Tuning of Morphological and Antibacterial Properties of Poly(3,4-ethylenedioxythiophene):Peroxodisulfate by Methyl Violet
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TN02000067/001N
Technology Agency of the Czech Republic
DKRVO (RP/CPS/2022/001)
Ministry of Education Youth and Sports
PubMed
37514416
PubMed Central
PMC10386557
DOI
10.3390/polym15143026
PII: polym15143026
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial properties, conductivity, electrochemical activity, methyl violet, poly(3,4-ethylenedioxythiophene),
- Publikační typ
- časopisecké články MeSH
This study demonstrates a one-step synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of the methyl violet (MV) dye. The structural properties of PEDOT:peroxodisulfate were studied using Raman and MALDI-TOF spectroscopies. The use of the MV dye in the polymerization process resulted in a change in the typical irregular morphology of PEDOT:peroxodisulfate, leading to the formation of spherical patterns. SEM and TEM analyses revealed that increasing the dye concentration can produce larger spherical aggregates probably due to the hydrophobic and π-π interactions. These larger aggregates hindered the charge transport and reduced the electrical conductivity. Interestingly, at higher dye concentrations (0.05 and 0.075 M), the PEDOT:peroxodisulfate/MV films exhibited significantly improved antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the PEDOT:peroxodisulfate films with the incorporated MV dye exhibited a well-defined and repeatable redox behavior. The remarkable amalgamation of their optical, electrochemical and antibacterial properties provides the PEDOT:peroxodisulfate/MV materials with an immensely diverse spectrum of applications, including in optical sensors and medical devices.
Centre of Polymer Systems Tomas Bata University in Zlin 760 01 Zlin Czech Republic
Institute of Macromolecular Chemistry Czech Academy of Sciences 162 06 Prague Czech Republic
Zobrazit více v PubMed
Cha B.G., Lee D., Kim T., Piao Y., Kim J. Iron Oxide@Polypyrrole Core-Shell Nanoparticles as the Platform for Photothermal Agent and Electrochemical Biosensor. J. Nanosci. Nanotechnol. 2016;16:6942–6948. doi: 10.1166/jnn.2016.11323. DOI
Šetka M., Drbohlavová J., Hubálek J. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors. 2017;17:562. doi: 10.3390/s17030562. PubMed DOI PMC
Sultana N., Chang H.C., Jefferson S., Daniels D.E. Application of Conductive Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) (PEDOT: PSS) Polymers in Potential Biomedical Engineering. J. Pharm. Investig. 2020;50:437–444. doi: 10.1007/s40005-020-00485-w. DOI
Yu Y., Zhang L., Wang M., Yang Z., Lin L., Xiong Y., Xu Z., Wang J. H2O2/near-Infrared Light-Responsive Nanotheronostics for MRI-Guided Synergistic Chemo/Photothermal Cancer Therapy. Nanomedicine. 2019;14:2189–2207. doi: 10.2217/nnm-2019-0043. PubMed DOI
Woeppel K.M., Zheng X.S., Schulte Z.M., Rosi N.L., Cui X.T. Nanoparticle Doped PEDOT for Enhanced Electrode Coatings and Drug Delivery. Adv. Healthc. Mater. 2019;8:1900622. doi: 10.1002/adhm.201900622. PubMed DOI PMC
Babaie A., Bakhshandeh B., Abedi A., Mohammadnejad J., Shabani I., Ardeshirylajimi A., Moosavi S., Amini J., Tayebi L. Synergistic Effects of Conductive PVA/PEDOT Electrospun Scaffolds and Electrical Stimulation for More Effective Neural Tissue Engineering. Eur. Polym. J. 2020;140:110051. doi: 10.1016/j.eurpolymj.2020.110051. DOI
Mahira S., Jain A., Khan W., Domb A.J. Antimicrobial Materials for Biomedical Applications. Royal Society of Chemistry; London, UK: 2019. Antimicrobial Materials—An Overview; pp. 1–37.
