Influence of the Growth Parameters on RF-Sputtered CNTs and Their Temperature-Selective Application in Gas Sensors

. 2025 Aug 12 ; 10 (31) : 34733-34746. [epub] 20250804

Status In-Process Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40821564

This work deals with the peculiarities of the growth of carbon nanotubes (CNTs) by radiofrequency (RF) magnetron sputtering and with the effect of deposition parameters on the RF sputtering. In the deposition process, a type of plasma gas, power of the RF generator, deposition time of catalysts, and a type of catalyst metals were modified to reveal the impact of these changes on the CNT's growth. The obtained nanostructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as energy-dispersive X-ray (EDX) and Raman spectroscopies. The best results were obtained when the deposition conditions were as follows: argon-assisted plasma, generator power 120 W, catalyst sputtering duration 20 s, and nickel serving as a catalyst. A flexible propylene glycol vapor (PGV) and hydrogen peroxide vapor (HPV) sensors based on RF-sputtered CNTs combined with the Fe2O3:ZnO material were fabricated, and its DC and AC gas-sensing properties were studied. Impedance spectroscopy was used to evaluate an equivalent electrical circuit of the sensor. Temperature modulation led to the effective use of the same nanostructured film for PGV and HPV detection at 150 and 50 °C, respectively. At 50 °C temperature, the sensor response ranged from 3 to 27 values in the HPV concentrations of 0.5-25 ppm, respectively, demonstrating short response/recovery times, high response repeatability, and temporal stability.

Zobrazit více v PubMed

Chen J., Wei S., Xie H.. A Brief Introduction of Carbon Nanotubes: History, Synthesis, and Properties. J. Phys.: Conf. Ser. 2021;1948:012184. doi: 10.1088/1742-6596/1948/1/012184. DOI

Iijima S., Ichihashi T.. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605. doi: 10.1038/363603a0. DOI

Iijima S.. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0. DOI

Yahyazadeh A., Nanda S., Dalai A. K.. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions. 2024;5(3):429–451. doi: 10.3390/reactions5030022. DOI

Jia, X. ; Wei, F. . Advances in Production and Applications of Carbon Nanotubes. In Single-Walled Carbon Nanotubes, 1st ed.; Springer: Cham, 2019; pp 269–305. PubMed

Dolafi Rezaee M., Dahal B., Watt J., Abrar M., Hodges D. R., Li W.. Structural, Electrical, and Optical Properties of Single-Walled Carbon Nanotubes Synthesized through Floating Catalyst Chemical Vapor Deposition. Nanomaterials. 2024;14(11):965. doi: 10.3390/nano14110965. PubMed DOI PMC

Han T., Nag A., Mukhopadhyay S. C., Xu Y.. Carbon Nanotubes and Its Gas-Sensing Applications: A Review. Sens. Actuators, A. 2019;291:107–143. doi: 10.1016/j.sna.2019.03.053. DOI

Cho T. H., Su W. S., Leung T. C., Ren W., Chan C. T.. Electronic and Optical Properties of Single-Walled Carbon Nanotubes under a Uniform Transverse Electric Field: A First-Principles Study. Phys. Rev. B. 2009;79:235123. doi: 10.1103/PhysRevB.79.235123. DOI

Singh Y. T., Patra P. K., Hieu N. N., Rai D. P.. Study of Electronic and Mechanical Properties of Single Walled Carbon Nanotube (SWCNT) via Substitutional Boron Doping in Zigzag and Armchair Pattern. Surf. Interfaces. 2022;29:101815. doi: 10.1016/j.surfin.2022.101815. DOI

Maheswaran R., Shanmugavel B. P.. A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications. J. Electron. Mater. 2022;51:2786–2800. doi: 10.1007/s11664-022-09516-8. PubMed DOI PMC

Seekaew Y., Wisitsoraat A., Phokharatkul D., Wongchoosuk C.. Room Temperature Toluene Gas Sensor Based on TiO2 Nanoparticles Decorated 3D Graphene-Carbon Nanotube Nanostructures. Sens. Actuators, B. 2019;279:69–78. doi: 10.1016/j.snb.2018.09.095. DOI

Jeon J.-Y., Kang B.-C., Byun Y. T., Ha T.-J.. High-Performance Gas Sensors Based on Single-Wall Carbon Nanotube Random Networks for the Detection of Nitric Oxide down to the Ppb-Level. Nanoscale. 2019;11:1587–1594. doi: 10.1039/C8NR07393G. PubMed DOI

Hasanzadeh M., Ansari R., Hassanzades-Aghdam M. K.. Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 2019;129:63–79. doi: 10.1016/j.mechmat.2018.11.003. DOI

Allaoui A., Bai S., Cheng H. M., Bai J. B.. Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 2002;62(15):1993–1998. doi: 10.1016/S0266-3538(02)00129-X. DOI

Anzar N., Hasan R., Tyagi M., Yadav N., Narang J.. Carbon Nanotube – A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sens. Int. 2020;1:100003. doi: 10.1016/j.sintl.2020.100003. DOI

Rahman G., Najaf Z., Mehmood A., Bilal S., Shah A. H. A., Mian S. A., Ali G.. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C. 2019;5(1):3. doi: 10.3390/c5010003. DOI

See C. H., Harris A. T.. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 2007;46(4):997–1012. doi: 10.1021/ie060955b. DOI

Chrzanowska J., Hoffman J., Małolepszy A., Mazurkiewicz M., Kowalewski T. A., Szymanski Z., Stobinski L.. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi B. 2015;252(8):1860–1867. doi: 10.1002/pssb.201451614. DOI

Chen C.-M., Dai Y.-M., Huang J. G., Jehng J.-M.. Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon. 2006;44(9):1808–1820. doi: 10.1016/j.carbon.2005.12.043. DOI

Brukh R., Mitra S.. Mechanism of carbon nanotube growth by CVD. Chem. Phys. Lett. 2006;424(1–3):126–132. doi: 10.1016/j.cplett.2006.04.028. DOI

Gakis G. P., Termine S., Trompeta A.-F. A., Aviziotis I. G., Charitidis C. A.. Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chem. Eng. J. 2022;445:136807. doi: 10.1016/j.cej.2022.136807. DOI

Hayashi N., Honda S.-i., Tsuji K., Lee K.-Y., Ikuno T., Fujimoto K., Ohkura S., Katayama M., Oura K., Hirao T.. Highly aligned carbon nanotube arrays fabricated by bias sputtering. Appl. Surf. Sci. 2003;212–213:393–396. doi: 10.1016/S0169-4332(03)00121-1. DOI

Lee K.-Y., Ikuno T., Tsuji K., Ohkura S., Honda S.-i., Katayama M., Oura K., Hirao T.. Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering. J. Vac. Sci. Technol. B. 2003;21:1437–1441. doi: 10.1116/1.1593638. DOI

Scalese S., Scuderi V., Simone F., Pennisi A., Compagnini G., Privitera V.. Growth of aligned CNx nanocolumns on silicon by RF-magnetron sputtering. Carbon. 2006;44:3123–3126. doi: 10.1016/j.carbon.2006.07.022. DOI

Sério S.. Advanced Nanostructured Coatings Deposited by Magnetron Sputtering: Innovations, Applications, and Future Prospects. Coatings. 2024;14(8):1041. doi: 10.3390/coatings14081041. DOI

Scalese S., Scuderi V., Simone F., Pennisi A., Privitera V.. Ex situ and in situ catalyst deposition for CNT synthesis by RF-magnetron sputtering. Phys. E. 2008;40(7):2243–2246. doi: 10.1016/j.physe.2007.09.153. DOI

Scalese S., Scuderi V., Simone F., Pennisi A., Compagnini G., Bongiorno C., Privitera V.. Carbon aligned nanocolumns by RF-Magnetron sputtering: The influence of the growth parameters. Phys. E. 2007;37(1–2):231–235. doi: 10.1016/j.physe.2006.06.009. DOI

Agoons D. D., Agoons B. B., Emmanuel K. E., Matawalle F. A., Cunningham J. M.. Association between electronic cigarette use and fragility fractures among US adults. Am. J. Med. Open. 2021;1–6:100002. doi: 10.1016/j.ajmo.2021.100002. PubMed DOI PMC

Okolie J. A.. Insights on production mechanism and industrial applications of renewable propylene glycol. iScience. 2022;25(9):104903. doi: 10.1016/j.isci.2022.104903. PubMed DOI PMC

