Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring

. 2020 Mar 06 ; 20 (5) : . [epub] 20200306

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32155699

Grantová podpora
17-16531S Grantová Agentura České Republiky
TEC2015-74329-JIN-(AEI/FEDER,EU) Ministerio de Economía y Competitividad
TEC2016-79898-C6-1-R (AEI/FEDER, EU) Ministerio de Economía y Competitividad
Ramón y Cajal Ministerio de Economía y Competitividad

Love wave sensors with silver-modified polypyrrole nanoparticles are developed in this work. These systems prove functional at room temperature with enhanced response, sensitivity and response time, as compared to other state-of-the-art surface acoustic wave (SAW) sensors, towards volatile organic compounds (VOCs). Results demonstrate the monitoring of hundreds of ppb of compounds such as acetone, ethanol and toluene with low estimated limits of detection (~3 ppb for acetone). These results are attributed to the use of silver-modified polypyrrole as a second guiding/sensitive layer in the Love wave sensor structure, which provides further chemically active sites for the gas-solid interactions. The sensing of low VOCs concentrations by micro sensing elements as those presented here could be beneficial in future systems for air quality control, food quality control or disease diagnosis via exhaled breath as the limits of detection obtained are within those required in these applications.

Zobrazit více v PubMed

Ramírez N., Cuadras A., Rovira E., Borrull F., Marcé R.M. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ. Int. 2012;39:200–209. doi: 10.1016/j.envint.2011.11.002. PubMed DOI

Bai J., Baker S.M., Goodrich-Schneider R.M., Montazeri N., Sarnoski P.J. Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry. J. Food Sci. 2019;84:481–489. doi: 10.1111/1750-3841.14478. PubMed DOI

Font X., Artola A., Sanchez A. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants. Sensors. 2011;11:4043–4059. doi: 10.3390/s110404043. PubMed DOI PMC

Ulanowska A., Kowalkowski T., Trawinska E., Buszewski B. The application of statistical methods using VOCs to identify patients with lung cancer. J. Breath Res. 2011;5:11. doi: 10.1088/1752-7155/5/4/046008. PubMed DOI

Goodman N.B., Wheeler A.J., Paevere P.J., Selleck P.W., Cheng M., Steinemann A. Indoor volatile organic compounds at an Australian university. Build. Environ. 2018;135:344–351. doi: 10.1016/j.buildenv.2018.02.035. DOI

Devkota J., Ohodnicki P.R., Greve D.W. SAW Sensors for Chemical Vapors and Gases. Sensors. 2017;17:28. doi: 10.3390/s17040801. PubMed DOI PMC

Constantinoiu I., Miu D.N., Viespe C. Surface Acoustic Wave Sensors for Ammonia Detection at Room Temperature Based on SnO2/Co3O4 Bilayers. J. Sens. 2019 doi: 10.1155/2019/8203810. DOI

Constantinoiu I., Viespe C. Detection of Volatile Organic Compounds Using Surface Acoustic Wave Sensor Based on Nanoparticles Incorporated in Polymer. Coatings. 2019;9:9. doi: 10.3390/coatings9060373. DOI

Nikolaou I., Hallil H., Conedera V., Deligeorgis G., Dejous C., Rebiere D. Inkjet-Printed Graphene Oxide Thin Layers on Love Wave Devices for Humidity and Vapor Detection. IEEE Sens. J. 2016;16:7620–7627. doi: 10.1109/JSEN.2016.2600269. DOI

Sayago I., Fernández M.J., Fontecha J.L., Horrillo M.C., Vera C., Obieta I., Bustero I. New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Sens. Actuators B Chem. 2012;175:67–72. doi: 10.1016/j.snb.2011.12.031. DOI

Feng S.B., Farha F., Li Q.J., Wan Y.L., Xu Y., Zhang T., Ning H.S. Review on Smart Gas Sensing Technology. Sensors. 2019;19:22. doi: 10.3390/s19173760. PubMed DOI PMC

Xu Z., Yuan Y.J. Implementation of guiding layers of surface acoustic wave devices: A review. Biosens. Bioelectron. 2018;99:500–512. doi: 10.1016/j.bios.2017.07.060. PubMed DOI

Šetka M., Drbohlavová J., Hubálek J. Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors. 2017;17:28. doi: 10.3390/s17030562. PubMed DOI PMC

Šetka M., Bahos F.A., Matatagui D., Potoček M., Kral Z., Drbohlavová J., Gràcia I., Vallejos S. Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sens. Actuators B Chem. 2019;304:127337. doi: 10.1016/j.snb.2019.127337. DOI

