Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins

. 2022 Dec 26 ; 13 (1) : . [epub] 20221226

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36616029

Grantová podpora
№ 21SCG-2J001 Science Committee of RA

In this report, a Fe2O3:ZnO sputtering target and a nanograins-based sensor were developed for the room temperature (RT) detection of hydrogen peroxide vapor (HPV) using the solid-state reaction method and the radio frequency (RF) magnetron sputtering technique, respectively. The characterization of the synthesized sputtering target and the obtained nanostructured film was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and energy-dispersive X-ray (EDX) analyses. The SEM and TEM images of the film revealed its homogeneous granular structure, with a grain size of 10-30 nm and an interplanar spacing of Fe2O3 and ZnO, respectively. EDX spectroscopy presented the real concentrations of Zn in the target material and in the film (21.2 wt.% and 19.4 wt.%, respectively), with a uniform distribution of O, Al, Zn, and Fe elements in the e-mapped images of the Fe2O3:ZnO film. The gas sensing behavior was investigated in the temperature range of 25-250 °C with regards to the 1.5-56 ppm HPV concentrations, with and without ultraviolet (UV) irradiation. The presence of UV light on the Fe2O3:ZnO surface at RT reduced a low detection limit from 3 ppm to 1.5 ppm, which corresponded to a response value of 12, with the sensor's response and recovery times of 91 s and 482 s, respectively. The obtained promising results are attributed to the improved characteristics of the Fe2O3:ZnO composite material, which will enable its use in multifunctional sensor systems and medical diagnostic devices.

Zobrazit více v PubMed

Bentley K., Dove B.K., Parks S.R., Walker J.T., Bennett A.M. Hydrogen peroxide vapour decontamination of surfaces artificially contaminated with norovirus surrogate feline calicivirus. J. Hosp. Infect. 2012;80:116–121. doi: 10.1016/j.jhin.2011.10.010. PubMed DOI

Bohlooli F., Yamatogi A., Mori S. Manganese oxides/carbon nanowall nanocomposite electrode as an efficient non-enzymatic electrochemical sensor for hydrogen peroxide. Sens. Bio-Sens. Res. 2021;31:100392. doi: 10.1016/j.sbsr.2020.100392. DOI

Garreffi B.P., Guo M., Tokranova N., Cady N.C., Castracane J., Levitsky I.A. Highly sensitive and selective fluorescence sensor based on nanoporous silicon-quinoline composite for trace detection of hydrogen peroxide vapors. Sens. Actuators B Chem. 2018;276:466–471. doi: 10.1016/j.snb.2018.07.115. DOI

Aroutiounian V.M., Arakelyan V.M., Aleksanyan M.S., Shahnazaryan G., Kacer P., Picha P., Kovarik J., Pekarek J., Joost B. Thin-film SnO2 and ZnO detectors of hydrogen peroxide vapors. J. Sens. Sens. Syst. 2018;7:281–288. doi: 10.5194/jsss-7-281-2018. DOI

Aleksanyan M.S., Sayunts A.G., Zakaryan H.A., Aroutiounian V.M., Arakelyan V.M., Shakhnazaryan G.E. Influence of UV Rays on the Volt-Capacity Characteristic of SnO2:Co Sensor of Vapors of Hydrogen Peroxide. Contemp. Phys. Armen. Acad. Sci. 2020;55:151–156. doi: 10.3103/S1068337220020048. DOI

Korotcenkov G. The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors. Mater. Sci. Eng. R. Rep. 2008;61:1–39. doi: 10.1016/j.mser.2008.02.001. DOI

Wang Z., Zhu L., Sun S., Wang J., Yan W. One-Dimensional Nanomaterials in Resistive Gas Sensor: From Material Design to Application. Chemosensors. 2021;9:198. doi: 10.3390/chemosensors9080198. DOI

Manikandan V. Real environment humidity-sensing ability of Nd-doped Fe2O3 sensor. Sens. Bio-Sens. Res. 2021;33:100439. doi: 10.1016/j.sbsr.2021.100439. DOI

Vinh N.T., Dang T.V., Hang B.T., Le A.-T., Tuan N.T., Vinh L.K., Quy N.V. Effect of ferric ion [Fe3+] and [Fe2+] on SO2 adsorption ability of γ-Fe2O3 nanoparticles for mass-type gas sensors. Sens. Actuator A Phys. 2021;331:112981. doi: 10.1016/j.sna.2021.112981. DOI

Salah B., Ayesh A.I. Fabrication of H2S sensitive gas sensors formed of SnO2–Fe2O3 composite nanoparticles. Mater. Chem. Phys. 2021;266:124597. doi: 10.1016/j.matchemphys.2021.124597. DOI

Sun P., Wang W., Liu Y., Sun Y., Ma J., Lu G. Hydrothermal synthesis of 3D urchinlike α-Fe2O3 nanostructure for gas sensor. Sens. Actuators B Chem. 2012;173:52–57. doi: 10.1016/j.snb.2012.05.057. DOI