Sedighi A., Montazer M., Mazinani S. Fabrication of Electrically Conductive Superparamagnetic Fabric with Microwave Attenuation, Antibacterial Properties and UV Protection Using PEDOT/Magnetite Nanoparticles. Mater. Des. 2018;160:34–47. doi: 10.1016/j.matdes.2018.08.046. DOI
Kiefer R., Lee R.J., Temmer R., Tamm T., Aabloo A. Chitosan Combined with Conducting Polymers for Novel Functionality: Antioxidant and Antibacterial Activity. Key Eng. Mater. 2014;605:428–431. doi: 10.4028/www.scientific.net/KEM.605.428. DOI
Wan C., Li J. Cellulose Aerogels Functionalized with Polypyrrole and Silver Nanoparticles: In-Situ Synthesis, Characterization and Antibacterial Activity. Carbohydr. Polym. 2016;146:362–367. doi: 10.1016/j.carbpol.2016.03.081. PubMed DOI
Mansour Lakourj M., Norouzian R.S., Esfandyar M., Ghasemi Mir S. Conducting Nanocomposites of Polypyrrole-Co-Polyindole Doped with Carboxylated CNT: Synthesis Approach and Anticorrosion/Antibacterial/Antioxidation Property. Mater. Sci. Eng. B. 2020;261:114673. doi: 10.1016/j.mseb.2020.114673. DOI
Ramanavicius A., Ryskevic N., Oztekin Y., Kausaite-Minkstimiene A., Jursenas S., Baniukevic J., Kirlyte J., Bubniene U., Ramanaviciene A. Immunosensor Based on Fluorescence Quenching Matrix of the Conducting Polymer Polypyrrole. Anal. Bioanal. Chem. 2010;398:3105–3113. doi: 10.1007/s00216-010-4265-8. PubMed DOI
Ayranci R., Kirbay F.O., Demirkol D.O., Ak M., Timur S. Copolymer Based Multifunctional Conducting Polymer Film for Fluorescence Sensing of Glucose. Methods Appl. Fluoresc. 2018;6:035012. doi: 10.1088/2050-6120/aac519. PubMed DOI
Abel S.B., Yslas E.I., Rivarola C.R., Barbero C.A. Synthesis of Polyaniline (PANI) and Functionalized Polyaniline (F-PANI) Nanoparticles with Controlled Size by Solvent Displacement Method. Application in Fluorescence Detection and Bacteria Killing by Photothermal Effect. Nanotechnology. 2018;29:125604. doi: 10.1088/1361-6528/aaa99a. PubMed DOI
Bartel M., Wysocka B., Krug P., Kępińska D., Kijewska K., Blanchard G.J., Kaczyńska K., Lubelska K., Wiktorska K., Głowala P., et al. Magnetic Polymer Microcapsules Loaded with Nile Red Fluorescent Dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018;195:148–156. doi: 10.1016/j.saa.2018.01.056. PubMed DOI
Groenendaal L.B., Jonas F., Freitag D., Pielartzik H., Reynolds J.R. Poly(3,4-ethylenedioxythiophene) and Its Derivatives: Past, Present, and Future. Adv. Mater. 2000;12:7. doi: 10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C. DOI
Rossetti N., Luthra P., Hagler J., Jae Lee A.H., Bodart C., Li X., Ducharme G., Soavi F., Amilhon B., Cicoira F. Poly(3,4-ethylenedioxythiophene) (PEDOT) Coatings for High-Quality Electromyography Recording. ACS Appl. Bio Mater. 2019;2:5154–5163. doi: 10.1021/acsabm.9b00809. PubMed DOI
Bolin M.H., Svennersten K., Wang X., Chronakis I.S., Richter-Dahlfors A., Jager E.W.H., Berggren M. Nano-Fiber Scaffold Electrodes Based on PEDOT for Cell Stimulation. Sens. Actuators B Chem. 2009;142:451–456. doi: 10.1016/j.snb.2009.04.062. DOI
Flampouri E., Kintzios S. Nafion and Polylysine Treated PEDOT Mammalian Cell Biosensor. Procedia Eng. 2011;25:976–979. doi: 10.1016/j.proeng.2011.12.240. DOI
Tian H.C., Liu J.Q., Kang X.Y., Wei D.X., Zhang C., Du J.C., Yang B., Chen X., Yang C.S. Biotic and Abiotic Molecule Dopants Determining the Electrochemical Performance, Stability and Fibroblast Behavior of Conducting Polymer for Tissue Interface. RSC Adv. 2014;4:47461–47471. doi: 10.1039/C4RA07265K. DOI