Jackson G., Roberts R. T., Wainwright T.. Mechanism of beer foam stabilization by propylene glycol alginate. J. Inst. Brew. 1980;86(1):34–37. doi: 10.1002/j.2050-0416.1980.tb03953.x. DOI

Giaretta J. E., Duan H., Oveissi F., Farajikhah S., Dehghani F., Naficy S.. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS Appl. Mater. Interfaces. 2022;14(18):20491–20505. doi: 10.1021/acsami.1c24727. PubMed DOI PMC

Totaro M., Casini B., Profeti S., Tuvo B., Priitera G., Baggiani A.. Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens. 2020;9(5):408. doi: 10.3390/pathogens9050408. PubMed DOI PMC

Schleiss M. B., Holz O., Behnke M., Richter K., Magnussen H., Jörres R. A.. The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. Eur. Respir. J. 2000;16(6):1115–1118. doi: 10.1034/j.1399-3003.2000.16f16.x. PubMed DOI

Young S.-J., Chu Y.-L.. Hydrothermal Synthesis and Improved CH3OH-Sensing Performance of ZnO Nanorods with Adsorbed Au NPs. IEEE Trans. Electron Devices. 2021;68(4):1886–1891. doi: 10.1109/TED.2021.3060354. DOI

Young S.-J., Chu Y.-L.. Platinum Nanoparticle-Decorated ZnO Nanorods Improved the Performance of Methanol Gas Sensor. J. Electrochem. Soc. 2020;167(14):147508. doi: 10.1149/1945-7111/abc4be. DOI

Chu Y.-L., Young S.-J., Ji L.-W., Chu T.-T., Lam K.-T., Hsiao Y.-J., Tang I.-T., Kuo T.-H.. Characteristics of Gas Sensors Based on Co-Doped ZnO Nanorod Arrays. J. Electrochem. Soc. 2020;167:117503. doi: 10.1149/1945-7111/aba00d. DOI

Tsai Y.-T., Chang S.-J., Ji L.-W., Hsiao Y.-J., Tang I.-T., Lu H.-Y., Chu Y.-L.. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega. 2018;3(10):13798–13807. doi: 10.1021/acsomega.8b01882. PubMed DOI PMC

Chu Y.-L., Young S.-J., Huang Y.-R., Arya S., Chu T.-T.. Highly Sensitive Ethanol Gas Sensors of Au Nanoparticle-Adsorbed ZnO Nanorod Arrays via a Photochemical Deposition Treatment. ACS Appl. Electron. Mater. 2025;7(6):2327–2338. doi: 10.1021/acsaelm.4c02091. DOI

Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kasparyan H., Kopecký D.. Growth, characterization, and application of vertically aligned carbon nanotubes using the RF-magnetron sputtering method. ACS Omega. 2023;8(23):20949–20958. doi: 10.1021/acsomega.3c01705. PubMed DOI PMC

Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Aroutiounian V., Khachatryan E.. Detection of hydrogen peroxide vapor using flexible gas sensor based on SnO2 nanoparticles decorated with multi-walled carbon nanotubes. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2023;14:025001. doi: 10.1088/2043-6262/accc7d. DOI

Luo K., Peng H., Zhang B., Chen L., Zhang P., Peng Z., Fu X.. Advances in carbon nanotube-based gas sensors: Exploring the path to the future. Coord. Chem. Rev. 2024;518:216049. doi: 10.1016/j.ccr.2024.216049. DOI

Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kananov D., Michalcová A., Koláčný L., Kopecký D.. Flexible gas sensor based on the RF-grown Fe2O3:ZnO/CNTs material for propylene glycol vapor detection. ACS Appl. Electron. Mater. 2024;6(9):6893–6904. doi: 10.1021/acsaelm.4c01269. DOI

Kukovitsky E. F., L’vov S. G., Sainov N. A.. VLS-growth of carbon nanotubes from the vapor. Chem. Phys. Lett. 2000;317(1–2):65–70. doi: 10.1016/S0009-2614(99)01299-3. DOI

Davoudzadeh, N. PECVD, NASA/TM-2017-219455; University of Illinois, Urbana-Champaign: Urbana, United States, 2015. https://www.researchgate.net/publication/274376265_PECVD.

Liu Q., Shi X., Jiang Q., Li R., Zhong S., Zhang R.. Growth mechanism and kinetics of vertically aligned carbon nanotube arrays. EcoMat. 2021;3(4):e12118. doi: 10.1002/eom2.12118. DOI

Murawala A. P., Loh T. A. J., Chua D. H. C.. Synthesis of MoS2 Nano-Petal Forest Supported on Carbon Nanotubes for Enhanced Field Emission Performance. J. Appl. Phys. 2014;116:114305. doi: 10.1063/1.4895834. DOI

Pan Z. W., Dai Z. R., Wang Z. L.. Nanobelts of Semiconducting Oxides. Science. 2001;291(5510):1947–1949. doi: 10.1126/science.1058120. PubMed DOI

Yan B., Zheng Z., Zhang J., Gong H., Shen Z., Huang W., Yu T.. Orientation Controllable Growth of MoO3 Nanoflakes: Micro-Raman, Field Emission, and Birefringence Properties. J. Phys. Chem. C. 2009;113(47):20259–20263. doi: 10.1021/jp907602w. DOI

Abdisaidov I. J., Gulomjanova S. G., Khudaykulov I. K., Ashurov K. B.. The low-temperature growth of carbon nanotubes using nickel catalyst. East Eur. J. Phys. 2024;(3):355–358. doi: 10.26565/2312-4334-2024-3-41. DOI

Raji, K. ; Sobhan, C. B. . Growth Mechanisms in Carbon Nanotube Formation. In Handbook of Carbon Nanotubes, 1st ed.; Springer: Cham, 2022; pp 557–586.

Li J., Croiset E., Ricardez-Sandoval L.. Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study. Appl. Surf. Sci. 2014;317:923–928. doi: 10.1016/j.apsusc.2014.09.008. DOI

Atthipalli G., Epur R., Kumta P. N., Yang M., Lee J.-K., Gray J. L.. Nickel catalyst-assisted vertical growth of dense carbon nanotube forests on bulk copper. J. Phys. Chem. C. 2011;115(9):3534–3538. doi: 10.1021/jp108624n. DOI

Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S.. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312–1314. doi: 10.1126/science.1171245. PubMed DOI

Matthews K. D., Lemaitre M. G., Kim T., Chen H., Shim M., Zuo J.-M.. Growth modes of carbon nanotubes on metal substrates. J. Appl. Phys. 2006;100:044309. doi: 10.1063/1.2219000. DOI

Homma Y., Kobayashi Y., Ogino T., Takagi D., Ito R., Jung Y. J., Ajayan P. M.. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B. 2003;107(44):12161–12164. doi: 10.1021/jp0353845. DOI

Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kananov D., Khachaturyan E., Kopecký D.. Acetone vapors detection using a MWCNTs/SnO2 nanocomposite material. ACS Appl. Electron. Mater. 2024;6(6):4090–4098. doi: 10.1021/acsaelm.4c00167. DOI

Shahnazaryan G. E., Shahkhatuni G. A., Aleksanyan M. S., Simonyan Z. G., Aroutiounian V. M., Sayunts A. G.. Investigations of the impedance characteristics of a nanostructured ZnO⟨La⟩ sensor for hydrogen peroxide vapors. J. Contemp. Phys. (Arm. Acad. Sci.) 2022;57:254–262. doi: 10.1134/S106833722203015X. DOI

Azira A. A., Suriani A. B., Rusop M.. Carbon Nanotubes Formation from Fe/Ni/Mg by Camphor Oil Decomposition. J. Ceram. Soc. Jpn. 2011;119(1386):125–128. doi: 10.2109/jcersj2.119.125. DOI

Ivanova M. V., Lamprecht C., Loureiro M. J., Huzil J. T., Foldvari M.. Pharmaceutical Characterization of Solid and Dispersed Carbon Nanotubes as Nanoexcipients. Int. J. Nanomed. 2012;7:403–415. doi: 10.2147/IJN.S27442. PubMed DOI PMC

Hellgren N., Johansson M. P., Broitman E., Hultman L., Sundgren J.-E.. Role of Nitrogen in the Formation of Hard and Elastic CNx Thin Films by Reactive Magnetron Sputtering. Phys. Rev. B. 1999;59:5162. doi: 10.1103/PhysRevB.59.5162. DOI

Sjöström H., Stafström S., Boman M., Sundgren J.-E.. Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure. Phys. Rev. Lett. 1995;75:1336. doi: 10.1103/PhysRevLett.75.1336. PubMed DOI

Lin N., Hellgren N., Johansson M. P., Hultman L., Erlandsson R., Sundgren J.-E.. In Situ Scanning Tunneling Microscopic and Spectroscopic Investigation of Magnetron-Sputtered C and CN Thin Films. Phys. Rev. B. 2000;61:4898. doi: 10.1103/PhysRevB.61.4898. DOI

Nasim M. N. E. A. A., Chun D.-M.. Substrate-dependent deposition behavior of graphite particles dry-sprayed at room temperature using a nano-particle deposition system. Surf. Coat. Technol. 2017;309:172–178. doi: 10.1016/j.surfcoat.2016.11.062. DOI

Emmerlich J., Mráz S., Snyders R., Jiang K., Schneider J. M.. The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering. Vacuum. 2008;82(8):867–870. doi: 10.1016/j.vacuum.2007.10.011. DOI

Aleksanyan M. S., Arakelyan V. M., Aroutiounian V. M., Shahnazaryan G. E.. Investigation of gas sensor based on In2O3:Ga2O3 film. J. Contemp. Phys. (Arm. Acad. Sci.) 2011;46:86–92. doi: 10.3103/S1068337211020071. DOI

Baig N., Kammakakam I., Falath W.. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI

Zhang M., Li J.. Carbon nanotube in different shapes. Mater. Today. 2009;12(6):12–18. doi: 10.1016/S1369-7021(09)70176-2. DOI

Mierczynski P., Dubkov S., Vasilev K., Maniecki T., Kitsyuk E., Yeritsyan G., Szynkowska M. I., Trifonov A., Gavrilov S., Gromov D.. Unidirectional and bi-directional growth of carbon nanotubes on the catalytic Co–Zr–N-(O) material. J. Mater. Res. Technol. 2021;12:512–520. doi: 10.1016/j.jmrt.2021.03.015. DOI

Kumar, M. Carbon Nanotube Synthesis and Growth Mechanism. In Carbon Nanotubes - Synthesis, Characterization, Applications, 1st ed.; IntechOpen, 2011.

Dubrovskii V. G.. Theory of VLS Growth of Compound Semiconductors. Semicond. Semimetals. 2015;93:1–78. doi: 10.1016/bs.semsem.2015.09.002. DOI

Kukovitsky E. F., L’vov S. G., Sainov N. A., Shustov V. A., Chernozatonskii L. A.. Correlation between metal catalyst particle size and carbon nanotube growth. Chem. Phys. Lett. 2002;355(5–6):497–503. doi: 10.1016/S0009-2614(02)00283-X. DOI

Jourdain V., Bichara C.. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon. 2013;58:2–39. doi: 10.1016/j.carbon.2013.02.046. DOI

Rümmeli M. H., Bachmatiuk A., Börrnert F., Schäffel F., Ibrahim I., Cendrowski K., Simha-Martynkova G., Plachá D., Borowiak-Palen E., Cuniberti G., Büchner B.. Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res. Lett. 2011;6:303. doi: 10.1186/1556-276X-6-303. PubMed DOI PMC

Kharissova O. V., Kharisov B. I.. Variations of interlayer spacing in carbon nanotubes. RSC Adv. 2014;4(58):30807–30815. doi: 10.1039/C4RA04201H. DOI

Procek M., Stolarczyk A., Pustelny T.. Impact of Temperature and UV Irradiation on Dynamics of NO2 Sensors Based on ZnO Nanostructures. Nanomaterials. 2017;7(10):312. doi: 10.3390/nano7100312. PubMed DOI PMC

Barsoukov, E. ; Macdonald, J. R. . Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Wiley, 2005.

Schipani F., Miller D. R., Ponce M. A., Aldao C. M., Akbar S. A., Morris P. A.. Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review. Rev. Adv. Sci. Eng. 2016;5:86–105. doi: 10.1166/rase.2016.1109. DOI

Shahkhatuni G. H., Aroutiounian V. M., Arakelyan V. M., Aleksanyan M. S., Shahnazaryan G. E.. Investigation of Sensor Made of ZnO:La for Detection of Hydrogen Peroxide Vapours by Impedance Spectroscopy Method. J. Contemp. Phys. (Arm. Acad. Sci.) 2019;54:188–195. doi: 10.3103/S1068337219020117. DOI

Najafi P., Ghaemi A.. Chemiresistor gas sensors: Design, Challenges, and Strategies: A comprehensive review. Chem. Eng. J. 2024;498:154999. doi: 10.1016/j.cej.2024.154999. DOI

Bulemo P. M., Kim D.-H., Shin H., Cho H.-J., Koo W.-T., Choi S.-J., Park C., Ahn J., Güntner A. T., Penner R. M., Kim I.-D.. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem. Rev. 2025;125(8):4111–4183. doi: 10.1021/acs.chemrev.4c00592. PubMed DOI PMC

Deng Q., Gao S., Lei T., Ling Y., Zhang L., Xie C.. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators, B. 2017;247:903–915. doi: 10.1016/j.snb.2017.03.107. DOI

Sun Q., Wu Z., Duan H., Jia D.. Detection of Triacetone Triperoxide (TATP) Precursors with an Array of Sensors Based on MoS2/RGO Composites. Sensors. 2019;19(6):1281. doi: 10.3390/s19061281. PubMed DOI PMC

Xie X., Gao N., Zhu L., Hunter M., Chen S., Zang L.. PEDOT:PSS/PEDOT Film Chemiresistive Sensors for Hydrogen Peroxide Vapor Detection under Ambient Conditions. Chemosensors. 2023;11(2):124. doi: 10.3390/chemosensors11020124. DOI

Lee J.-S., Jeong D.-W., Byun Y. T.. Porphyrin Nanofiber/Single-Walled Carbon Nanotube Nanocomposite-Based Sensors for Monitoring Hydrogen Peroxide Vapor. Sens. Actuators, B. 2020;306:127518. doi: 10.1016/j.snb.2019.127518. DOI

Lu Y., Meyyappan M., Li J.. Trace Detection of Hydrogen Peroxide Vapor Using a Carbon-Nanotube-Based Chemical Sensor. Small. 2011;7(12):1714–1718. doi: 10.1002/smll.201100406. PubMed DOI

Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kananov D., Kasparyan H., Kopecký D.. MWCNTs/Fe2O3:ZnO Nanocomposite Material for Chemoresistive Sensing of Hydrogen Peroxide Vapors. ACS Appl. Electron. Mater. 2024;6(2):940–949. doi: 10.1021/acsaelm.3c01440. DOI

Lee D.-J., Choi S.-W., Byun Y. T.. Room Temperature Monitoring of Hydrogen Peroxide Vapor Using Platinum Nanoparticles-Decorated Single-Walled Carbon Nanotube Networks. Sens. Actuators, B. 2018;256:744–750. doi: 10.1016/j.snb.2017.10.001. DOI

Aroutiounian V., Arakelyan V., Aleksanyan M., Shahnazaryan G., Kacer P., Picha P., Kovarik J., Pekarek J., Joost B.. Thin-Film SnO2 and ZnO Detectors of Hydrogen Peroxide Vapors. J. Sens. Sens. Syst. 2018;7:281–288. doi: 10.5194/jsss-7-281-2018. DOI

Parthasarathy S., Nandhini V., Jeyaprakash B. G.. Improved Sensing Response of Photo-Activated ZnO Thin Film for Hydrogen Peroxide Detection. J. Colloid Interface Sci. 2016;482:81–88. doi: 10.1016/j.jcis.2016.07.066. PubMed DOI

Ranjan P., Tiwary P., Chakraborty A. K., Mahapatra R., Thakur A. D.. Graphene Oxide Based Free-Standing Films for Humidity and Hydrogen Peroxide Sensing. J. Mater. Sci.: Mater. Electron. 2018;29:15946–15956. doi: 10.1007/s10854-018-9680-1. DOI

Zhai X., Wu Z., Sun Q., Sun J., Chen F., Zhang M., Duan H.. Bioinspired Bacterial Cellulose Carbon Nanofibers/AgO Composite for Sensitive and Selective Detection of H2O2 Vapor at Room Temperature. J. Electron. Mater. 2023;52:5377–5387. doi: 10.1007/s11664-023-10456-0. DOI

Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kasparyan H., Kopecký D.. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials. 2023;13(1):120. doi: 10.3390/nano13010120. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...