Fungal Endophytes of Vitis vinifera-Plant Growth Promoters or Potentially Toxinogenic Agents?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35202094
PubMed Central
PMC8877596
DOI
10.3390/toxins14020066
PII: toxins14020066
Knihovny.cz E-zdroje
- Klíčová slova
- endophytes, liquid chromatography, mass spectrometry, microscopic filamentous fungi, mycotoxins,
- MeSH
- endofyty * MeSH
- houby metabolismus MeSH
- mykotoxiny metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- Vitis mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mykotoxiny MeSH
- regulátory růstu rostlin MeSH
Fungal endophytes occurring in grapevine (Vitis vinifera L.) are usually important sources of various compounds with biological activities with great potential for use in agriculture. Nevertheless, many species isolated from this plant belong to the genera Fusarium, Alternaria, or Aspergillus, all of which are well-known to produce mycotoxins. Our study is focused on the assessment of the toxinogenic potential of fungal endophytes isolated from vineyards in the Czech Republic. In total, 20 endophytic fungal species were cultivated in wine must, and 57 mycotoxins of different classes were analysed by liquid chromatography coupled with mass spectrometry. As a result, alternariol, tentoxin, meleagrin, roquefortine C, gliotoxin, and verruculogen were detected in the culture medium, of which verruculogen followed by gliotoxin were the most frequent (present in 90 and 40% of samples, respectively) and most concentrated (up to thousands ng/mL). The alternaria mycotoxins alternariol and tentoxin were detected not only in Alternaria sp. cultures, but traces of these mycotoxins were also quantified in the Diatripe and Epicoccum cultures. Meleagrin and roquefortine C were detected in Didymella sancta and Penicillium crustosum, gliotoxin was detected in Alternaria sp., Didymella sp., Aureobasidium pullulans, Cladosporium herbarum, Penicillium crustosum and Pleurophoma ossicola, and verruculogen was quantified in 99% of endophytic isolates investigated. The potential of endophytes to produce mycotoxins should be carefully checked, specifically in cases where they are intended for the purpose of V. vinifera growing.
Zobrazit více v PubMed
Rai M., Rathod D., Agarkar G., Dar M., Brestic M., Pastore G.M., Marostica Junior M.R. Fungal growth promotor endophytes: A pragmatic approach towards sustainable food and agriculture. Symbiosis. 2014;62:63–79. doi: 10.1007/s13199-014-0273-3. DOI
Gouda S., Das G., Sen S.K., Shin H.S., Patra J.K. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front. Microbiol. 2016;7:1538. doi: 10.3389/fmicb.2016.01538. PubMed DOI PMC
Le Cocq K., Gurr S.J., Hirsch P.R., Mauchline T.H. Exploitation of endophytes for sustainable agricultural intensification. Mol. Plant Pathol. 2017;18:469–473. doi: 10.1111/mpp.12483. PubMed DOI PMC
Bakshi S., Sztejnberg A., Yarden O. Isolation and characterization of a cold-tolerant strain of Fusarium proliferatum, a biocontrol agent of grape downy mildew. Phytopathology. 2001;91:1062–1068. doi: 10.1094/PHYTO.2001.91.11.1062. PubMed DOI
Falk S.P., Pearson R.C., Gadoury D.M., Seem R.C., Sztejnberg A. Fusarium proliferatum as a biocontrol agent against grape downy mildew. Phytopathology. 1996;86:1010–1017. doi: 10.1094/Phyto-86-1010. DOI
Musetti R., Vecchione A., Stringher L., Borselli S., Zulini L., Marzani C., D’Ambrosio M., Sanita di Toppi L., Pertot I. Inhibition of sporulation and ultrastructural alterations of grapevine downy mildew by the endophytic fungus Alternaria alternata. Phytopathology. 2006;96:689–698. doi: 10.1094/PHYTO-96-0689. PubMed DOI
Gonzalez V., Tello M.L. The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers. 2011;47:29–42. doi: 10.1007/s13225-010-0073-x. DOI
de Almeida A.B., Concas J., Campos M.D., Materatski P., Varanda C., Patanita M., Murolo S., Romanazzi G., Felix M.D.R. Endophytic fungi as potential biological control agents against grapevine trunk diseases in alentejo region. Biology. 2020;9:420. doi: 10.3390/biology9120420. PubMed DOI PMC
Shi J., Zeng Q., Liu Y., Pan Z. Alternaria sp. MG1, a resveratrol-producing fungus: Isolation, identification, and optimal cultivation conditions for resveratrol production. Appl. Microbiol. Biotechnol. 2012;95:369–379. doi: 10.1007/s00253-012-4045-9. PubMed DOI
Yang M.Z., Ma M.D., Yuan M.Q., Huang Z.Y., Yang W.X., Zhang H.B., Huang L.H., Ren A.Y., Shan H. Fungal endophytes as a metabolic fine-tuning regulator for wine grape. PLoS ONE. 2016;11:e0163186. doi: 10.1371/journal.pone.0163186. PubMed DOI PMC
European Commission DG-SANTE Guidance Document on the Analytical Quality Control and Method Validation Procedures for Pesticide Residues in Food and Feed. Volume 12682. European Commission, Health & Consumer Protection Directorate-General; Brussels, Belgium: 2019. pp. 3–49. No. SANTE/12682/2019.