Kiristi M., Oksuz A.U., Oksuz L., Ulusoy S. Electrospun Chitosan/PEDOT Nanofibers. Mater. Sci. Eng. C. 2013;33:3845–3850. doi: 10.1016/j.msec.2013.05.018. PubMed DOI
Triguero J., Zanuy D., Alemán C. Impact of Protein-Polymer Interactions in the Antimicrobial Activity of Lysozyme/Poly(3,4-ethylenedioxythiophene) Biocapacitors. ChemistrySelect. 2018;3:9714–9724. doi: 10.1002/slct.201801956. DOI
Minisy I.M., Acharya U., Kobera L., Trchová M., Unterweger C., Breitenbach S., Brus J., Pfleger J., Stejskal J., Bober P. Highly Conducting 1-D Polypyrrole Prepared in the Presence of Safranin. J. Mater. Chem. C. 2020;8:12140–12147. doi: 10.1039/D0TC02838J. DOI
Gupta S., Acharya U., Pištěková H., Taboubi O., Morávková Z., Kašparová M., Humpolíček P., Bober P. Tuning the Conductivity, Morphology, and Capacitance with Enhanced Antibacterial Properties of Polypyrrole by Acriflavine Hydrochloride. ACS Appl. Polym. Mater. 2021;3:6063–6069. doi: 10.1021/acsapm.1c00775. DOI
Bober P., Li Y., Acharya U., Panthi Y., Pfleger J., Humpolíček P., Trchová M., Stejskal J. Acid Blue Dyes in Polypyrrole Synthesis: The Control of Polymer Morphology at Nanoscale in the Promotion of High Conductivity and the Reduction of Cytotoxicity. Synth. Met. 2018;237:40–49. doi: 10.1016/j.synthmet.2018.01.010. DOI
Patir A., Hwang G.B., Lourenco C., Nair S.P., Carmalt C.J., Parkin I.P. Crystal Violet-Impregnated Slippery Surface to Prevent Bacterial Contamination of Surfaces. ACS Appl. Mater. Interfaces. 2021;13:5478–5485. doi: 10.1021/acsami.0c17915. PubMed DOI
Paradee N., Sirivat A. Synthesis of Poly(3,4-ethylenedioxythiophene) Nanoparticles via Chemical Oxidation Polymerization. Polym. Int. 2014;63:106–113. doi: 10.1002/pi.4538. DOI
Bai M., Wang X., Li B. Capacitive Behavior and Material Characteristics of Congo Red Doped Poly (3,4-Ethylene Dioxythiophene) Electrochim. Acta. 2018;283:590–596. doi: 10.1016/j.electacta.2018.07.004. DOI
Dai T., Lu Y. Water-Soluble Methyl Orange Fibrils as Versatile Templates for the Fabrication of Conducting Polymer Microtubules. Macromol. Rapid Commun. 2007;28:629–633. doi: 10.1002/marc.200600697. DOI
Gupta S., Patra A. Facile Polymerization Method for Poly(3,4-ethylenedioxythiophene) and Related Polymers Using Iodine Vapour. New J. Chem. 2020;44:6883–6888. doi: 10.1039/C9NJ03923F. DOI
Gupta S., Mishra A., Kumar R., Patra A. Solid-State Synthesis of Conjugated Doped Poly(3,4-ethylenedioxythiophene): An Effective Adsorbent for Selective Anionic Dye Removal. React. Funct. Polym. 2021;165:104972. doi: 10.1016/j.reactfunctpolym.2021.104972. DOI
Singh V., Kumar T. Study of Modified PEDOT: PSS for Tuning the Optical Properties of Its Conductive Thin Films. J. Sci. Adv. Mater. Devices. 2019;4:538–543. doi: 10.1016/j.jsamd.2019.08.009. DOI
Chandraboss V.L., Kamalakkannan J., Prabha S., Senthilvelan S. An Efficient Removal of Methyl Violet from Aqueous Solution by an AC-Bi/ZnO Nanocomposite Material. RSC Adv. 2015;5:25857–25869. doi: 10.1039/C4RA14463E. DOI
Kochervinskii V.V., Gradova M.A., Gradov O.V., Kiselev D.A., Ilina T.S., Kalabukhova A.V., Kozlova N.V., Shmakova N.A., Bedin S.A. Structural, Optical, and Electrical Properties of Ferroelectric Copolymer of Vinylidenefluoride Doped with Rhodamine 6G Dye. J. Appl. Phys. 2019;125:044103. doi: 10.1063/1.5067272. DOI
