SnO2/MWCNTs Nanostructured Material for High-Performance Acetone and Ethanol Gas Sensors

. 2025 Feb 25 ; 10 (7) : 7283-7294. [epub] 20250212

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40028133

This work presents a novel nanostructured material SnO2/multiwalled carbon nanotubes (MWCNTs) as a sensing film for the detection of acetone and ethanol vapors. The fabrication of SnO2/MWCNT chemoresistive sensors demonstrates a cost-effective hydrothermal method using a centrifugation technique. The material investigation of the synthesized SnO2/MWCNTs nanocomposite represents various techniques, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) elementary analysis, EDX mapping, and X-ray diffraction (XRD) analysis. The SnO2/MWCNTs sensor exhibits rapid response/recovery behavior toward acetone (53/5 s) and ethanol (86/3 s) while showing satisfactory values of responsiveness (S act = 90.5 and S etn = 21, n = 100 ppm). The low detection limit of these vapors is assigned a concentration of 1 ppm, where discernible responses are elicited. Thus, the SnO2/MWCNTs sensor production efforts have yielded a high-end volatile organic compound (VOC) detector, highly suitable for human technological and engineering activity.

Zobrazit více v PubMed

Wang Z.; Wang F.; Hermawan A.; Asakura Y.; Hasegawa T.; Kumagai H.; Kato H.; Kakihana M.; Zhu J.; Yin S. SnO-SnO2 modified two-dimensional MXene Ti3C2Tx for acetone gas sensor working at room temperature. Mater. Sci. Technol. 2021, 73, 128–138. 10.1016/j.jmst.2020.07.040. DOI

Li Y.; Chen M.; Xue L.; Li X.; Wang Q. High response acetone sensor with ppb detection based on Pd-Pt/ZnO nanoflowers in-situ grown on planar substrates. Mater. Sci. Semicond. Process. 2025, 186, 10910010.1016/j.mssp.2024.109100. DOI

Shar A. H.; Lakhan M. N.; Alali K. T.; Liu J.; Ahmed M.; Shah A. H.; Wang J. Facile synthesis of reduced graphene oxide encapsulated selenium nanoparticles prepared by hydrothermal method for acetone gas sensors. Chem. Phys. Lett. 2020, 755, 13779710.1016/j.cplett.2020.137797. DOI

Kaur J.; Anand K.; Kohli N.; Kaur A.; Singh R. C. Temperature dependent selective detection of hydrogen and acetone using Pd doped WO3/reduced graphene oxide nanocomposite. Chem. Phys. Lett. 2018, 701, 115–125. 10.1016/j.cplett.2018.04.049. DOI

Wu J.; Xing X.; Zhu Z.; Zheng L.; Chen J.; Wang C.; Yang D. Electrospun hollow CuO modified V2O5 nano-string of pearls with improved acetone sensitivity. Chem. Phys. Lett. 2019, 727, 19–24. 10.1016/j.cplett.2019.04.043. DOI

Hao X.; Li W.; Lu Q.; Wang T.; Wang B.; Liu T.; Liang X.; Liu F.; Wang C.; Lu G. Specificity improvement of the YSZ-based mixed potential gas sensor for acetone and hydrogen sulfide detection. Sens. Actuators, B 2021, 341, 12929210.1016/j.snb.2020.129292. DOI

Kraniotou C.; Karadima V.; Bellos G.; Tsangaris G. T. Predictive biomarkers for type 2 of diabetes mellitus: Bridging the gap between systems research and personalized medicine. J. Proteomics 2018, 188, 305–362. 10.1016/j.jprot.2018.03.004. PubMed DOI

Yu J.-B.; Byun H.-G.; So M.-S.; Huh J.-S. Analysis of diabetic patient’s breath with conducting polymer sensor array. Sens. Actuators, B 2005, 108 (1–2), 305–308. 10.1016/j.snb.2005.01.040. DOI

Liu X.; You X.; Sun Z.; Cao G.; Wang J.; Guo L.; Wang G. Highly sensitive ethanol gas sensors based on Bi0.9Er0.1FeO3/In2O3 composites. Ceram. Int. 2024, 50 (23), 49470–49479. 10.1016/j.ceramint.2024.09.291. DOI

