Love Wave Sensors with Silver Modified Polypyrrole Nanoparticles for VOCs Monitoring
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
17-16531S
Grantová Agentura České Republiky
TEC2015-74329-JIN-(AEI/FEDER,EU)
Ministerio de Economía y Competitividad
TEC2016-79898-C6-1-R (AEI/FEDER, EU)
Ministerio de Economía y Competitividad
Ramón y Cajal
Ministerio de Economía y Competitividad
PubMed
32155699
PubMed Central
PMC7085531
DOI
10.3390/s20051432
PII: s20051432
Knihovny.cz E-zdroje
- Klíčová slova
- gas sensors, love wave sensors, polypyrrole, volatile organic compounds,
- MeSH
- biosenzitivní techniky přístrojové vybavení MeSH
- elektřina MeSH
- kalibrace MeSH
- nanočástice chemie ultrastruktura MeSH
- plyny chemie MeSH
- polymery chemie MeSH
- pyrroly chemie MeSH
- stříbro chemie MeSH
- těkavé organické sloučeniny analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- plyny MeSH
- polymery MeSH
- polypyrrole MeSH Prohlížeč
- pyrroly MeSH
- stříbro MeSH
- těkavé organické sloučeniny MeSH
Love wave sensors with silver-modified polypyrrole nanoparticles are developed in this work. These systems prove functional at room temperature with enhanced response, sensitivity and response time, as compared to other state-of-the-art surface acoustic wave (SAW) sensors, towards volatile organic compounds (VOCs). Results demonstrate the monitoring of hundreds of ppb of compounds such as acetone, ethanol and toluene with low estimated limits of detection (~3 ppb for acetone). These results are attributed to the use of silver-modified polypyrrole as a second guiding/sensitive layer in the Love wave sensor structure, which provides further chemically active sites for the gas-solid interactions. The sensing of low VOCs concentrations by micro sensing elements as those presented here could be beneficial in future systems for air quality control, food quality control or disease diagnosis via exhaled breath as the limits of detection obtained are within those required in these applications.
Instituto de Microelectrónica de Barcelona Campus UAB 08193 Bellaterra Spain
SENSAVAN Instituto de Tecnologías Físicas y de la Información Serrano 144 28006 Madrid Spain
Zobrazit více v PubMed
Ramírez N., Cuadras A., Rovira E., Borrull F., Marcé R.M. Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ. Int. 2012;39:200–209. doi: 10.1016/j.envint.2011.11.002. PubMed DOI
Bai J., Baker S.M., Goodrich-Schneider R.M., Montazeri N., Sarnoski P.J. Aroma Profile Characterization of Mahi-Mahi and Tuna for Determining Spoilage Using Purge and Trap Gas Chromatography-Mass Spectrometry. J. Food Sci. 2019;84:481–489. doi: 10.1111/1750-3841.14478. PubMed DOI
Font X., Artola A., Sanchez A. Detection, Composition and Treatment of Volatile Organic Compounds from Waste Treatment Plants. Sensors. 2011;11:4043–4059. doi: 10.3390/s110404043. PubMed DOI PMC
Ulanowska A., Kowalkowski T., Trawinska E., Buszewski B. The application of statistical methods using VOCs to identify patients with lung cancer. J. Breath Res. 2011;5:11. doi: 10.1088/1752-7155/5/4/046008. PubMed DOI
Goodman N.B., Wheeler A.J., Paevere P.J., Selleck P.W., Cheng M., Steinemann A. Indoor volatile organic compounds at an Australian university. Build. Environ. 2018;135:344–351. doi: 10.1016/j.buildenv.2018.02.035. DOI
