Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31186461
PubMed Central
PMC6559985
DOI
10.1038/s41598-019-44900-1
PII: 10.1038/s41598-019-44900-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Polypyrrole (PPy) nanorods (NRs) and nanoparticles (NPs) are synthesized via electrochemical and chemical methods, respectively, and tested upon ammonia exposure using Raman and X-ray photoelectron spectroscopy (XPS). Characterization of both nanomaterials via Raman spectroscopy demonstrates the formation of PPy, displaying vibration bands consistent with the literature. Additionally, XPS reveals the presence of neutral PPy species as major components in PPy NRs and PPy NPs, and other species including polarons and bipolarons. Raman and XPS analysis after ammonia exposure show changes in the physical/chemical properties of PPy, confirming the potential of both samples for ammonia sensing. Results demonstrate that the electrochemically synthesized NRs involve both proton and electron transfer mechanisms during ammonia exposure, as opposed to the chemically synthesized NPs, which show a mechanism dominated by electron transfer. Thus, the different detection mechanisms in PPy NRs and PPy NPs appear to be connected to the particular morphological and chemical composition of each film. These results contribute to elucidate the mechanisms involved in ammonia detection and the influence of the synthesis routes and the physical/chemical characteristics of PPy.
Zobrazit více v PubMed
Andre RS, et al. Hybrid nanomaterials designed for volatile organic compounds sensors: A review. Materials & Design. 2018;156:154–166. doi: 10.1016/j.matdes.2018.06.041. DOI
Peng G, et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nature Nanotechnology. 2009;4:669–673. doi: 10.1038/nnano.2009.235. PubMed DOI
Sun YF, et al. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors. 2012;12:2610–2631. doi: 10.3390/s120302610. PubMed DOI PMC
Athawale AA, Kulkarni MV. Polyaniline and its substituted derivatives as sensor for aliphatic alcohols. Sensors and Actuators B-Chemical. 2000;67:173–177. doi: 10.1016/s0925-4005(00)00394-4. DOI
Kim J-S, Sohn S-O, Huh J-S. Fabrication and sensing behavior of PVF2 coated-polyaniline sensor for volatile organic compounds. Sensors and Actuators B: Chemical. 2005;108:409–413. doi: 10.1016/j.snb.2004.11.072. DOI
Eaidkong T, et al. Polydiacetylene paper-based colorimetric sensor array for vapor phase detection and identification of volatile organic compounds. Journal of Materials Chemistry. 2012;22:5970–5977. doi: 10.1039/C2JM16273C. DOI
Yoon J, Chae SK, Kim JM. Colorimetric sensors for volatile organic compounds (VOCs) based on conjugated polymer-embedded electrospun fibers. Journal of the American Chemical Society. 2007;129:3038–3039. doi: 10.1021/ja067856+. PubMed DOI
Park E, et al. One-pot synthesis of silver nanoparticles decorated poly(3,4-ethylenedioxythiophene) nanotubes for chemical sensor application. Journal of Materials Chemistry. 2012;22:1521–1526. doi: 10.1039/C1JM13237G. DOI
Guernion N, et al. The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities. Synthetic Metals. 2002;126:301–310. doi: 10.1016/S0379-6779(01)00572-0. DOI
McQuade DT, Pullen AE, Swager TM. Conjugated Polymer-Based Chemical Sensors. Chemical Reviews. 2000;100:2537–2574. doi: 10.1021/cr9801014. PubMed DOI
Šetka Milena, Drbohlavová Jana, Hubálek Jaromír. Nanostructured Polypyrrole-Based Ammonia and Volatile Organic Compound Sensors. Sensors. 2017;17(3):562. doi: 10.3390/s17030562. PubMed DOI PMC
Kwon OS, et al. Resistive Gas Sensors Based on Precisely Size-Controlled Polypyrrole Nanoparticles: Effects of Particle Size and Deposition Method. Journal of Physical Chemistry C. 2010;114:18874–18879. doi: 10.1021/jp1083086. DOI
Hong JY, Yoon H, Jang J. Kinetic Study of the Formation of Polypyrrole Nanoparticles in Water-Soluble Polymer/Metal Cation Systems: A Light-Scattering Analysis. Small. 2010;6:679–686. doi: 10.1002/smll.200902231. PubMed DOI
Hernandez SC, et al. Single polypyrrole nanowire ammonia gas sensor. Electroanalysis. 2007;19:2125–2130. doi: 10.1002/elan.200703933. DOI