Abdulsattar M. A.; Jabbar R. H.; Al-Seady M. A. Ethanol properties effects on its reaction with Mo-doped SnO2 clusters: A gas sensor model. Results Surf. Interfaces 2024, 17, 10029110.1016/j.rsurfi.2024.100291. DOI

Pathan I. G.; Suryawanshi D. N.; Nikam C. P.. Tin doped ZnFe2O4 thin film based ethanol sensor Mater. Today: Proc. 202310.1016/j.matpr.2023.12.005. DOI

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Shahnazaryan G.; Aroutiounian V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10 (7), 24510.3390/chemosensors10070245. DOI

Yavuz Ö. Understanding Ethanol Usage and Its Influences by Applying a Qualitative and Quantitative Research Design. Eur. J. Sci. Technol. 2022, 3, 40–49. 10.31590/ejosat.1039621. DOI

Carvalho A. F.; Heilig M.; Perez A.; Probst C.; Rehm J. Alcohol Use Disorders. Lancet 2019, 394, 781–792. 10.1016/S0140-6736(19)31775-1. PubMed DOI

Kang X.; Deng N.; Yan Z.; Pan Y.; Sun W.; Zhang Y. Resistive-type VOCs and pollution gases sensor based on SnO2: A review. Mater. Sci. Semicond. 2022, 138, 10624610.1016/j.mssp.2021.106246. DOI

Pathak A. K.; Viphavakit C. A review on all-optical fiber-based VOC sensors: Heading towards the development of promising technology. Sens. Actuators, A 2022, 338, 11345510.1016/j.sna.2022.113455. DOI

Dey A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng., B 2018, 229, 206–217. 10.1016/j.mseb.2017.12.036. DOI

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Kasparyan H.; Kopecký D. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials 2023, 13 (1), 12010.3390/nano13010120. PubMed DOI PMC

Krishna K. G.; Parne S.; Pothukanuri N.; Kathirvelu V.; Gandi S.; Joshi D. Nanostructured metal oxide semiconductor-based gas sensors: A comprehensive review. Sens. Actuators, A 2022, 341, 11357810.1016/j.sna.2022.113578. DOI

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Kananov D.; Kasparyan H.; Kopecký D. MWCNTs/Fe2O3:ZnO Nanocomposite Material for Chemoresistive Sensing of Hydrogen Peroxide Vapors. ACS Appl. Electron. Mater. 2024, 6 (2), 940–949. 10.1021/acsaelm.3c01440. DOI

Gurlo A. Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 2011, 3, 154–165. 10.1039/C0NR00560F. PubMed DOI

Korotcenkov G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng., R 2008, 61 (1–6), 1–39. 10.1016/j.mser.2008.02.001. DOI

Reddy B. L.; Jatav H. S.; Rajput V. D.; Minkina T.; Ranjan A.; Harikrishnan A.; Veena V. K.; Chauhan A.; Kumar S.; Prakash A.; Prasad R. Nanomaterials Based Monitoring of Food- and Water-Borne Pathogens. J. Nanomater. 2022, 2022, 954353210.1155/2022/9543532. DOI

Tomić M.; Šetka M.; Vojkůvka L.; Vallejos S. VOCs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomater 2021, 11, 55210.3390/nano11020552. PubMed DOI PMC

Lawaniya S. D.; Awasthi A.; Menezes P. W.; Awasthi K. Detection of Foodborne Pathogens Through Volatile Organic Compounds Sensing via Metal Oxide Gas Sensors. Adv. Sensor Res. 2025, 4, 240010110.1002/adsr.202400101. DOI

Li Z.; Zeng W.; Li Q. SnO2 as a gas sensor in detection of volatile organic compounds: A review. Sens. Actuators, A 2022, 346, 11384510.1016/j.sna.2022.113845. DOI

Jarzebski Z. M.; Marton J. P. Physical Properties of SnO2 Materials: I. Preparation and Defect Structure. J. Electrochem. Soc. 1976, 123, 199C10.1149/1.2133010. DOI

Tao Y.; Zhu B.; Yang Y.; Wu J.; Shi X. The Structural, Electrical, and Optical Properties of SnO2 Films Prepared by Reactive Magnetron Sputtering: Influence of Substrate Temperature and O2 Flow Rate. Mater. Chem. Phys. 2020, 250, 12312910.1016/j.matchemphys.2020.123129. DOI

CRC Handbook of Chemistry and Physics, 90th ed.; Lide D. R., Ed.; Boca Raton Press, 2009; Vol. 131.

Patnaik P.Handbook of Inorganic Chemicals, 1st ed.; The McGraw-Hill Companies, Inc, 2003.

Baur W. H. Über die Verfeinerung der Kristallstrukturbestimmung einiger Vertreter des Rutiltyps: TiO2, SnO2, GeO2 und MgF2. Acta Crystallogr. 1956, 9, 515–520. 10.1107/S0365110X56001388. DOI

Li Z.; Graziosi P.; Neophytou N. Electron and Hole Mobility of SnO2 from Full-Band Electron-Phonon and Ionized Impurity Scattering Computations. Crystals 2022, 12, 159110.48550/arXiv.2211.05211. DOI

Aleksanyan M. S.; Shahkhatuni G. H.; Khachaturyan E. A.; Shahnazaryan G. E.; Sayunts A. G.; Hovhannisyan H. R.; Kananov D. A. Investigation of the MWCNT/SnO2 Sensor for the Detection of Acetone Vapors. J. Contemp. Phys. (Arm. Acad. Sci) 2023, 58, 67–72. 10.1134/S1068337223010048. DOI

Wu P.; Li Y.; Xiao S.; Chen J.; Tang J.; Chen D.; Zhang X. SnO2 nanoparticles based highly sensitive gas sensor for detection of C4F7N: A new eco-friendly gas insulating medium. J. Hazard. Mater. 2022, 422, 12688210.1016/j.jhazmat.2021.126882. PubMed DOI

Meng X.; Bi M.; Xiao Q.; Gao W. Ultra-fast response and highly selectivity hydrogen gas sensor based on Pd/SnO2 nanoparticles. Int. J. Hydrogen Energy 2022, 47 (5), 3157–3169. 10.1016/j.ijhydene.2021.10.201. DOI

Deb S.; Mondal A.; Reddy Y. A. K. Review on development of metal-oxide and 2-D material based gas sensors under light-activation. Curr. Opin. Solid State Mater. Sci. 2024, 30, 10116010.1016/j.cossms.2024.101160. DOI

Young S.-J.; Chu Y.-L. Hydrothermal Synthesis and Improved CH3OH-Sensing Performance of ZnO Nanorods With Adsorbed Au NPs. IEEE Trans. Electron Devices 2021, 68, 1886–1891. 10.1109/TED.2021.3060354. DOI

Young S.-J.; Chu Y.-L. Platinum Nanoparticle-Decorated ZnO Nanorods Improved the Performance of Methanol Gas Sensor. J. Electrochem. Soc. 2020, 167, 14750810.1149/1945-7111/abc4be. DOI

Chu Y.-L.; Young S.-J.; Ji L.-W.; Chu T.-T.; Lam K.-T.; Hsiao Y.-J.; Tang I.-T.; Kuo T.-H. Characteristics of Gas Sensors Based on Co-Doped ZnO Nanorod Arrays. J. Electrochem. Soc. 2020, 167, 11750310.1149/1945-7111/aba00d. DOI

Tsai Y.-T.; Chang S.-J.; Ji L.-W.; Hsiao Y.-J.; Tang I.-T.; Lu H.-Y.; Chu Y.-L. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega 2018, 3, 13798–13807. 10.1021/acsomega.8b01882. PubMed DOI PMC

Morais S. Multi-Walled Carbon Nanotubes. Appl. Sci. 2019, 9 (13), 269610.3390/app9132696. DOI

Ahmad S. N.; Hakeem S.; Alvi R. A.; Farooq K.; Farooq N.; Yasmin F.; Saeed S. Synthesis of multi-walled carbon nanotubes and their application in resin based nanocomposites. J. Phys.: Conf. Ser. 2013, 439, 01200910.1088/1742-6596/439/1/012009. DOI

Eatemadi A.; Daraee H.; Karimkhanloo H.; Kouhi M.; Zarghami N.; Akbarzadeh A.; Abasi M.; Hanifehpour Y.; Joo S. W. Carbon Nanotubes: Properties, Synthesis, Purification, and Medical Applications. Nano Rev. 2014, 9, 39310.1186/1556-276X-9-393. PubMed DOI PMC

Takakura A.; Beppu K.; Nishihara T.; Fukui A.; Kozeki T.; Namazu T.; Miyauchi Y.; Itami K. Strength of Carbon Nanotubes Depends on Their Chemical Structures. Nat. Commun. 2019, 10, 304010.1038/s41467-019-10959-7. PubMed DOI PMC

Zhu S.; Sheng J.; Chen Y.; Ni J.; Li Y. Carbon Nanotubes for Flexible Batteries: Recent Progress and Future Perspective. Nat. Sci. Rev. 2021, 8, nwaa26110.1093/nsr/nwaa261. PubMed DOI PMC

Roch A.; Greifzu M.; Talens E. R.; Stepien L.; Roch T.; Hege J.; Nong N. V.; Schmiel T.; Dani I.; Leyens C.; Jost O.; Leson A. Ambient Effects on the Electrical Conductivity of Carbon Nanotubes. Carbon 2015, 95, 347–353. 10.1016/j.carbon.2015.08.045. DOI

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Aroutiounian V.; Khachatryan E. Detection of hydrogen peroxide vapor using flexible gas sensor based on SnO2 nanoparticles decorated with multi-walled carbon nanotubes. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2023, 14, 02500110.1088/2043-6262/accc7d. DOI

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Kananov D.; Michalcová A.; Koláčný L.; Kopecký D. Flexible Gas Sensor Based on the RF-Grown Fe2O3:ZnO/CNTs Material for Propylene Glycol Vapor Detection. ACS Appl. Electron. Mater. 2024, 6 (9), 6893–6904. 10.1021/acsaelm.4c01269. DOI

Su P.-G.; Yu J.-H. Enhanced NO2 gas-sensing properties of Au-Ag bimetal decorated MWCNTs/WO3 composite sensor under UV-LED irradiation. Sens. Actuators, A 2020, 303, 11171810.1016/j.sna.2019.111718. DOI

Tameev A. R.; Jiménez L. L.; Pereshivko L. Ya.; Rychwalski R. W.; Vannikov A. V. Charge Carrier Mobility in Films of Carbon-Nanotube-Polymer Composites. J. Phys.: Conf. Ser. 2007, 61, 115210.1088/1742-6596/61/1/228. DOI

Nguyen M. H.; Nguyen D. C.; Nguyen T. D.; Kim E. T.; Choi G.; Kim C.; Kim D. Carbon Nanotube-Metal Oxide Nanocomposite Gas Sensing Mechanism Assessed via NO2 Adsorption on n-WO3/p-MWCNT Nanocomposites. Ceram. Int. 2020, 46, 29233–29243. 10.1016/j.ceramint.2020.08.097. DOI

Wisitsoraat A.; Tuantranont A.; Thanachayanont C.; Singjai P.. Carbon Nanotube-SnO2 Composite Gas Sensor Prepared by Electron Beam Evaporation, 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems; IEEE: Piscataway, NJ, 2006; pp 1487–1490.

Yang A.; Tao X.; Wang R.; Lee S.; Surya C. Room Temperature Gas Sensing Properties of SnO2/Multiwall-Carbon-Nanotube Composite Nanofibers. Appl. Phys. Lett. 2007, 91, 13311010.1063/1.2783479. DOI

Z N A.; Sayunts A. G.; Khachaturyan E. A.; Aroutiounian V. M. Tin Oxide/Carbon Nanotube Nanocomposite Sensors for Some Toxic VOCs Detection. South Florida J. Dev. 2021, 2, 1066–1092. 10.46932/sfjdv2n1-077. DOI

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Kananov D.; Khachaturyan E.; Kopecký D. Acetone Vapors Detection Using a MWCNTs/SnO2 Nanocomposite Material. ACS Appl. Electron. Mater. 2024, 6 (6), 4090–4098. 10.1021/acsaelm.4c00167. DOI

Pandeeswari R.; Jeyaprakash B. G. High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators, B 2014, 195, 206–214. 10.1016/j.snb.2014.01.025. DOI

Korotcenkov G.; Cho B. K. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators, B 2017, 244, 182–210. 10.1016/j.snb.2016.12.117. DOI

Korotcenkov G. Metal oxides for solid-state gas sensors: What determines our choice?. Mater. Sci. Eng., B 2007, 139 (1), 1–23. 10.1016/j.mseb.2007.01.044. DOI

Alaf M.; Oncel V.; Tocoglu U.; Ozbay N.; Akbulut H. Synthesis and characterization of CNT@SnO2 decorated graphene anodes for Li-ion batteries as free-standing and flexible. J. Mater. Sci. 2023, 58, 12298–12311. 10.1007/s10853-023-08800-0. DOI

Zhang D.; Tang Y.; Zhang C.; Dong Q.; Song W.; He Y. One-Step Synthesis of SnO2/Carbon Nanotube Nanonests Composites by Direct Current Arc-Discharge Plasma and Its Application in Lithium-Ion Batteries. Nanomaterials 2021, 11 (11), 313810.3390/nano11113138. PubMed DOI PMC

Zhang W.; Xian Y.; Cheng B.; Han R.; Zhang Y.; Xiang J. Fe2TiO5 nanoparticle-based novel gas sensor with high response to ethanol and acetone. Ceram. Int. 2024, 50, 34027–34036. 10.1016/j.ceramint.2024.06.222. DOI

Meng F.; Hu J.; Liu C.; Tan Y.; Zhang Y. Highly sensitive and low detection limit of acetone gas sensor based on porous YbFeO3 nanocrystallines. Chem. Phys. Lett. 2021, 780, 13892510.1016/j.cplett.2021.138925. DOI

Zheng W.; Yang C.; Li Z.; Xie J.; Lou C.; Lei G.; Liu X.; Zhang J. Indium selenide nanosheets for photoelectrical NO2 sensor with ultra sensitivity and full recovery at room temperature. Sens. Actuators, B 2021, 329, 12912710.1016/j.snb.2020.129127. DOI

Fan B.; Zhang J.-R.; Chen J.-L.; Yang Z.-T.; Li B.; Wang L.; Ye M.; Zhang L.-L. Highly Selective and Fast Response/Recovery Cataluminescence Sensor Based on SnO2 for H2S Detection. Molecules 2023, 28 (20), 714310.3390/molecules28207143. PubMed DOI PMC

Novikov E. M.; Nijhuis M. R.; Izuchukwu C. E.; Adu-Effah N.; Nduul A. S.; Kutzner J. A Closer Look at the Common Molar Mass Experiment. J. Chem. Educ. 2024, 101 (8), 3240–3245. 10.1021/acs.jchemed.4c00237. DOI

Zhang S.; Yang M.; Liang K.; Turak A.; Zhang B.; Meng D.; Wang C.; Qu F.; Cheng W.; Yang M. An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens. Actuators, B 2019, 290, 59–67. 10.1016/j.snb.2019.03.082. DOI

Guo L.; Shen Z.; Ma C.; Ma C.; Wang J.; Yuan T. Gas sensor based on MOFs-derived Au-loaded SnO2 nanosheets for enhanced acetone detection. J. Alloys Compd. 2022, 906, 16437510.1016/j.jallcom.2022.164375. DOI

Lu G.; Wang X.; Liu J.; Qiu S.; He C.; Li B.; Liu W. One-pot synthesis and gas sensing properties of ZnO mesoporous architectures. Sens. Actuators, B 2013, 184, 85–92. 10.1016/j.snb.2013.04.075. DOI

Cao S.; Sui N.; Zhang P.; Zhou T.; Tu J.; Zhang T. TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J. Colloid Interface Sci. 2022, 607, 357–366. 10.1016/j.jcis.2021.08.215. PubMed DOI

Lv L.; Wang Y.; Cheng P.; Zhang B.; Dang F.; Xu L. Ultrasonic spray pyrolysis synthesis of three-dimensional ZnFe2O4-based macroporous spheres for excellent sensitive acetone gas sensor. Sens. Actuators, B 2019, 297, 12675510.1016/j.snb.2019.126755. DOI

Han D.; Zhao M. Facile and simple synthesis of novel iron oxide foam and used as acetone gas sensor with sub-ppm level. J. Alloys Compd. 2020, 815, 15240610.1016/j.jallcom.2019.152406. DOI

Cai Z.; Park S. Improved SnO2 nanowire acetone sensor with uniform Co3O4 nanoparticle decoration. J. Environ. Chem. Eng. 2023, 11 (6), 11150410.1016/j.jece.2023.111504. DOI

Cheng P.; Lv L.; Wang Y.; Zhang B.; Zhang Y.; Zhang Y.; Lei Z.; Xu L. SnO2/ZnSnO3 Double-Shelled Hollow Microspheres Based High-Performance Acetone Gas Sensor. Sens. Actuators, B 2021, 332, 12921210.1016/j.snb.2020.129212. DOI

Jiang Z.; Zhao R.; Sun B.; Nie G.; Ji H.; Lei J.; Wang C. Highly Sensitive Acetone Sensor Based on Eu-Doped SnO2 Electrospun Nanofibers. Ceram. Int. 2016, 42, 15881–15888. 10.1016/j.ceramint.2016.07.060. DOI

Hung N. P.; Duy N. V.; Xuan C. T.; Le D. T. T.; Hung C. M.; Jin H.; Hoa N. D. Enhanced Acetone Gas-Sensing Characteristics of Pd–NiO Nanorods/SnO2 Nanowires Sensors. RSC Adv. 2024, 14, 12438–12448. 10.1039/d4ra01265h. PubMed DOI PMC

Ghahremani Z.; Mirzaei A.; Kim J.-Y.; Kim H. W.; Kim S. S. Enhanced Acetone Gas-Sensing Properties of NiO–SnO2 Nanocomposites. Ceram. Int. 2024, 50, 38718–38731. 10.1016/j.ceramint.2024.07.243. DOI

Kathwate L. H. In-doped ZnO films deposited by modified SILAR method for enhanced ethanol gas sensor application. Ceram. Int. 2024, 50 (22), 48462–48473. 10.1016/j.ceramint.2024.09.195. DOI

Enferadi S. M. H. B.; Mirzaei A. Fe2O3-Co3O4 nanocomposite gas sensor for ethanol sensing studies. Ceram. Int. 2024, 52861–52870. 10.1016/j.ceramint.2024.10.138. DOI

Xu C.; Ma S.; Liu M.; Cai Y.; Wei J.; Liu J.; Jiang H. High performance detection of ethanol based on HoFeO3 microsphere gas sensor. Vacuum 2023, 217, 11253710.1016/j.vacuum.2023.112537. DOI

Jiang B.; Zhou T.; Zhang L.; Yang J.; Han W.; Sun Y.; Liu F.; Sun P.; Zhang H.; Lu G. Separated detection of ethanol and acetone based on SnO2-ZnO gas sensor with improved humidity tolerance. Sens. Actuators, B 2023, 393, 13425710.1016/j.snb.2023.134257. DOI

Lin M.; Huang Y.; Liu Y.; Liu N.; Lei Z.; Huang C.; Cao J.; Ouyang X.; Zhou Y. A durable gas sensor based on AgVO3/TiO2 nanoheterostructures to ethanol gas. J. Alloys Compd. 2023, 961, 17110310.1016/j.jallcom.2023.171103. DOI

Tan Y.; Zhang J. Highly sensitive ethanol gas sensors based on Co-doped SnO2 nanobelts and pure SnO2 nanobelts. Phys. E 2023, 147, 11560410.1016/j.physe.2022.115604. DOI

Shi Y.; Wang M. H.; Wang H. Y.; Shao X.; Sun X. F.; Li X. Study on gas sensibility of ethanol gas sensor based on flower-ball shaped Ag/Bi2WO6. Mater. Lett. 2022, 328, 13309310.1016/j.matlet.2022.133093. DOI

Li C.; Choi P. G.; Kim K.; Masuda Y. High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sens. Actuators, B 2022, 367, 13214310.1016/j.snb.2022.132143. DOI

Ferroni M.; Carotta M. C.; Guidi V.; Martinelli G.; Ronconi F.; Richard O.; Van Dyck D.; Van Landuyt J. Structural characterization of Nb–TiO2 nanosized thick-films for gas sensing application. Sens. Actuators, B 2000, 68 (1–3), 140–145. 10.1016/S0925-4005(00)00474-3. DOI

Liu H.; Miao T.; Liu W.; Chen J.; Cheng B.; Qin H.; Hu J. Highly sensitive acetone gas sensor based on YFeO3 planar electrode under multi-wavelength light illumination. Mater. Lett. 2023, 333, 13359610.1016/j.matlet.2022.133596. DOI

Ahmadipour M.; Pang A. L.; Ardani M. R.; Pung S.-Y.; Ooi P. C.; Hamzah A. A.; Wee M. F. M. R.; Haniff M. A. S. M.; Dee C. F.; Mahmoudi E.; Arsad A.; Ahmad M. Z.; Pal U.; Chahrour K. M.; Haddadi S. A. Detection of breath acetone by semiconductor metal oxide nanostructures-based gas sensors: A review. Mater. Sci. Semicond. Process. 2022, 149, 10689710.1016/j.mssp.2022.106897. DOI

Haiduk Y.; Khort A.; Lapitskaya V.; Kuznetsova T.; Moskovskikh D.; Savitsky A.; Lapchuk N.; Makhavikou M.; Pankov V. WO3–graphene–Cu nanocomposites for CO, NO2 and acetone gas sensors. Nano-Struct. Nano-Objects 2022, 29, 10082410.1016/j.nanoso.2021.100824. DOI

Ghadage P.; Shinde K. P.; Nadargi D.; Nadargi J.; Shaikh H.; Alam M. A.; Mulla I.; Tamboli M. S.; Park J. S.; Suryavanshi S. Bismuth ferrite based acetone gas sensor: evaluation of graphene oxide loading. RSC Adv. 2024, 14 (2), 1367–1376. 10.1039/D3RA06733E. PubMed DOI PMC

Cai L.; Dong X.; Wu G.; Sun J.; Chen N.; Wei H.; Zhu S.; Tian Q.; Wang X.; Jing Q.; Li P.; Liu B. Ultrasensitive acetone gas sensor can distinguish the diabetic state of people and its high performance analysis by first-principles calculation. Sens. Actuators, B 2022, 351, 13086310.1016/j.snb.2021.130863. DOI

Han T.; Nag A.; Mukhopadhyay S. C.; Xu Y. Carbon nanotubes and its gas-sensing applications: A review. Sens. Actuators, A 2019, 291, 107–143. 10.1016/j.sna.2019.03.053. DOI

Pandey G.; Bhardwaj M.; Kumar S.; Lawaniya S. D.; Kumar M.; Dwivedi P. K.; Awasthi K. Synergistic Effects of Pd-Ag Decoration on SnO/SnO2 Nanosheets for Enhanced Hydrogen Sensing. Sens. Actuators, B 2024, 402, 13506210.1016/j.snb.2023.135062. DOI

Madbouly A.; Elzwawy A.; Morsy M. Rapid CO Detection Using MWCNTs/SnO2 Hierarchical Structure: Synthesis, Characterization, and RT Gas Sensing Features. Ceram. Int. 2024, 50, 25473–25483. 10.1016/j.ceramint.2024.04.280. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...