Devkota J., Ohodnicki P.R., Greve D.W. SAW Sensors for Chemical Vapors and Gases. Sensors. 2017;17:28. doi: 10.3390/s17040801. PubMed DOI PMC
Constantinoiu I., Miu D.N., Viespe C. Surface Acoustic Wave Sensors for Ammonia Detection at Room Temperature Based on SnO2/Co3O4 Bilayers. J. Sens. 2019 doi: 10.1155/2019/8203810. DOI
Constantinoiu I., Viespe C. Detection of Volatile Organic Compounds Using Surface Acoustic Wave Sensor Based on Nanoparticles Incorporated in Polymer. Coatings. 2019;9:9. doi: 10.3390/coatings9060373. DOI
Nikolaou I., Hallil H., Conedera V., Deligeorgis G., Dejous C., Rebiere D. Inkjet-Printed Graphene Oxide Thin Layers on Love Wave Devices for Humidity and Vapor Detection. IEEE Sens. J. 2016;16:7620–7627. doi: 10.1109/JSEN.2016.2600269. DOI
Sayago I., Fernández M.J., Fontecha J.L., Horrillo M.C., Vera C., Obieta I., Bustero I. New sensitive layers for surface acoustic wave gas sensors based on polymer and carbon nanotube composites. Sens. Actuators B Chem. 2012;175:67–72. doi: 10.1016/j.snb.2011.12.031. DOI
Feng S.B., Farha F., Li Q.J., Wan Y.L., Xu Y., Zhang T., Ning H.S. Review on Smart Gas Sensing Technology. Sensors. 2019;19:22. doi: 10.3390/s19173760. PubMed DOI PMC
Xu Z., Yuan Y.J. Implementation of guiding layers of surface acoustic wave devices: A review. Biosens. Bioelectron. 2018;99:500–512. doi: 10.1016/j.bios.2017.07.060. PubMed DOI
Šetka M., Drbohlavová J., Hubálek J. Nanostructured polypyrrole-based ammonia and volatile organic compound sensors. Sensors. 2017;17:28. doi: 10.3390/s17030562. PubMed DOI PMC
Šetka M., Bahos F.A., Matatagui D., Potoček M., Kral Z., Drbohlavová J., Gràcia I., Vallejos S. Love wave sensors based on gold nanoparticle-modified polypyrrole and their properties to ammonia and ethylene. Sens. Actuators B Chem. 2019;304:127337. doi: 10.1016/j.snb.2019.127337. DOI
Fragoso-Mora J.R., Matatagui D., Bahos F.A., Fontecha J., Fernandez M.J., Santos J.P., Sayago I., Gràcia I., Horrillo M.C. Gas sensors based on elasticity changes of nanoparticle layers. Sens. Actuators B Chem. 2018;268:93–99. doi: 10.1016/j.snb.2018.04.045. DOI
Mulfinger L., Solomon S.D., Bahadory M., Jeyarajasingam A.V., Rutkowsky S.A., Boritz C. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007;84:322. doi: 10.1021/ed084p322. DOI
Vallejos S., Grácia I., Chmela O., Figueras E., Hubálek J., Cané C. Chemoresistive micromachined gas sensors based on functionalized metal oxide nanowires: Performance and reliability. Sens. Actuators B Chem. 2016;235:525–534. doi: 10.1016/j.snb.2016.05.102. DOI
Matatagui D., Bahos F.A., Gràcia I., Horrillo M.D.C. Portable Low-Cost Electronic Nose Based on Surface Acoustic Wave Sensors for the Detection of BTX Vapors in Air. Sensors. 2019;19:5406. doi: 10.3390/s19245406. PubMed DOI PMC
Setka M., Calavia R., Vojkuvka L., Llobet E., Drbohlavova J., Vallejos S. Raman and XPS studies of ammonia sensitive polypyrrole nanorods and nanoparticles. Sci. Rep. 2019;9:10. doi: 10.1038/s41598-019-44900-1. PubMed DOI PMC