Fragoso-Mora J.R., Matatagui D., Bahos F.A., Fontecha J., Fernandez M.J., Santos J.P., Sayago I., Gràcia I., Horrillo M.C. Gas sensors based on elasticity changes of nanoparticle layers. Sens. Actuators B Chem. 2018;268:93–99. doi: 10.1016/j.snb.2018.04.045. DOI

Mulfinger L., Solomon S.D., Bahadory M., Jeyarajasingam A.V., Rutkowsky S.A., Boritz C. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007;84:322. doi: 10.1021/ed084p322. DOI

Vallejos S., Grácia I., Chmela O., Figueras E., Hubálek J., Cané C. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens. Actuators B Chem. 2016;235:525–534. doi: 10.1016/j.snb.2016.05.102. DOI

Matatagui D., Bahos F.A., Gràcia I., Horrillo M.D.C. Portable Low-Cost Electronic Nose Based on Surface Acoustic Wave Sensors for the Detection of BTX Vapors in Air. Sensors. 2019;19:5406. doi: 10.3390/s19245406. PubMed DOI PMC

Setka M., Calavia R., Vojkuvka L., Llobet E., Drbohlavova J., Vallejos S. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci. Rep. 2019;9:10. doi: 10.1038/s41598-019-44900-1. PubMed DOI PMC

Zhang Q., Chen C., Wan G., Lei M., Chi M., Wang S., Min D. Solar light induced synthesis of silver nanoparticles by using lignin as a reductant, and their application to ultrasensitive spectrophotometric determination of mercury(II) Microchim. Acta. 2019;186:727. doi: 10.1007/s00604-019-3832-8. PubMed DOI

Yu J.J., Sun D.P., Wang T.H., Li F. Fabrication of Ag@AgCl/ZnO submicron wire film catalyst on glass substrate with excellent visible light photocatalytic activity and reusability. Chem. Eng. J. 2018;334:225–236. doi: 10.1016/j.cej.2017.10.003. DOI

Wei L., Sun J., Xu L., Zhu S.D., Zhou X.Y., Yang S., Dong B., Bai X., Lu G.Y., Song H.W. Understanding the noble metal modifying effect on In2O3 nanowires: Highly sensitive and selective gas sensors for potential early screening of multiple diseases. Nanoscale Horiz. 2019;4:1361–1371. doi: 10.1039/c9nh00404a. DOI

Li M., Kan H., Che S.T., Feng X.Y., Li H., Li C., Fu C., Quan A.J., Sun H.B., Luo J.T., et al. Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior. Sens. Actuators B Chem. 2019;287:241–249. doi: 10.1016/j.snb.2019.02.042. DOI

Edirisinghe R.K.B., Graham A.J., Taylor S.J. Characterisation of the volatiles of yellowfin tuna (Thunnus albacares) during storage by solid phase microextraction and GC-MS and their relationship to fish quality parameters. Int. J. Food Sci. Technol. 2007;42:1139–1147. doi: 10.1111/j.1365-2621.2006.01224.x. DOI

Bhasker Raj V., Nimal A.T., Parmar Y., Sharma M.U., Gupta V. Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor. Sens. Actuators B Chem. 2012;166–167:576–585. doi: 10.1016/j.snb.2012.03.013. DOI

Li Y., Ban H., Yang M. Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sens. Actuators B Chem. 2016;224:449–457. doi: 10.1016/j.snb.2015.10.078. DOI

Li F., Li H., Jiang H., Zhang K., Chang K., Jia S., Jiang W., Shang Y., Lu W., Deng S., et al. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property. Appl. Surf. Sci. 2013;280:212–218. doi: 10.1016/j.apsusc.2013.04.132. DOI

Viespe C., Miu D. Characteristics of Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers for VOC Detection. Sensors. 2018;18:9. doi: 10.3390/s18072401. PubMed DOI PMC

Viespe C., Grigoriu C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection. Sens. Actuators B Chem. 2010;147:43–47. doi: 10.1016/j.snb.2010.02.064. DOI

Bahos F.A., Sainz-Vidal A., Sanchez-Perez C., Saniger J.M., Gracia I., Saniger-Alba M.M., Matatagui D. ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors. 2018;9:13. doi: 10.3390/bios9010004. PubMed DOI PMC

Moon J.D., Galizia M., Borjigin H., Liu R., Riffle J.S., Freeman B.D., Paul D.R. Water Vapor Sorption, Diffusion, and Dilation in Polybenzimidazoles. Macromolecules. 2018;51:7197–7208. doi: 10.1021/acs.macromol.8b01659. DOI

Ahmadi M.T., Ismail R., Anwar S. Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global; Hershey, PA, USA: 2016.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials

. 2021 Feb 22 ; 11 (2) : . [epub] 20210222

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...