., Kim H.-I., Lee Y.-S. Improvement of ammonia sensing properties of polypyrrole by nanocomposite with graphitic materials. Colloid Polym. Sci. 2013;291:1095–1103. doi: 10.1007/s00396-012-2832-6. DOI

Gustafsson G., Lundström I., Liedberg B., Wu C.R., Inganäs O., Wennerström O. The interaction between ammonia and poly(pyrrole) Synth. Met. 1989;31:163–179. doi: 10.1016/0379-6779(89)90812-6. DOI

Carquigny S., Sanchez J.-B., Berger F., Lakard B., Lallemand F. Ammonia gas sensor based on electrosynthesized polypyrrole films. Talanta. 2009;78:199–206. doi: 10.1016/j.talanta.2008.10.056. PubMed DOI

Kwon O.S., Park S.J., Yoon H., Jang J. Highly sensitive and selective chemiresistive sensors based on multidimensional polypyrrole nanotubes. Chem. Commun. 2012;48:10526–10528. doi: 10.1039/c2cc35307e. PubMed DOI

Xue M.Q., Li F.W., Chen D., Yang Z.H., Wang X.W., Ji J.H. High-Oriented Polypyrrole Nanotubes for Next-Generation Gas Sensor. Adv. Mater. 2016;28:8265–8270. doi: 10.1002/adma.201602302. PubMed DOI

Yang X., Li L., Zhao Y. Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synth. Met. 2010;160:1822–1825. doi: 10.1016/j.synthmet.2010.06.018. DOI

Xiang C.L., Jiang D.D., Zou Y.J., Chu H.L., Qiu S.J., Zhang H.Z., Xu F., Sun L.X., Zheng L.J. Ammonia sensor based on polypyrrole-graphene nanocomposite decorated with titania nanoparticles. Ceram. Int. 2015;41:6432–6438. doi: 10.1016/j.ceramint.2015.01.081. DOI

Yan Y.R., Zhang M.L., Moon C.H., Su H.C., Myung N.V., Haberer E.D. Viral-templated gold/polypyrrole nanopeapods for an ammonia gas sensor. Nanotechnology. 2016;27:325502. doi: 10.1088/0957-4484/27/32/325502. PubMed DOI

Chougule M.A., Sen S., Patil V.B. Development of Nanostructured Polypyrrole (PPy) Thin Film Sensor for NO2 Detection. Sens. Transducers. 2012;139:122–132.

Liu X., Chen N., Han B.Q., Xiao X.C., Chen G., Djerdj I., Wang Y.D. Nanoparticle cluster gas sensor: Pt activated SnO2 nanoparticles for NH3 detection with ultrahigh sensitivity. Nanoscale. 2015;7:14872–14880. doi: 10.1039/C5NR03585F. PubMed DOI

Bhuvaneshwari S., Gopalakrishnan N. Hydrothermally synthesized Copper Oxide (CuO) superstructures for ammonia sensing. J. Colloid Interface Sci. 2016;480:76–84. doi: 10.1016/j.jcis.2016.07.004. PubMed DOI

Liu Y., Wang L., Wang H., Xiong M., Yang T., Zakharova G.S. Highly sensitive and selective ammonia gas sensors based on PbS quantum dots/TiO2 nanotube arrays at room temperature. Sens. Actuators B Chem. 2016;236:529–536. doi: 10.1016/j.snb.2016.06.037. DOI

Kumar L., Rawal I., Kaur A., Annapoorni S. Flexible room temperature ammonia sensor based on polyaniline. Sens. Actuators B Chem. 2017;240:408–416. doi: 10.1016/j.snb.2016.08.173. DOI

Hoa N.D., Van Quy N., Cho Y.S., Kim D. Nanocomposite of SWNTs and SnO2 fabricated by soldering process for ammonia gas sensor application. Phys. Status Solidi A. 2007;204:1820–1824.

Qadri M.U., Annanouch F.E., Aguilo M., Diaz F., Borull J.F., Pujol M.C., Llobet E. Metal Decorated WO3 Nanoneedles Fabricated by Aerosol Assisted Chemical Vapor Deposition for Optical Gas Sensing. J. Nanosci. Nanotechnol. 2016;16:10125–10132. doi: 10.1166/jnn.2016.12840. DOI

Huotari J., Lappalainen J., Eriksson J., Bjorklund R., Heinonen E., Miinalainen I., Puustinen J., Lloyd Spetz A. Synthesis of nanostructured solid-state phases of V7O16 and V2O5 compounds for ppb-level detection of ammonia. J. Alloys Compd. 2016;675:433–440. doi: 10.1016/j.jallcom.2016.03.116. DOI

Krivetskiy V., Malkov I., Garshev A., Mordvinova N., Lebedev O.I., Dolenko S., Efitorov A., Grigoriev T., Rumyantseva M., Gaskov A. Chemically modified nanocrystalline SnO2-based materials for nitrogen-containing gases detection using gas sensor array. J. Alloys Compd. 2017;691:514–523. doi: 10.1016/j.jallcom.2016.08.275. DOI

Dalavi D.S., Harale N.S., Mulla I.S., Rao V.K., Patil V.B., Kim I.Y., Kim J.H., Patil P.S. Nanoporous network of nickel oxide for ammonia gas detection. Mater. Lett. 2015;146:103–107. doi: 10.1016/j.matlet.2015.01.138. DOI

Nayak A.K., Ghosh R., Santra S., Guha P.K., Pradhan D. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds. Nanoscale. 2015;7:12460–12473. doi: 10.1039/C5NR02571K. PubMed DOI

Park Y.H., Song H.-K., Lee C.-S., Jee J.-G. Fabrication and its characteristics of metal-loaded TiO2/SnO2 thick-film gas sensor for detecting dichloromethane. J. Ind. Eng. Chem. 2008;14:818–823. doi: 10.1016/j.jiec.2008.06.009. DOI

Qin H.Y., Kukarni A., Zhang H., Kim H., Jiang D., Kim T. Polypyrrole thin film fiber optic chemical sensor for detection of VOCs. Sens. Actuators B Chem. 2011;158:223–228. doi: 10.1016/j.snb.2011.06.009. DOI

Campos M., Simoes F.R., Pereira E.C. Influence of methane in the electrical properties of polypyrrole films doped with dodecylbenzene sulfonic acid. Sens. Actuators B Chem. 2007;125:158–166. doi: 10.1016/j.snb.2007.02.001. DOI

Campos M. Gas sensing properties based on a doped conducting polymer/inorganic semiconductor; Proceedings of the 2nd IEEE International Conference on Sensors; Toronto, ON, Canada. 22–24 October 2003; pp. 1126–1129.

Xu Y.W., Lee H., Hu Y.S., Huang J.Y., Kim S., Yun M. Detection and Identification of Breast Cancer Volatile Organic Compounds Biomarkers Using Highly-Sensitive Single Nanowire Array on a Chip. J. Biomed. Nanotechnol. 2013;9:1164–1172. doi: 10.1166/jbn.2013.1651. PubMed DOI

Hwang H.R., Roh J.G., Lee D.D., Lim J.O., Huh J.S. Sensing behavior of the polypyrrole and polyaniline sensor for several volatile organic compounds. Met. Mater. Int. 2003;9:287–291. doi: 10.1007/BF03027048. DOI

Low K., Chartuprayoon N., Echeverria C., Li C.L., Bosze W., Myung N.V., Nam J. Polyaniline/poly(epsilon-caprolactone) composite electrospun nanofiber-based gas sensors: Optimization of sensing properties by dopants and doping concentration. Nanotechnology. 2014;25:115501. doi: 10.1088/0957-4484/25/11/115501. PubMed DOI

Kebiche H., Debarnot D., Merzouki A., Poncin-Epaillard F., Haddaoui N. Relationship between ammonia sensing properties of polyaniline nanostructures and their deposition and synthesis methods. Anal. Chim. Acta. 2012;737:64–71. doi: 10.1016/j.aca.2012.06.003. PubMed DOI

Brédas J.L., Silbey R. Conjugated Polymers: The Novel Science and Technology of Highly Conducting and Nonlinear Optically Active Materials. Springer; Dordrecht, The Netherlands: 2012.

Wang L.Q., Gao P., Bao D., Wang Y., Chen Y.J., Chang C., Li G.B., Yang P.P. Synthesis of Crystalline/Amorphous Core/Shell MoO3 Composites through a Controlled Dehydration Route and Their Enhanced Ethanol Sensing Properties. Cryst. Growth Des. 2014;14:569–575. doi: 10.1021/cg401384t. DOI

Sun Y.J., Chen L., Wang Y., Zhao Z.T., Li P.W., Zhang W.D., Leprince-Wang Y., Hu J. Synthesis of MoO3/WO3 composite nanostructures for highly sensitive ethanol and acetone detection. J. Mater. Sci. 2017;52:1561–1572. doi: 10.1007/s10853-016-0450-2. DOI

Li Y., Deng D., Xing X., Chen N., Liu X., Xiao X., Wang Y. A high performance methanol gas sensor based on palladium-platinum-In2O3 composited nanocrystalline SnO2. Sens. Actuators B Chem. 2016;237:133–141. doi: 10.1016/j.snb.2016.06.088. DOI

Li Y.S., Xu J., Chao J.F., Chen D., Ouyang S.X., Ye J.H., Shen G.Z. High-aspect-ratio single-crystalline porous In2O3 nanobelts with enhanced gas sensing properties. J. Mater. Chem. 2011;21:12852–12857. doi: 10.1039/c1jm11356a. DOI

Tang W., Wang J., Yao P.J., Li X.G. Hollow hierarchical SnO2-ZnO composite nanofibers with heterostructure based on electrospinning method for detecting methanol. Sens. Actuators B Chem. 2014;192:543–549. doi: 10.1016/j.snb.2013.11.003. DOI

Sun A.H., Li Z.X., Wei T.F., Li Y., Cui P. Highly sensitive humidity sensor at low humidity based on the quaternized polypyrrole composite film. Sens. Actuators B Chem. 2009;142:197–203. doi: 10.1016/j.snb.2009.08.028. DOI

Zeng F.-W., Liu X.-X., Diamond D., Lau K.T. Humidity sensors based on polyaniline nanofibres. Sens. Actuators B Chem. 2010;143:530–534. doi: 10.1016/j.snb.2009.09.050. DOI

Chani M.T.S., Karimov K.S., Khalid F.A., Moiz S.A. Polyaniline based impedance humidity sensors. Solid State Sci. 2013;18:78–82. doi: 10.1016/j.solidstatesciences.2013.01.005. DOI

Lin W.D., Chang H.M., Wu R.J. Applied novel sensing material graphene/polypyrrole for humidity sensor. Sens. Actuators B Chem. 2013;181:326–331. doi: 10.1016/j.snb.2013.02.017. DOI

Yang M.Z., Dai C.L., Lu D.H. Polypyrrole Porous Micro Humidity Sensor Integrated with a Ring Oscillator Circuit on Chip. Sensors. 2010;10:10095–10104. doi: 10.3390/s101110095. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...