Zhang L, et al. A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sensors and Actuators B: Chemical. 2009;142:204–209. doi: 10.1016/j.snb.2009.07.042. DOI
Lee J-S, et al. Au-Polypyrrole Framework Nanostructures for Improved Localized Surface Plasmon Resonance Volatile Organic Compounds Gas Sensing. Journal of Nanoscience and Nanotechnology. 2015;15:7738–7742. doi: 10.1166/jnn.2015.11194. PubMed DOI
Joulazadeh M, Navarchian AH. Alcohol Sensibility of One-Dimensional Polyaniline and Polypyrrole Nanostructures. Ieee Sensors Journal. 2015;15:1697–1704. doi: 10.1109/jsen.2014.2360915. DOI
Chartuprayoon N, et al. Wafer-Scale Fabrication of Single Polypyrrole Nanoribbon-Based Ammonia Sensor. Journal of Physical Chemistry C. 2010;114:11103–11108. doi: 10.1021/jp102858w. DOI
Kausaite-Minkstimiene A, Mazeiko V, Ramanaviciene A, Ramanavicius A. Evaluation of chemical synthesis of polypyrrole particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;483:224–231. doi: 10.1016/j.colsurfa.2015.05.008. DOI
Patois T, et al. Characterization of the surface properties of polypyrrole films: Influence of electrodeposition parameters. Synthetic Metals. 2011;161:2498–2505. doi: 10.1016/j.synthmet.2011.10.003. DOI
Patois T, Lakard B, Martin N, Fievet P. Effect of various parameters on the conductivity of free standing electrosynthesized polypyrrole films. Synthetic Metals. 2010;160:2180–2185. doi: 10.1016/j.synthmet.2010.08.005. DOI
Inzelt G, Pineri M, Schultze JW, Vorotyntsev MA. Electron and proton conducting polymers: recent developments and prospects. Electrochimica Acta. 2000;45:2403–2421. doi: 10.1016/s0013-4686(00)00329-7. DOI
Joshi A, Gangal SA, Gupta SK. Ammonia sensing properties of polypyrrole thin films at room temperature. Sensors and Actuators B: Chemical. 2011;156:938–942. doi: 10.1016/j.snb.2011.03.009. DOI
Santos MJL, Brolo AG, Girotto EM. Study of polaron and bipolaron states in polypyrrole by in situ Raman spectroelectrochemistry. Electrochimica Acta. 2007;52:6141–6145. doi: 10.1016/j.electacta.2007.03.070. DOI
Le TH, Kim Y, Yoon H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers. 2017;9:32. doi: 10.3390/polym9040150. PubMed DOI PMC
Balint R, Cassidy NJ, Cartmell SH. Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia. 2014;10:2341–2353. doi: 10.1016/j.actbio.2014.02.015. PubMed DOI
Yurtsever M, Yurtsever E. Structural studies of polypyrroles: I. An ab-initio evaluation of bonding through α and β carbons. Synthetic Metals. 1999;98:221–227. doi: 10.1016/S0379-6779(98)00195-7. DOI
Meerholz K, Heinze J. Influence of chain length and defects on the electrical conductivity of conducting polymers. Synthetic Metals. 1993;57:5040–5045. doi: 10.1016/0379-6779(93)90859-U. DOI
Deogaonkar SC, Bhat NV. Polymer based fabrics as transducers in ammonia & ethanol gas sensing. Fiber. Polym. 2015;16:1803–1811. doi: 10.1007/s12221-015-5172-6. DOI
Kharat HJ, et al. Synthesis of polypyrrole films for the development of ammonia sensor. Polymers for Advanced Technologies. 2007;18:397–402. doi: 10.1002/pat.903. DOI
Liu Y-C. Characteristics of vibration modes of polypyrrole on surface-enhanced Raman scattering spectra. Journal of Electroanalytical Chemistry. 2004;571:255–264. doi: 10.1016/j.jelechem.2004.05.015. DOI
Le HNT, Bernard MC, Garcia-Renaud B, Deslouis C. Raman spectroscopy analysis of polypyrrole films as protective coatings on iron. Synthetic Metals. 2004;140:287–293. doi: 10.1016/s0379-6779(03)00376-x. DOI
Gupta S. Hydrogen bubble‐assisted syntheses of polypyrrole micro/nanostructures using electrochemistry: structural and physical property characterization. Journal of Raman Spectroscopy. 2008;39:1343–1355. doi: 10.1002/jrs.2002. DOI
Liu Y-C, Hwang B-J, Jian W-J, Santhanam R. In situ cyclic voltammetry-surface-enhanced Raman spectroscopy: studies on the doping–undoping of polypyrrole film. Thin Solid Films. 2000;374:85–91. doi: 10.1016/S0040-6090(00)01061-0. DOI
Crowley K, Cassidy J. In situ resonance Raman spectroelectrochemistry of polypyrrole doped with dodecylbenzenesulfonate. Journal of Electroanalytical Chemistry. 2003;547:75–82. doi: 10.1016/s0022-0728(03)00191-8. DOI