Marin S., Cano-Sancho G., Sanchis V., Ramos A.J. The role of mycotoxins in the human exposome: Application of mycotoxin biomarkers in exposome-health studies. Food Chem. Toxicol. 2018;121:504–518. doi: 10.1016/j.fct.2018.09.039. PubMed DOI
Suryanarayanan T., Thirumalai E. Fungal endophytes of betel leaves: The need to study mycotoxin-producing endophytes in leafy vegetables. Sydowia. 2020;73:83–88.
Guan H., Liu X., Mur L.A.J., Fu Y., Wei Y., Wang J., He W. Rethinking of the roles of endophyte symbiosis and mycotoxin in oxytropis plants. J. Fungi. 2021;7:400. doi: 10.3390/jof7050400. PubMed DOI PMC
Bony S., Pichon N., Ravel C., Durix A., Balfourier F., Guillaumin J.-J. The relationship between myotoxin synthesis in fungal endophytes of Lolium perenne. New Phytol. 2001;152:125–137. doi: 10.1046/j.0028-646x.2001.00231.x. PubMed DOI
Vazquez de Aldana B., Zabalgogeazcoa I., Ciudad A., Garcia B. Ergovaline occurrence in grasses infected by fungal endophytes of semi-arid pastures in Spain. J. Sci. Food Agric. 2003;83:347–353. doi: 10.1002/jsfa.1319. DOI
He W., Guo L., Wang L., Zhao Q., Guo L., Cao W., Mur L.A.J., Wei Y. Host genotype and precipitation influence of fungal endophyte symbiosis and mycotoxin abundance in a locoweed. Int. J. Mol. Sci. 2019;20:5285. doi: 10.3390/ijms20215285. PubMed DOI PMC
Williams R.M., Stocking E.M., Sanz-Cervera J.F. Biosynthesis of Prenylated Alkaloids Derived from Tryptophan BT. In: Leeper F.J., Vederas J.C., editors. Biosynthesis: Aromatic Polyketides, Isoprenoids, Alkaloids. Springer; Berlin/Heidelberg, Germany: 2000. pp. 97–173. DOI
Hayashi H. Bioactive alkaloids of fungal origin. In: Atta-ur-Rahman B.T.-S., editor. Bioactive Natural Products (Part L) Volume 32. Elsevier; Amsterdam, The Netherlands: 2005. pp. 549–609. DOI
Malekinejad H., Fani F., Shafie-Irannejad V., Fink-Gremmel F. Aspergillus fumigatus toxins cause cytotoxic and apoptotic effects on human T lymphocytes (Jurkat cells) World Mycotoxin J. 2013;6:65–71. doi: 10.3920/WMJ2012.1481. DOI
Scharf D.H., Brakhage A.A., Mukherjee P.K. Gliotoxin—bane or boon? Environ. Microbiol. 2016;18:1096–1109. doi: 10.1111/1462-2920.13080. PubMed DOI
Martin J.F., Liras P. Evolutionary formation of gene clusters by reorganization: The meleagrin/roquefortine paradigm in different fungi. Appl. Microbiol. Biotechnol. 2016;100:1579–1587. doi: 10.1007/s00253-015-7192-y. PubMed DOI
Chen A., Mao X., Sun Q., Wei Z., Li J., You Y., Zhao J., Jiang G., Wu Y., Wang L., et al. Alternaria Mycotoxins: An Overview of Toxicity, Metabolism, and Analysis in Food. J. Agric. Food Chem. 2021;69:7817–7830. doi: 10.1021/acs.jafc.1c03007. PubMed DOI
Grasslanz Technology Limited Grasslanz. [(accessed on 16 January 2022)]. Available online: https://www.grasslanz.com/products-services.
PGG Wrighton Seeds Limited Agricom. [(accessed on 16 January 2022)]. Available online: https://www.agricom.co.nz/products/endophytes.
Mikusova P., Sulyok M., Srobarova A. Alternaria mycotoxins associated with grape berries in vitro and in situ. Biologia. 2014;69:173–177. doi: 10.2478/s11756-013-0306-z. DOI
Gruber-Dorninger C., Novak B., Nagl V., Berthiller F. Emerging Mycotoxins: Beyond Traditionally Determined Food Contaminants. J. Agric. Food Chem. 2017;65:7052–7070. doi: 10.1021/acs.jafc.6b03413. PubMed DOI
Filippo R., Gallo A., Terenzio B. Emerging mycotoxins in the food chain. Mediterr. J. Nutr. Metab. 2020;13:7–27. doi: 10.3233/MNM-190345. DOI
Kolarik M., Spakowicz D.J., Gazis R., Shaw J., Kubatova A., Novakova A., Chudickova M., Forcina G.C., Kang K.W., Kelnarova I., et al. Biatriospora (Ascomycota: Pleosporales) is an ecologically diverse genus including facultative marine fungi and endophytes with biotechnological potential. Plant Syst. Evol. 2017;303:35–50. doi: 10.1007/s00606-016-1350-2. DOI
Pichova K., Pazoutova S., Kostovcik M., Chudickova M., Stodulkova E., Novak P., Flieger M., van der Linde E., Kolarik M. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps) Mol. Phylogenet. Evol. 2018;123:73–87. doi: 10.1016/j.ympev.2018.02.013. PubMed DOI
Zachariasova M., Cajka T., Godula M., Malachova A., Veprikova Z., Hajslova J. Analysis of multiple mycotoxins in beer employing (ultra)-high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2010;24:3357–3367. doi: 10.1002/rcm.4746. PubMed DOI