Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
№ 21SCG-2J001
Science Committee of RA
PubMed
36616029
PubMed Central
PMC9824716
DOI
10.3390/nano13010120
PII: nano13010120
Knihovny.cz E-zdroje
- Klíčová slova
- gas sensor, hydrogen peroxide vapor, iron oxide, magnetron sputtering, nanograins, zinc oxide,
- Publikační typ
- časopisecké články MeSH
In this report, a Fe2O3:ZnO sputtering target and a nanograins-based sensor were developed for the room temperature (RT) detection of hydrogen peroxide vapor (HPV) using the solid-state reaction method and the radio frequency (RF) magnetron sputtering technique, respectively. The characterization of the synthesized sputtering target and the obtained nanostructured film was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analyses. The SEM and TEM images of the film revealed its homogeneous granular structure, with a grain size of 10-30 nm and an interplanar spacing of Fe2O3 and ZnO, respectively. EDX spectroscopy presented the real concentrations of Zn in the target material and in the film (21.2 wt.% and 19.4 wt.%, respectively), with a uniform distribution of O, Al, Zn, and Fe elements in the e-mapped images of the Fe2O3:ZnO film. The gas sensing behavior was investigated in the temperature range of 25-250 °C with regards to the 1.5-56 ppm HPV concentrations, with and without ultraviolet (UV) irradiation. The presence of UV light on the Fe2O3:ZnO surface at RT reduced a low detection limit from 3 ppm to 1.5 ppm, which corresponded to a response value of 12, with the sensor's response and recovery times of 91 s and 482 s, respectively. The obtained promising results are attributed to the improved characteristics of the Fe2O3:ZnO composite material, which will enable its use in multifunctional sensor systems and medical diagnostic devices.
Zobrazit více v PubMed
Bentley K., Dove B.K., Parks S.R., Walker J.T., Bennett A.M. Hydrogen peroxide vapour decontamination of surfaces artificially contaminated with norovirus surrogate feline calicivirus. J. Hosp. Infect. 2012;80:116–121. doi: 10.1016/j.jhin.2011.10.010. PubMed DOI
Bohlooli F., Yamatogi A., Mori S. Manganese oxides/carbon nanowall nanocomposite electrode as an efficient non-enzymatic electrochemical sensor for hydrogen peroxide. Sens. Bio-Sens. Res. 2021;31:100392. doi: 10.1016/j.sbsr.2020.100392. DOI
Garreffi B.P., Guo M., Tokranova N., Cady N.C., Castracane J., Levitsky I.A. Highly sensitive and selective fluorescence sensor based on nanoporous silicon-quinoline composite for trace detection of hydrogen peroxide vapors. Sens. Actuators B Chem. 2018;276:466–471. doi: 10.1016/j.snb.2018.07.115. DOI
Aroutiounian V.M., Arakelyan V.M., Aleksanyan M.S., Shahnazaryan G., Kacer P., Picha P., Kovarik J., Pekarek J., Joost B. Thin-film SnO2 and ZnO detectors of hydrogen peroxide vapors. J. Sens. Sens. Syst. 2018;7:281–288. doi: 10.5194/jsss-7-281-2018. DOI
Aleksanyan M.S., Sayunts A.G., Zakaryan H.A., Aroutiounian V.M., Arakelyan V.M., Shakhnazaryan G.E. Influence of UV Rays on the Volt-Capacity Characteristic of SnO2:Co Sensor of Vapors of Hydrogen Peroxide. Contemp. Phys. Armen. Acad. Sci. 2020;55:151–156. doi: 10.3103/S1068337220020048. DOI
Korotcenkov G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R. Rep. 2008;61:1–39. doi: 10.1016/j.mser.2008.02.001. DOI
Wang Z., Zhu L., Sun S., Wang J., Yan W. One-Dimensional Nanomaterials in Resistive Gas Sensor: From Material Design to Application. Chemosensors. 2021;9:198. doi: 10.3390/chemosensors9080198. DOI
Manikandan V. Real environment humidity-sensing ability of Nd-doped Fe2O3 sensor. Sens. Bio-Sens. Res. 2021;33:100439. doi: 10.1016/j.sbsr.2021.100439. DOI
Vinh N.T., Dang T.V., Hang B.T., Le A.-T., Tuan N.T., Vinh L.K., Quy N.V. Effect of ferric ion [Fe3+] and [Fe2+] on SO2 adsorption ability of γ-Fe2O3 nanoparticles for mass-type gas sensors. Sens. Actuator A Phys. 2021;331:112981. doi: 10.1016/j.sna.2021.112981. DOI
Salah B., Ayesh A.I. Fabrication of H2S sensitive gas sensors formed of SnO2–Fe2O3 composite nanoparticles. Mater. Chem. Phys. 2021;266:124597. doi: 10.1016/j.matchemphys.2021.124597. DOI
Sun P., Wang W., Liu Y., Sun Y., Ma J., Lu G. Hydrothermal synthesis of 3D urchinlike α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B Chem. 2012;173:52–57. doi: 10.1016/j.snb.2012.05.057. DOI
Wang X., Li Q., Zhou C., Cao Z., Zhang R. ZnO rod/reduced graphene oxide sensitized by α-Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. J. Colloid Interface Sci. 2019;554:335–343. doi: 10.1016/j.jcis.2019.07.014. PubMed DOI
Aliah H., Syarif D.G., Iman R.N., Sawitri A., Darmalaksana W., Setiawan A., Malik A., Gumarang P. Structure Analysis of Nanocomposite ZnO:Fe2O3 based Mineral Yarosite as Fe2O3 Source and its Application Probability. Mater. Today Proc. 2019;13:36–40. doi: 10.1016/j.matpr.2019.03.183. DOI
Fu X., Zhang B., Liu H., Zong B., Huang L., Bala H., Zhang Z. Synthesis and improved gas sensing properties of ZnO/α-Fe2O3 microflowers assembled with nanosheets. Mater. Lett. 2017;196:149–152. doi: 10.1016/j.matlet.2017.03.036. DOI
Touba S., Kimiagar S. Enhancement of sensitivity and selectivity of α-Fe2O3 nanorod gas sensors by ZnO nanoparticles decoration. Mater. Sci. Semicond. Process. 2019;102:104603. doi: 10.1016/j.mssp.2019.104603. DOI
Fan K., Guo J., Cha L., Chen Q., Ma J. Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing. J. Alloys Compd. 2017;698:336–340. doi: 10.1016/j.jallcom.2016.12.203. DOI
Li Y., Chen L.-L., Zhao F.-X. Highly selective acetone sensor based on ternary Au/Fe2O3-ZnO synthesized via co-precipitation and microwave irradiation. Trans. Nonferrous Met. Soc. China. 2018;28:137–144. doi: 10.1016/S1003-6326(18)64646-1. DOI
Aleksanyan M.S. Magnetron Sputtering Techniques and Their Applications at Gas Sensors Manufacturing. Armen. J. Phys. 2019;12:62–67.
Trivedi H., Gaganpreet, Boochani A., Shagya N., Lahiri J., Ghorannevis Z., Parmar A.S. Investigating optical, structural and morphological properties of polycrystalline CdTe thin-film deposited by RF magnetron sputtering. Mater. Lett. X. 2021;11:100087. doi: 10.1016/j.mlblux.2021.100087. DOI
Ye X., Zhao H., Wang Z., Ran P., Xia C., Zheng Z., Huang Y., Cui X., Wang F. Deep understanding the effect of annealing temperature on fluorescence and persistent luminescence properties of Mn doped Zn2GeO4 films deposited by RF magnetron sputtering. Appl. Surf. Sci. 2021;570:151192. doi: 10.1016/j.apsusc.2021.151192. DOI
Appiagyei A.B., Banua J., Han J.I. Flexible and patterned-free Ni/NiO-based temperature device on cylindrical PET fabricated by RF magnetron sputtering: Bending and washing endurance tests. J. Ind. Eng. Chem. 2021;100:372–382. doi: 10.1016/j.jiec.2021.04.058. DOI
Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Shahnazaryan G., Aroutiounian V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors. 2022;10:245. doi: 10.3390/chemosensors10070245. DOI
Aleksanyan M.S., Sayunts A.G., Aroutiounian V.M., Shahnazaryan G.E., Shahkhatuni G.H. Study of Characteristics of the Sensor Detecting of Low Concentration of Ammonia. Contemp. Phys. Armen. Acad. Sci. 2021;56:352–358. doi: 10.3103/S1068337221040034. DOI
Kelly P.J., Arnell R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum. 2000;56:159–172. doi: 10.1016/S0042-207X(99)00189-X. DOI
Pandeeswari R., Jeyaprakash B.G. High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators B Chem. 2014;195:206–214. doi: 10.1016/j.snb.2014.01.025. DOI
Gudmundsson J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020;29:113001. doi: 10.1088/1361-6595/abb7bd. DOI
Aleksanyan M.S., Arakelyan V.M., Aroutiounian V.M., Shahnazaryan G.E. Investigation of gas sensor based on In2O3:Ga2O3 film. Contemp. Phys. Armen. Acad. Sci. 2011;46:86–92. doi: 10.3103/S1068337211020071. DOI
Sadek E.M., Mansour N.A., Ahmed S.M., Abd-El-Messieh S.L., El-Komy D. Synthesis, characterization and applications of poly (vinyl chloride) nanocomposites loaded with metal oxide nanoparticles. Polym. Bull. 2021;78:5481–5502. doi: 10.1007/s00289-020-03371-5. DOI
Mao N. Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation. Sci. Rep. 2019;9:12383. doi: 10.1038/s41598-019-48730-z. PubMed DOI PMC
Wang J., Yang S. Superior Degradation Performance of Nanoporous Copper Catalysts on Methyl Orange. Metals. 2021;11:913. doi: 10.3390/met11060913. DOI
Radhakrishnan J.K., Getika, Kumara M. Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO and CO2. Sens. Int. 2021;2:100059. doi: 10.1016/j.sintl.2020.100059. DOI
Karaduman I., Yıldız D.E., Sincar M.M., Acar S. UV light activated gas sensor for NO2 detection. Mater. Sci. Semicond. Process. 2014;28:43–47. doi: 10.1016/j.mssp.2014.04.011. DOI
Yang Y., Wu S., Cao Y., Li S., Xie T., Lin Y., Li Z. A highly efficient room-temperature formaldehyde gas sensor based on a Ni-doped ZnO hierarchical porous structure decorated with NiS illuminated by UV light. J. Alloys Compd. 2022;920:165850. doi: 10.1016/j.jallcom.2022.165850. DOI
Vahidpour F., Oberländer J., Schöning M.J. Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes. Phys. Status Solidi A. 2018;215:1800044. doi: 10.1002/pssa.201800044. DOI
Lee J.-S., Jeong D.-W., Byun Y.T. Porphyrin nanofiber/single-walled carbon nanotube nanocomposite-based sensors for monitoring hydrogen peroxide vapor. Sens. Actuators B Chem. 2020;306:127518. doi: 10.1016/j.snb.2019.127518. DOI
Lee D.-J., Choi S.-W., Byun Y.T. Room temperature monitoring of hydrogen peroxide vapor using platinum nanoparticles-decorated single-walled carbon nanotube networks. Sens. Actuators B Chem. 2018;256:744–750. doi: 10.1016/j.snb.2017.10.001. DOI
Lee D.-J., Kim S.H., Byun Y.T. Paper-based hydrogen peroxide sensors using porphyrin with central ions of Ti; Proceedings of the 2018 12th International Conference on Sensing Technology (ICST); Limerick, Ireland. 4–6 December 2018.
Chen Q., Yang L., Guo K., Yang J., Han J.-M. Expedite Fluorescent Sensor Prototype for Hydrogen Peroxide Detection with Long-Life Test Substrates. ACS Omega. 2021;6:11447–11457. doi: 10.1021/acsomega.1c00471. PubMed DOI PMC
Liu T., Wang H., Zhang M. Fabrication of a solid H2O2 vapor sensor using Cu(II) chelating chitosan as catalyst and PVA/NaNO2 as electrolyte. J. Mater. Sci. Mater. Electron. 2020;31:12561–12569. doi: 10.1007/s10854-020-03806-9. DOI
Sun Q., Wu Z., Duan H., Jia D. Detection of Triacetone Triperoxide (TATP) Precursors with an Array of Sensors Based on MoS2/RGO Composites. Sensors. 2019;19:1281. doi: 10.3390/s19061281. PubMed DOI PMC
Goicoechea J., Rivero P.J., Sada S., Arregui F.J. Self-Referenced Optical Fiber Sensor for Hydrogen Peroxide Detection Based on LSPR of Metallic Nanoparticles in Layer-by-Layer Films. Sensors. 2019;19:3872. doi: 10.3390/s19183872. PubMed DOI PMC
Singh P., Shukla S.K. A structurally aligned nickel oxide encapsulated polypyrrole nanocomposite for hydrogen peroxide sensing. J. Chem. Soc. Dalton Trans. 2020;49:8744–8754. doi: 10.1039/D0DT01847C. PubMed DOI
Reisert S., Schneider B., Geissler H., Gompel M., Wagner P., Schöning M.J. Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range. Phys. Status Solidi A. 2013;210:898–904. doi: 10.1002/pssa.201200930. DOI
Aghamalyan M.A., Hunanyan A.A., Aroutiounian V.M., Aleksanyan M.S., Sayunts A.G., Zakaryan H.A. First-Principles Study of the Interaction of H2O2 with the SnO2 (110) Surface. Contemp. Phys. Armen. Acad. Sci. 2020;55:235–239. doi: 10.3103/S1068337220030020. DOI
Xie J., Zhou Z., Lian Y., Hao Y., Li P., Wei Y. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram. Int. 2015;41:2622–2625. doi: 10.1016/j.ceramint.2014.10.043. DOI
Wang J., Shen H., Xia Y., Komarneni S. Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceram. Int. 2021;47:7353–7368. doi: 10.1016/j.ceramint.2020.11.187. DOI
Espid E., Taghipour F. UV-LED Photo-activated Chemical Gas Sensors: A Review. Crit. Rev. Solid State Mater. Sci. 2016;42:416–432. doi: 10.1080/10408436.2016.1226161. DOI
Ji H., Zeng W., Li Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale. 2019;11:22664. doi: 10.1039/C9NR07699A. PubMed DOI