Xie YB, Du HX. Electrochemical capacitance of a carbon quantum dots-polypyrrole/titania nanotube hybrid. Rsc Advances. 2015;5:89689–89697. doi: 10.1039/c5ra16538e. DOI
Kopecka J, et al. Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties. Sensors. 2016;16:13. doi: 10.3390/s16111917. PubMed DOI PMC
Stejskal J, et al. Polypyrrole salts and bases: superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Advances. 2016;6:88382–88391. doi: 10.1039/c6ra19461c. DOI
Li M, Wei ZX, Jiang L. Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. Journal of Materials Chemistry. 2008;18:2276–2280. doi: 10.1039/b800289d. DOI
Kostic R, et al. Vibrational spectroscopy of polypyrrole, theoretical-study. Journal of Chemical Physics. 1995;102:3104–3109. doi: 10.1063/1.468620. DOI
Liu Y-C, Hwang B-J. Identification of oxidized polypyrrole on Raman spectrum. Synthetic Metals. 2000;113:203–207. doi: 10.1016/S0379-6779(00)00188-0. DOI
Ishpal R, Kaur A. Spectroscopic and electrical sensing mechanism in oxidant-mediated polypyrrole nanofibers/nanoparticles for ammonia gas. Journal of Nanoparticle Research. 2013;15:1637. doi: 10.1007/s11051-013-1637-y. DOI
Wang H, et al. Microstructure, distribution and properties of conductive polypyrrole/cellulose fiber composites. Cellulose. 2013;20:1587–1601. doi: 10.1007/s10570-013-9945-z. DOI
El Jaouhari A, et al. Corrosion resistance and antibacterial activity of electrosynthesized polypyrrole. Synthetic Metals. 2017;226:15–24. doi: 10.1016/j.synthmet.2017.01.008. DOI
Jain S, et al. Ammonia detection of 1-D ZnO/polypyrrole nanocomposite: Effect of CSA doping and their structural, chemical, thermal and gas sensing behavior. Applied Surface Science. 2017;396:1317–1325. doi: 10.1016/j.apsusc.2016.11.154. DOI
Idla K., Talo A., Niemi H. E.-M., Forsén O., Yläsaari S. An XPS and AFM study of polypyrrole coating on mild steel. Surface and Interface Analysis. 1997;25(11):837–854. doi: 10.1002/(SICI)1096-9918(199710)25:11<837::AID-SIA307>3.0.CO;2-2. DOI
Schweiger B, Kim J, Kim YJ, Ulbricht M. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid. Sensors. 2015;15:4870–4889. doi: 10.3390/s150304870. PubMed DOI PMC
Ruangchuay L, Schwank J, Sirivat A. Surface degradation of α-naphthalene sulfonate-doped polypyrrole during XPS characterization. Applied Surface Science. 2002;199:128–137. doi: 10.1016/S0169-4332(02)00564-0. DOI
Wehrle B, Limbach H-H, Mortensen J, Heinze J. Solid-state 15N CPMAS NMR study of the structure of polypyrrole. Synthetic Metals. 1990;38:293–298. doi: 10.1016/0379-6779(90)90082-V. DOI
Ribó JM, Dicko A, Tura JM, Bloor D. Chemical structure of polypyrrole: X-ray photoelectron spectroscopy of polypyrrole with 5-yliden-3-pyrrolin-2-one end groups. Polymer. 1991;32:728–732. doi: 10.1016/0032-3861(91)90487-4. DOI
Kiani MS, Mitchell GR. The role of the counter-ion in the preparation of polypyrrole films with enhanced properties using a pulsed electrochemical potential. Synthetic Metals. 1992;48:203–218. doi: 10.1016/0379-6779(92)90062-N. DOI
Rajagopalan R, Iroh JO. Characterization of polyaniline–polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study. Applied Surface Science. 2003;218:58–69. doi: 10.1016/S0169-4332(03)00579-8. DOI
Buitrago-Sierra R, Garcia-Fernandez MJ, Pastor-Blas MM, Sepulveda-Escribano A. Environmentally friendly reduction of a platinum catalyst precursor supported on polypyrrole. Green Chemistry. 2013;15:1981–1990. doi: 10.1039/c3gc40346g. DOI
Qin Y, Zhang T, Cui Z. Core-shell structure of polypyrrole grown on W18O49 nanorods for high performance gas sensor operating at room temperature. Organic Electronics. 2017;48:254–261. doi: 10.1016/j.orgel.2017.06.014. DOI
Rawal I, Sehrawat K, Kaur A. Vibrational spectroscopic investigations of ammonia gas sensing mechanism in polypyrrole nanostructures. Vibrational Spectroscopy. 2014;74:64–74. doi: 10.1016/j.vibspec.2014.07.012. DOI
Drbohlavova J, et al. Gold Nanostructured Surface for Electrochemical Sensing and Biosensing: Does Shape Matter? Analytical Letters. 2016;49:135–151. doi: 10.1080/00032719.2015.1043662. DOI
Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring