Polypyrrole Nanotubes and Their Carbonized Analogs: Synthesis, Characterization, Gas Sensing Properties

. 2016 Nov 15 ; 16 (11) : . [epub] 20161115

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27854279

Polypyrrole (PPy) in globular form and as nanotubes were prepared by the oxidation of pyrrole with iron(III) chloride in the absence and presence of methyl orange, respectively. They were subsequently converted to nitrogen-containing carbons at 650 °C in an inert atmosphere. The course of carbonization was followed by thermogravimetric analysis and the accompanying changes in molecular structure by Fourier Transform Infrared and Raman spectroscopies. Both the original and carbonized materials have been tested in sensing of polar and non-polar organic vapors. The resistivity of sensing element using globular PPy was too high and only nanotubular PPy could be used. The sensitivity of the PPy nanotubes to ethanol vapors was nearly on the same level as that of their carbonized analogs (i.e., ~18% and 24%, respectively). Surprisingly, there was a high sensitivity of PPy nanotubes to the n-heptane vapors (~110%), while that of their carbonized analog remained at ~20%. The recovery process was significantly faster for carbonized PPy nanotubes (in order of seconds) compared with 10 s of seconds for original nanotubes, respectively, due to higher specific surface area after carbonization.

Zobrazit více v PubMed

Abraham J.K., Philip B., Witchurch A., Varadan V.K., Reddy C.C. A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater. Struct. 2004;13:1045–1049. doi: 10.1088/0964-1726/13/5/010. DOI

Llobet E. Gas sensors using carbon nanomaterials: A review. Sens. Actuators B Chem. 2013;179:32–45. doi: 10.1016/j.snb.2012.11.014. DOI

Olejník R., Slobodian P., Říha P., Machovský M. Increased sensitivity of multiwalled carbon nanotube network by PMMA functionalization to vapors with affine polarity. J. Appl. Polym. Sci. 2012;126:21–29. doi: 10.1002/app.36366. DOI

Philip B., Abraham J.K., Chandrasekhar A., Varadan V.K. Carbon nanotube/PMMA composite thin films for gas-sensing applications. Smart Mater. Struct. 2003;12:935–939. doi: 10.1088/0964-1726/12/6/010. DOI

Slobodian P., Říha P., Lengalová A., Svoboda P., Sáha P. Multi-wall carbon nanotube networks as potential resistive gas sensors for organic vapor detection. Carbon. 2011;49:2499–2507. doi: 10.1016/j.carbon.2011.02.020. DOI

Su P.G., Ho C.J., Sun Y.L., Chen I.C. A micromachined resistive-type humidity sensor with a composite material as sensitive film. Sens. Actuators B Chem. 2006;113:837–842. doi: 10.1016/j.snb.2005.03.109. DOI

Su P.G., Huang S.C. Electrical and humidity sensing properties of carbon nanotubes-SiO2-poly(2-acrylamido-2-methylpropane sulfonate) composite material. Sens. Actuators B Chem. 2006;113:142–149. doi: 10.1016/j.snb.2005.02.040. DOI

Goldoni A., Larciprete R., Petaccia L., Lizzit S. Single-wall carbon nanotube interaction with gases: Sample contaminants and environmental monitoring. J. Am. Chem. Soc. 2003;125:11329–11333. doi: 10.1021/ja034898e. PubMed DOI

Peng S., Cho K.J. Ab initio study of doped carbon nanotube sensors. Nano Lett. 2003;3:513–517. doi: 10.1021/nl034064u. PubMed DOI

Hirsch A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 2002;41:1853–1859. doi: 10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N. PubMed DOI

Liu P. Modifications of carbon nanotubes with polymers. Eur. Polym. J. 2005;41:2693–2703. doi: 10.1016/j.eurpolymj.2005.05.017. DOI

Ramanathan T., Liu H., Brinson L.C. Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. B Polym. Phys. 2005;43:2269–2279. doi: 10.1002/polb.20510. DOI

Wang C.C., Guo Z.X., Fu S.K., Wu W., Zhu D.B. Polymers containing fullerene or carbon nanotube structures. Prog. Polym. Sci. 2004;29:1079–1141. doi: 10.1016/j.progpolymsci.2004.08.001. DOI