Zhang Q., Chen C., Wan G., Lei M., Chi M., Wang S., Min D. Solar light induced synthesis of silver nanoparticles by using lignin as a reductant, and their application to ultrasensitive spectrophotometric determination of mercury(II) Microchim. Acta. 2019;186:727. doi: 10.1007/s00604-019-3832-8. PubMed DOI
Yu J.J., Sun D.P., Wang T.H., Li F. Fabrication of Ag@AgCl/ZnO submicron wire film catalyst on glass substrate with excellent visible light photocatalytic activity and reusability. Chem. Eng. J. 2018;334:225–236. doi: 10.1016/j.cej.2017.10.003. DOI
Wei L., Sun J., Xu L., Zhu S.D., Zhou X.Y., Yang S., Dong B., Bai X., Lu G.Y., Song H.W. Understanding the noble metal modifying effect on In2O3 nanowires: Highly sensitive and selective gas sensors for potential early screening of multiple diseases. Nanoscale Horiz. 2019;4:1361–1371. doi: 10.1039/c9nh00404a. DOI
Li M., Kan H., Che S.T., Feng X.Y., Li H., Li C., Fu C., Quan A.J., Sun H.B., Luo J.T., et al. Colloidal quantum dot-based surface acoustic wave sensors for NO2-sensing behavior. Sens. Actuators B Chem. 2019;287:241–249. doi: 10.1016/j.snb.2019.02.042. DOI
Edirisinghe R.K.B., Graham A.J., Taylor S.J. Characterisation of the volatiles of yellowfin tuna (Thunnus albacares) during storage by solid phase microextraction and GC-MS and their relationship to fish quality parameters. Int. J. Food Sci. Technol. 2007;42:1139–1147. doi: 10.1111/j.1365-2621.2006.01224.x. DOI
Bhasker Raj V., Nimal A.T., Parmar Y., Sharma M.U., Gupta V. Investigations on the origin of mass and elastic loading in the time varying distinct response of ZnO SAW ammonia sensor. Sens. Actuators B Chem. 2012;166–167:576–585. doi: 10.1016/j.snb.2012.03.013. DOI
Li Y., Ban H., Yang M. Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sens. Actuators B Chem. 2016;224:449–457. doi: 10.1016/j.snb.2015.10.078. DOI
Li F., Li H., Jiang H., Zhang K., Chang K., Jia S., Jiang W., Shang Y., Lu W., Deng S., et al. Polypyrrole nanoparticles fabricated via Triton X-100 micelles template approach and their acetone gas sensing property. Appl. Surf. Sci. 2013;280:212–218. doi: 10.1016/j.apsusc.2013.04.132. DOI
Viespe C., Miu D. Characteristics of Surface Acoustic Wave Sensors with Nanoparticles Embedded in Polymer Sensitive Layers for VOC Detection. Sensors. 2018;18:9. doi: 10.3390/s18072401. PubMed DOI PMC
Viespe C., Grigoriu C. Surface acoustic wave sensors with carbon nanotubes and SiO2/Si nanoparticles based nanocomposites for VOC detection. Sens. Actuators B Chem. 2010;147:43–47. doi: 10.1016/j.snb.2010.02.064. DOI
Bahos F.A., Sainz-Vidal A., Sanchez-Perez C., Saniger J.M., Gracia I., Saniger-Alba M.M., Matatagui D. ZIF Nanocrystal-Based Surface Acoustic Wave (SAW) Electronic Nose to Detect Diabetes in Human Breath. Biosensors. 2018;9:13. doi: 10.3390/bios9010004. PubMed DOI PMC
Moon J.D., Galizia M., Borjigin H., Liu R., Riffle J.S., Freeman B.D., Paul D.R. Water Vapor Sorption, Diffusion, and Dilation in Polybenzimidazoles. Macromolecules. 2018;51:7197–7208. doi: 10.1021/acs.macromol.8b01659. DOI
Ahmadi M.T., Ismail R., Anwar S. Handbook of Research on Nanoelectronic Sensor Modeling and Applications. IGI Global; Hershey, PA, USA: 2016.
VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials