Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27854279
PubMed Central
PMC5134576
DOI
10.3390/s16111917
PII: s16111917
Knihovny.cz E-zdroje
- Klíčová slova
- carbon nanotube, carbonization, functionalized nanotube, heptane detection, polypyrrole nanotube,
- Publikační typ
- časopisecké články MeSH
Polypyrrole (PPy) in globular form and as nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in the absence and presence of methyl orange, respectively. They were subsequently converted to nitrogen-containing carbons at 650 °C in an inert atmosphere. The course of carbonization was followed by thermogravimetric analysis and the accompanying changes in molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original and carbonized materials have been tested in sensing of polar and non-polar organic vapors. The resistivity of sensing element using globular PPy was too high and only nanotubular PPy could be used. The sensitivity of the PPy nanotubes to ethanol vapors was nearly on the same level as that of their carbonized analogs (i.e., ~18% and 24%, respectively). Surprisingly, there was a high sensitivity of PPy nanotubes to the n-heptane vapors (~110%), while that of their carbonized analog remained at ~20%. The recovery process was significantly faster for carbonized PPy nanotubes (in order of seconds) compared with 10 s of seconds for original nanotubes, respectively, due to higher specific surface area after carbonization.
Zobrazit více v PubMed
Abraham J.K., Philip B., Witchurch A., Varadan V.K., Reddy C.C. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater. Struct. 2004;13:1045–1049. doi: 10.1088/0964-1726/13/5/010. DOI
Llobet E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013;179:32–45. doi: 10.1016/j.snb.2012.11.014. DOI
Olejník R., Slobodian P., Říha P., Machovský M. Increased sensitivity of multiwalled carbon nanotube network by PMMA functionalization to vapors with affine polarity. J. Appl. Polym. Sci. 2012;126:21–29. doi: 10.1002/app.36366. DOI
Philip B., Abraham J.K., Chandrasekhar A., Varadan V.K. Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater. Struct. 2003;12:935–939. doi: 10.1088/0964-1726/12/6/010. DOI
Slobodian P., Říha P., Lengalová A., Svoboda P., Sáha P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon. 2011;49:2499–2507. doi: 10.1016/j.carbon.2011.02.020. DOI
Su P.G., Ho C.J., Sun Y.L., Chen I.C. A micromachined resistive-type humidity sensor with a composite material as sensitive film. Sens. Actuators B Chem. 2006;113:837–842. doi: 10.1016/j.snb.2005.03.109. DOI
Su P.G., Huang S.C. Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material. Sens. Actuators B Chem. 2006;113:142–149. doi: 10.1016/j.snb.2005.02.040. DOI
Goldoni A., Larciprete R., Petaccia L., Lizzit S. Single-wall carbon nanotube interaction with gases: Sample contaminants and environmental monitoring. J. Am. Chem. Soc. 2003;125:11329–11333. doi: 10.1021/ja034898e. PubMed DOI
Peng S., Cho K.J. Ab initio study of doped carbon nanotube sensors. Nano Lett. 2003;3:513–517. doi: 10.1021/nl034064u. PubMed DOI
Hirsch A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002;41:1853–1859. doi: 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N. PubMed DOI
Liu P. Modifications of carbon nanotubes with polymers. Eur. Polym. J. 2005;41:2693–2703. doi: 10.1016/j.eurpolymj.2005.05.017. DOI
Ramanathan T., Liu H., Brinson L.C. Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. B Polym. Phys. 2005;43:2269–2279. doi: 10.1002/polb.20510. DOI
Wang C.C., Guo Z.X., Fu S.K., Wu W., Zhu D.B. Polymers containing fullerene or carbon nanotube structures. Prog. Polym. Sci. 2004;29:1079–1141. doi: 10.1016/j.progpolymsci.2004.08.001. DOI
Yao Z.L., Braidy N., Botton G.A., Adronov A. Polymerization from the surface of single-walled carbon nanotubes—Preparation and characterization of nanocomposites. J. Am. Chem. Soc. 2003;125:16015–16024. doi: 10.1021/ja037564y. PubMed DOI
Posudievsky O.Y., Konoschuk N.V., Kukla A.L., Pavluchenko A.S., Shirshov Y.M., Pokhodenko V.D. Comparative analysis of sensor responses of thin conducting polymer films to organic solvent vapors. Sens. Actuators B Chem. 2011;151:351–359. doi: 10.1016/j.snb.2010.07.049. DOI
Vrňata M., Kopecký D., Vysloužil F., Myslík V., Fitl P., Ekrt O., Hofmann J., Kučera L. Impedance properties of polypyrrolic sensors prepared by MAPLE technology. Sens. Actuators B Chem. 2009;137:88–93. doi: 10.1016/j.snb.2008.11.013. DOI
Ma Y.W., Zhang L.R., Li J.J., Ni H.T., Li M., Zhang J.L., Feng X.M., Fan Q.L., Hu Z., Huang W. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chin. Sci. Bull. 2011;56:3583–3589. doi: 10.1007/s11434-011-4730-6. DOI
Qie L., Chen W.M., Wang Z.H., Shao Q.G., Li X., Yuan L.X., Hu X.L., Zhang W.X., Huang Y.H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012;24:2047–2050. doi: 10.1002/adma.201104634. PubMed DOI
Xu G.Y., Ding B., Nie P., Shen L.F., Wang J., Zhang X.G. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Chem. Eur. J. 2013;19:12306–12312. doi: 10.1002/chem.201301352. PubMed DOI
Ćirić-Marjanović G., Pašti I., Gavrilov N., Janošević A., Mentus S. Carbonised polyaniline and polypyrrole: Towards advanced nitrogen-containing carbon materials. Chem. Pap. 2013;67:781–813. doi: 10.2478/s11696-013-0312-1. DOI
Omastová M., Trchová M., Kovářová J., Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003;138:447–455. doi: 10.1016/S0379-6779(02)00498-8. DOI
Stejskal J., Omastová M., Fedorová S., Prokeš J., Trchová M. Polyaniline and polypyrrole prepared in the presence of surfactants: A comparative conductivity study. Polymer. 2003;44:1353–1358. doi: 10.1016/S0032-3861(02)00906-0. DOI
Blínová N.V., Stejskal J., Trchová M., Prokeš J., Omastová M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J. 2007;43:2331–2341. doi: 10.1016/j.eurpolymj.2007.03.045. DOI
Peng Y.J., Qiu L.H., Pan C.T., Wang C.C., Shang S.M., Yan F. Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering. Electrochim. Acta. 2012;75:399–405. doi: 10.1016/j.electacta.2012.05.034. DOI
Shang S.M., Yang X.M., Tao X.M. Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor. Polymer. 2009;50:2815–2818. doi: 10.1016/j.polymer.2009.04.041. DOI
Škodová J., Kopecký D., Vrňata M., Varga M., Prokeš J., Cieslar M., Bober P., Stejskal J. Polypyrrole-silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polym. Chem. 2013;4:3610–3616. doi: 10.1039/c3py00250k. DOI
Yang X.M., Li L., Yan F. Fabrication of polypyrrole/Ag composite nanotubes via in situ reduction of AgNO3 on polypyrrole nanotubes. Chem. Lett. 2010;39:118–119. doi: 10.1246/cl.2010.118. DOI
Yang X.M., Li L., Yan F. Polypyrrole/silver composite nanotubes for gas sensors. Sens. Actuators B Chem. 2010;145:495–500. doi: 10.1016/j.snb.2009.12.065. DOI
Yang X.M., Li L.A., Zhao Y. Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synth. Met. 2010;160:1822–1825. doi: 10.1016/j.synthmet.2010.06.018. DOI
Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI
Kudoh Y. Properties of polypyrrole prepared by chemical polymerization using aqueous solutions containing Fe2(SO4)3 and anionic surfactants. Synth. Met. 1996;79:17–22. doi: 10.1016/0379-6779(96)80124-X. DOI
Omastová M., Pionteck J., Trchová M. Properties and morphology of polypyrrole containing a surfactant. Synth. Met. 2003;135:437–438. doi: 10.1016/S0379-6779(02)00582-9. DOI
Mrlík M., Pavlínek V., Cheng Q.L., Sáha P. Synthesis of titanate/polypyrrole composite rod-like particles and the role of conducting polymer on electrorheological efficiency. Int. J. Mod. Phys. B. 2012;26:280–286. doi: 10.1142/S0217979212500075. DOI
Quadrat O., Stejskal J. Polyaniline in electrorheology. J. Ind. Eng. Chem. 2006;12:352–361.
Sedlačík M., Mrlík M., Pavlínek V., Sáha P., Quadrat O. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym. Sci. 2012;290:41–48. doi: 10.1007/s00396-011-2521-x. DOI
Kostić R., Raković D., Stepanyan S.A., Davidova I.E., Gribov L.A. Vibrational Spectroscopy of Polypyrrole, Theoretical-Study. J. Chem. Phys. 1995;102:3104–3109. doi: 10.1063/1.468620. DOI
Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G., Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010;10:751–758. doi: 10.1021/nl904286r. PubMed DOI
Pirsa S., Alizadeh N. Design and fabrication of gas sensor based on nanostructure conductive polypyrrole for determination of volatile organic solvents. Sens. Actuators B Chem. 2010;147:461–466. doi: 10.1016/j.snb.2010.03.026. DOI
Bulakhe R.N., Patil S.V., Deshmukh P.R., Shinde N.M., Lokhande C.D. Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sens. Actuators B Chem. 2013;181:417–423. doi: 10.1016/j.snb.2013.01.056. DOI
De Souza J.E.G., dos Santos F.L., Barros-Neto B., dos Santos C.G., de Melo C.P. Polypyrrole thin films gas sensors. Synth. Met. 2001;119:383–384. doi: 10.1016/S0379-6779(00)01051-1. DOI
Babaei M., Alizadeh N. Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B Chem. 2013;183:617–626. doi: 10.1016/j.snb.2013.04.045. DOI
De Melo C.P., Neto B.B., de Lima E.G., de Lira L.F.B., de Souza J.E.G. Use of conducting polypyrrole blends as gas sensors. Sens. Actuators B Chem. 2005;109:348–354. doi: 10.1016/j.snb.2005.01.001. DOI