Yao Z.L., Braidy N., Botton G.A., Adronov A. Polymerization from the surface of single-walled carbon nanotubes—Preparation and characterization of nanocomposites. J. Am. Chem. Soc. 2003;125:16015–16024. doi: 10.1021/ja037564y. PubMed DOI

Posudievsky O.Y., Konoschuk N.V., Kukla A.L., Pavluchenko A.S., Shirshov Y.M., Pokhodenko V.D. Comparative analysis of sensor responses of thin conducting polymer films to organic solvent vapors. Sens. Actuators B Chem. 2011;151:351–359. doi: 10.1016/j.snb.2010.07.049. DOI

Vrňata M., Kopecký D., Vysloužil F., Myslík V., Fitl P., Ekrt O., Hofmann J., Kučera L. Impedance properties of polypyrrolic sensors prepared by MAPLE technology. Sens. Actuators B Chem. 2009;137:88–93. doi: 10.1016/j.snb.2008.11.013. DOI

Ma Y.W., Zhang L.R., Li J.J., Ni H.T., Li M., Zhang J.L., Feng X.M., Fan Q.L., Hu Z., Huang W. Carbon-nitrogen/graphene composite as metal-free electrocatalyst for the oxygen reduction reaction. Chin. Sci. Bull. 2011;56:3583–3589. doi: 10.1007/s11434-011-4730-6. DOI

Qie L., Chen W.M., Wang Z.H., Shao Q.G., Li X., Yuan L.X., Hu X.L., Zhang W.X., Huang Y.H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012;24:2047–2050. doi: 10.1002/adma.201104634. PubMed DOI

Xu G.Y., Ding B., Nie P., Shen L.F., Wang J., Zhang X.G. Porous nitrogen-doped carbon nanotubes derived from tubular polypyrrole for energy-storage applications. Chem. Eur. J. 2013;19:12306–12312. doi: 10.1002/chem.201301352. PubMed DOI

Ćirić-Marjanović G., Pašti I., Gavrilov N., Janošević A., Mentus S. Carbonised polyaniline and polypyrrole: Towards advanced nitrogen-containing carbon materials. Chem. Pap. 2013;67:781–813. doi: 10.2478/s11696-013-0312-1. DOI

Omastová M., Trchová M., Kovářová J., Stejskal J. Synthesis and structural study of polypyrroles prepared in the presence of surfactants. Synth. Met. 2003;138:447–455. doi: 10.1016/S0379-6779(02)00498-8. DOI

Stejskal J., Omastová M., Fedorová S., Prokeš J., Trchová M. Polyaniline and polypyrrole prepared in the presence of surfactants: A comparative conductivity study. Polymer. 2003;44:1353–1358. doi: 10.1016/S0032-3861(02)00906-0. DOI

Blínová N.V., Stejskal J., Trchová M., Prokeš J., Omastová M. Polyaniline and polypyrrole: A comparative study of the preparation. Eur. Polym. J. 2007;43:2331–2341. doi: 10.1016/j.eurpolymj.2007.03.045. DOI

Peng Y.J., Qiu L.H., Pan C.T., Wang C.C., Shang S.M., Yan F. Facile preparation of water dispersible polypyrrole nanotube-supported silver nanoparticles for hydrogen peroxide reduction and surface-enhanced Raman scattering. Electrochim. Acta. 2012;75:399–405. doi: 10.1016/j.electacta.2012.05.034. DOI

Shang S.M., Yang X.M., Tao X.M. Easy synthesis of carbon nanotubes with polypyrrole nanotubes as the carbon precursor. Polymer. 2009;50:2815–2818. doi: 10.1016/j.polymer.2009.04.041. DOI

Škodová J., Kopecký D., Vrňata M., Varga M., Prokeš J., Cieslar M., Bober P., Stejskal J. Polypyrrole-silver composites prepared by the reduction of silver ions with polypyrrole nanotubes. Polym. Chem. 2013;4:3610–3616. doi: 10.1039/c3py00250k. DOI