Ryu N., Okazaki Y., Pouget E., Takafuji M., Nagaoka S., Ihara H., Oda R. Fluorescence emission originated from the H-aggregated cyanine dye with chiral gemini surfactant assemblies having a narrow absorption band and a remarkably large Stokes shift. Chem. Commun. 2017;53:8870–8873. doi: 10.1039/C7CC04484D. PubMed DOI
Hestand N.J., Spano F.C. Expanded theory of H-and J-molecular aggregates: The effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 2018;118:7069–7163. doi: 10.1021/acs.chemrev.7b00581. PubMed DOI
Sun H., Lu B.Y., Duan X.M., Jingkun Xu J.K., Dong L., Zhu X.F., Zhang K.X., Hu D.F., Ming S.L. Electrosynthesis and Characterization of a New Conducting Copolymer from 2′-aminomethyl-3,4-ethylenedioxythiophene and 3,4-ethylenedioxythiophene. Int. J. Electrochem. Sci. 2015;10:3236–3249. doi: 10.1016/S1452-3981(23)06535-5. DOI
Shahinyan G.A., Amirbekyan A.Y., Markarian S.A. Photophysical Properties of Methylene Blue in Water and in Aqueous Solutions of Dimethylsulfoxide. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019;217:170–175. doi: 10.1016/j.saa.2019.03.079. PubMed DOI
Elschner A., Kirchmeyer S., Lövenich W., Merker U., Reuter K. PEDOT: Principles and Applications of an Intrinsically Conductive Polyme. CRC Press; Boca Raton, FL, USA: 2010. pp. 1–380.
Stejskal J. Interaction of Conducting Polymers, Polyaniline and Polypyrrole, with Organic Dyes: Polymer Morphology Control, Dye Adsorption and Photocatalytic Decomposition. Chem. Pap. 2019;74:1–54. doi: 10.1007/s11696-019-00982-9. DOI
Bober P., Zasonska B.A., Humpolíček P., Kuceková Z., Varga M., Horák D., Babayan V., Kazantseva N., Prokeš J., Stejskal J. Polyaniline–Maghemite Based Dispersion: Electrical, Magnetic Properties and Their Cytotoxicity. Synth. Met. 2016;214:23–29. doi: 10.1016/j.synthmet.2016.01.010. DOI
Lapides I., Yariv S., Golodnitsky D. Simultaneous DTA-TG study of montmorillonite mechanochemically treated with crystal-violet. J. Therm. Anal. Calorim. 2002;67:99–112. doi: 10.1023/A:1013737914178. DOI
Gupta S., Taboubi O., Acharya U., Lhotka M., Pokorný V., Morávková Z., Hromádková J., Bober P. Nanostructured poly (N-methyl pyrrole) with enhanced conductivity and capacitance. Synth Met. 2022;290:117134. doi: 10.1016/j.synthmet.2022.117134. DOI
Garreau S., Louarn G., Buisson J.P., Froyer G., Lefrant S. In Situ Spectroelectrochemical Raman Studies of Poly(3,4-ethylenedioxythiophene) (PEDT) Macromolecules. 1999;32:6807–6812. doi: 10.1021/ma9905674. DOI
Zanfrognini B., Colina A., Heras A., Zanardi C., Seeber R., López-Palacios J. A UV–Visible/Raman Spectroelectrochemical Study of the Stability of Poly(3,4-ethylendioxythiophene) Films. Polym. Degrad. Stab. 2011;96:2112–2119. doi: 10.1016/j.polymdegradstab.2011.09.017. DOI
Szkoda M., Nowaczyk G., Lisowska-Oleksiak A., Siuzdak K. The Influence of Polarization of Titania Nanotubes Modified by a Hybrid System Made of a Conducting Polymer PEDOT and Prussian Blue Redox Network on the Raman Spectroscopy Response and Photoelectrochemical Properties. Electrochim. Acta. 2018;279:34–43. doi: 10.1016/j.electacta.2018.05.068. DOI
Almeida P.V., Izumi C.M.S., Dos Santos H.F., SantAna A.C. Spectroscopic Characterization of PEDOT: PSS Conducting Polymer by Resonance Raman and SERRS Spectroscopies. Quim. Nova. 2019;42:1073–1080.
Sakmeche N., Aaron J.J., Fall M., Aeiyach S., Jouini M., Lacroix J.C., Lacaze P.C. Anionic Micelles; a New Aqueous Medium for Electropolymerization of Poly(3,4-ethylenedioxythiophene) Films on Pt Electrodes. Chem. Commun. 1996;24:2723–2724. doi: 10.1039/cc9960002723. DOI
Lisowska-Oleksiak A., Nowak A.P., Wilamowska M., Sikora M., Szczerba W., Kapusta C. Ex Situ XANES, XPS and Raman Studies of Poly(3,4-Ethylenedioxythiophene) Modified by Iron Hexacyanoferrate. Synth. Met. 2010;160:1234–1240. doi: 10.1016/j.synthmet.2010.03.015. DOI
Chiu W.W., Travaš-Sejdić J., Cooney R.P., Bowmaker G.A. Studies of Dopant Effects in Poly(3,4-ethylenedi-oxythiophene) Using Raman Spectroscopy. J. Raman Spectrosc. 2006;37:1354–1361. doi: 10.1002/jrs.1545. DOI
Kvarnström C., Neugebauer H., Blomquist S., Ahonen H.J., Kankare J., Ivaska A. In Situ Spectroelectrochemica Characterization of Poly(3,4-ethylenedioxythiophene) Electrochim. Acta. 1999;44:2739–2750. doi: 10.1016/S0013-4686(98)00405-8. DOI
Gupta S., Datt R., Mishra A., Tsoi W.C., Patra A., Bober P. Poly (3, 4-ethylenedioxythiophene): Poly (styrene sulfonate) in antibacterial, tissue engineering and biosensors applications: Progress, challenges and perspectives. J. Appl. Polym. Sci. 2022;139:e52663. doi: 10.1002/app.52663. DOI
Madhan Kumar A., Adesina A.Y., Hussein M.A., Ramakrishna S., Al-Aqeeli N., Akhtar S., Saravanan S. PEDOT/FHA Nanocomposite Coatings on Newly Developed Ti-Nb-Zr Implants: Biocompatibility and Surface Protection against Corrosion and Bacterial Infections. Mater. Sci. Eng. C. 2019;98:482–495. doi: 10.1016/j.msec.2019.01.012. PubMed DOI
Chen Z., Stepanenko V., Dehm V., Prins P., Siebbeles L.D.A., Seibt J., Marquetand P., Engel V., Würthner F. Photoluminescence and Conductivity of Self-Assembled π–π Stacks of Perylene Bisimide Dyes. Chem. A Eur. J. 2007;13:436–449. doi: 10.1002/chem.200600889. PubMed DOI
Zasońska B.A., Acharya U., Pfleger J., Humpolíček P., Vajďák J., Svoboda J., Petrovsky E., Hromádková J., Walterová Z., Bober P. Multifunctional Polypyrrole@maghemite@silver Composites: Synthesis, Physico-Chemical Characterization and Antibacterial Properties. Chem. Pap. 2018;72:1789–1797. doi: 10.1007/s11696-018-0429-3. DOI