Wang X., Li Q., Zhou C., Cao Z., Zhang R. ZnO rod/reduced graphene oxide sensitized by α-Fe2O3 nanoparticles for effective visible-light photoreduction of CO2. J. Colloid Interface Sci. 2019;554:335–343. doi: 10.1016/j.jcis.2019.07.014. PubMed DOI

Aliah H., Syarif D.G., Iman R.N., Sawitri A., Darmalaksana W., Setiawan A., Malik A., Gumarang P. Structure Analysis of Nanocomposite ZnO:Fe2O3 based Mineral Yarosite as Fe2O3 Source and its Application Probability. Mater. Today Proc. 2019;13:36–40. doi: 10.1016/j.matpr.2019.03.183. DOI

Fu X., Zhang B., Liu H., Zong B., Huang L., Bala H., Zhang Z. Synthesis and improved gas sensing properties of ZnO/α-Fe2O3 microflowers assembled with nanosheets. Mater. Lett. 2017;196:149–152. doi: 10.1016/j.matlet.2017.03.036. DOI

Touba S., Kimiagar S. Enhancement of sensitivity and selectivity of α-Fe2O3 nanorod gas sensors by ZnO nanoparticles decoration. Mater. Sci. Semicond. Process. 2019;102:104603. doi: 10.1016/j.mssp.2019.104603. DOI

Fan K., Guo J., Cha L., Chen Q., Ma J. Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing. J. Alloys Compd. 2017;698:336–340. doi: 10.1016/j.jallcom.2016.12.203. DOI

Li Y., Chen L.-L., Zhao F.-X. Highly selective acetone sensor based on ternary Au/Fe2O3-ZnO synthesized via co-precipitation and microwave irradiation. Trans. Nonferrous Met. Soc. China. 2018;28:137–144. doi: 10.1016/S1003-6326(18)64646-1. DOI

Aleksanyan M.S. Magnetron Sputtering Techniques and Their Applications at Gas Sensors Manufacturing. Armen. J. Phys. 2019;12:62–67.

Trivedi H., Gaganpreet, Boochani A., Shagya N., Lahiri J., Ghorannevis Z., Parmar A.S. Investigating optical, structural and morphological properties of polycrystalline CdTe thin-film deposited by RF magnetron sputtering. Mater. Lett. X. 2021;11:100087. doi: 10.1016/j.mlblux.2021.100087. DOI

Ye X., Zhao H., Wang Z., Ran P., Xia C., Zheng Z., Huang Y., Cui X., Wang F. Deep understanding the effect of annealing temperature on fluorescence and persistent luminescence properties of Mn doped Zn2GeO4 films deposited by RF magnetron sputtering. Appl. Surf. Sci. 2021;570:151192. doi: 10.1016/j.apsusc.2021.151192. DOI

Appiagyei A.B., Banua J., Han J.I. Flexible and patterned-free Ni/NiO-based temperature device on cylindrical PET fabricated by RF magnetron sputtering: Bending and washing endurance tests. J. Ind. Eng. Chem. 2021;100:372–382. doi: 10.1016/j.jiec.2021.04.058. DOI

Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Shahnazaryan G., Aroutiounian V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors. 2022;10:245. doi: 10.3390/chemosensors10070245. DOI

Aleksanyan M.S., Sayunts A.G., Aroutiounian V.M., Shahnazaryan G.E., Shahkhatuni G.H. Study of Characteristics of the Sensor Detecting of Low Concentration of Ammonia. Contemp. Phys. Armen. Acad. Sci. 2021;56:352–358. doi: 10.3103/S1068337221040034. DOI

Kelly P.J., Arnell R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum. 2000;56:159–172. doi: 10.1016/S0042-207X(99)00189-X. DOI

Pandeeswari R., Jeyaprakash B.G. High sensing response of β-Ga2O3 thin film towards ammonia vapours: Influencing factors at room temperature. Sens. Actuators B Chem. 2014;195:206–214. doi: 10.1016/j.snb.2014.01.025. DOI

Gudmundsson J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020;29:113001. doi: 10.1088/1361-6595/abb7bd. DOI

Aleksanyan M.S., Arakelyan V.M., Aroutiounian V.M., Shahnazaryan G.E. Investigation of gas sensor based on In2O3:Ga2O3 film. Contemp. Phys. Armen. Acad. Sci. 2011;46:86–92. doi: 10.3103/S1068337211020071. DOI

Sadek E.M., Mansour N.A., Ahmed S.M., Abd-El-Messieh S.L., El-Komy D. Synthesis, characterization and applications of poly (vinyl chloride) nanocomposites loaded with metal oxide nanoparticles. Polym. Bull. 2021;78:5481–5502. doi: 10.1007/s00289-020-03371-5. DOI

Mao N. Investigating the Heteronjunction between ZnO/Fe2O3 and g-C3N4 for an Enhanced Photocatalytic H2 production under visible-light irradiation. Sci. Rep. 2019;9:12383. doi: 10.1038/s41598-019-48730-z. PubMed DOI PMC

Wang J., Yang S. Superior Degradation Performance of Nanoporous Copper Catalysts on Methyl Orange. Metals. 2021;11:913. doi: 10.3390/met11060913. DOI

Radhakrishnan J.K., Getika, Kumara M. Effect of temperature modulation, on the gas sensing characteristics of ZnO nanostructures, for gases O2, CO and CO2. Sens. Int. 2021;2:100059. doi: 10.1016/j.sintl.2020.100059. DOI

Karaduman I., Yıldız D.E., Sincar M.M., Acar S. UV light activated gas sensor for NO2 detection. Mater. Sci. Semicond. Process. 2014;28:43–47. doi: 10.1016/j.mssp.2014.04.011. DOI

Yang Y., Wu S., Cao Y., Li S., Xie T., Lin Y., Li Z. A highly efficient room-temperature formaldehyde gas sensor based on a Ni-doped ZnO hierarchical porous structure decorated with NiS illuminated by UV light. J. Alloys Compd. 2022;920:165850. doi: 10.1016/j.jallcom.2022.165850. DOI

Vahidpour F., Oberländer J., Schöning M.J. Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes. Phys. Status Solidi A. 2018;215:1800044. doi: 10.1002/pssa.201800044. DOI

Lee J.-S., Jeong D.-W., Byun Y.T. Porphyrin nanofiber/single-walled carbon nanotube nanocomposite-based sensors for monitoring hydrogen peroxide vapor. Sens. Actuators B Chem. 2020;306:127518. doi: 10.1016/j.snb.2019.127518. DOI

Lee D.-J., Choi S.-W., Byun Y.T. Room temperature monitoring of hydrogen peroxide vapor using platinum nanoparticles-decorated single-walled carbon nanotube networks. Sens. Actuators B Chem. 2018;256:744–750. doi: 10.1016/j.snb.2017.10.001. DOI

Lee D.-J., Kim S.H., Byun Y.T. Paper-based hydrogen peroxide sensors using porphyrin with central ions of Ti; Proceedings of the 2018 12th International Conference on Sensing Technology (ICST); Limerick, Ireland. 4–6 December 2018.

Chen Q., Yang L., Guo K., Yang J., Han J.-M. Expedite Fluorescent Sensor Prototype for Hydrogen Peroxide Detection with Long-Life Test Substrates. ACS Omega. 2021;6:11447–11457. doi: 10.1021/acsomega.1c00471. PubMed DOI PMC

Liu T., Wang H., Zhang M. Fabrication of a solid H2O2 vapor sensor using Cu(II) chelating chitosan as catalyst and PVA/NaNO2 as electrolyte. J. Mater. Sci. Mater. Electron. 2020;31:12561–12569. doi: 10.1007/s10854-020-03806-9. DOI

Sun Q., Wu Z., Duan H., Jia D. Detection of Triacetone Triperoxide (TATP) Precursors with an Array of Sensors Based on MoS2/RGO Composites. Sensors. 2019;19:1281. doi: 10.3390/s19061281. PubMed DOI PMC

Goicoechea J., Rivero P.J., Sada S., Arregui F.J. Self-Referenced Optical Fiber Sensor for Hydrogen Peroxide Detection Based on LSPR of Metallic Nanoparticles in Layer-by-Layer Films. Sensors. 2019;19:3872. doi: 10.3390/s19183872. PubMed DOI PMC

Singh P., Shukla S.K. A structurally aligned nickel oxide encapsulated polypyrrole nanocomposite for hydrogen peroxide sensing. J. Chem. Soc. Dalton Trans. 2020;49:8744–8754. doi: 10.1039/D0DT01847C. PubMed DOI

Reisert S., Schneider B., Geissler H., Gompel M., Wagner P., Schöning M.J. Multi-sensor chip for the investigation of different types of metal oxides for the detection of H2O2 in the ppm range. Phys. Status Solidi A. 2013;210:898–904. doi: 10.1002/pssa.201200930. DOI

Aghamalyan M.A., Hunanyan A.A., Aroutiounian V.M., Aleksanyan M.S., Sayunts A.G., Zakaryan H.A. First-Principles Study of the Interaction of H2O2 with the SnO2 (110) Surface. Contemp. Phys. Armen. Acad. Sci. 2020;55:235–239. doi: 10.3103/S1068337220030020. DOI

Xie J., Zhou Z., Lian Y., Hao Y., Li P., Wei Y. Synthesis of α-Fe2O3/ZnO composites for photocatalytic degradation of pentachlorophenol under UV–vis light irradiation. Ceram. Int. 2015;41:2622–2625. doi: 10.1016/j.ceramint.2014.10.043. DOI

Wang J., Shen H., Xia Y., Komarneni S. Light-activated room-temperature gas sensors based on metal oxide nanostructures: A review on recent advances. Ceram. Int. 2021;47:7353–7368. doi: 10.1016/j.ceramint.2020.11.187. DOI

Espid E., Taghipour F. UV-LED Photo-activated Chemical Gas Sensors: A Review. Crit. Rev. Solid State Mater. Sci. 2016;42:416–432. doi: 10.1080/10408436.2016.1226161. DOI

Ji H., Zeng W., Li Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale. 2019;11:22664. doi: 10.1039/C9NR07699A. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...