Yang X.M., Li L., Yan F. Fabrication of polypyrrole/Ag composite nanotubes via in situ reduction of AgNO3 on polypyrrole nanotubes. Chem. Lett. 2010;39:118–119. doi: 10.1246/cl.2010.118. DOI

Yang X.M., Li L., Yan F. Polypyrrole/silver composite nanotubes for gas sensors. Sens. Actuators B Chem. 2010;145:495–500. doi: 10.1016/j.snb.2009.12.065. DOI

Yang X.M., Li L.A., Zhao Y. Ag/AgCl-decorated polypyrrole nanotubes and their sensory properties. Synth. Met. 2010;160:1822–1825. doi: 10.1016/j.synthmet.2010.06.018. DOI

Stejskal J., Trchová M., Bober P., Morávková Z., Kopecký D., Vrňata M., Prokeš J., Varga M., Watzlová E. Polypyrrole salts and bases: Superior conductivity of nanotubes and their stability towards the loss of conductivity by deprotonation. RSC Adv. 2016;6:88382–88391. doi: 10.1039/C6RA19461C. DOI

Kudoh Y. Properties of polypyrrole prepared by chemical polymerization using aqueous solutions containing Fe2(SO4)3 and anionic surfactants. Synth. Met. 1996;79:17–22. doi: 10.1016/0379-6779(96)80124-X. DOI

Omastová M., Pionteck J., Trchová M. Properties and morphology of polypyrrole containing a surfactant. Synth. Met. 2003;135:437–438. doi: 10.1016/S0379-6779(02)00582-9. DOI

Mrlík M., Pavlínek V., Cheng Q.L., Sáha P. Synthesis of titanate/polypyrrole composite rod-like particles and the role of conducting polymer on electrorheological efficiency. Int. J. Mod. Phys. B. 2012;26:280–286. doi: 10.1142/S0217979212500075. DOI

Quadrat O., Stejskal J. Polyaniline in electrorheology. J. Ind. Eng. Chem. 2006;12:352–361.

Sedlačík M., Mrlík M., Pavlínek V., Sáha P., Quadrat O. Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym. Sci. 2012;290:41–48. doi: 10.1007/s00396-011-2521-x. DOI

Kostić R., Raković D., Stepanyan S.A., Davidova I.E., Gribov L.A. Vibrational Spectroscopy of Polypyrrole, Theoretical-Study. J. Chem. Phys. 1995;102:3104–3109. doi: 10.1063/1.468620. DOI

Dresselhaus M.S., Jorio A., Hofmann M., Dresselhaus G., Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano Lett. 2010;10:751–758. doi: 10.1021/nl904286r. PubMed DOI

Pirsa S., Alizadeh N. Design and fabrication of gas sensor based on nanostructure conductive polypyrrole for determination of volatile organic solvents. Sens. Actuators B Chem. 2010;147:461–466. doi: 10.1016/j.snb.2010.03.026. DOI

Bulakhe R.N., Patil S.V., Deshmukh P.R., Shinde N.M., Lokhande C.D. Fabrication and performance of polypyrrole (Ppy)/TiO2 heterojunction for room temperature operated LPG sensor. Sens. Actuators B Chem. 2013;181:417–423. doi: 10.1016/j.snb.2013.01.056. DOI

De Souza J.E.G., dos Santos F.L., Barros-Neto B., dos Santos C.G., de Melo C.P. Polypyrrole thin films gas sensors. Synth. Met. 2001;119:383–384. doi: 10.1016/S0379-6779(00)01051-1. DOI

Babaei M., Alizadeh N. Methanol selective gas sensor based on nano-structured conducting polypyrrole prepared by electrochemically on interdigital electrodes for biodiesel analysis. Sens. Actuators B Chem. 2013;183:617–626. doi: 10.1016/j.snb.2013.04.045. DOI

De Melo C.P., Neto B.B., de Lima E.G., de Lira L.F.B., de Souza J.E.G. Use of conducting polypyrrole blends as gas sensors. Sens. Actuators B Chem. 2005;109:348–354. doi: 10.1016/j.snb.2005.01.001. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles

. 2019 Jun 11 ; 9 (1) : 8465. [epub] 20190611

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...