Influence of the Growth Parameters on RF-Sputtered CNTs and Their Temperature-Selective Application in Gas Sensors
Status In-Process Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40821564
PubMed Central
PMC12355277
DOI
10.1021/acsomega.5c03699
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This work deals with the peculiarities of the growth of carbon nanotubes (CNTs) by radiofrequency (RF) magnetron sputtering and with the effect of deposition parameters on the RF sputtering. In the deposition process, a type of plasma gas, power of the RF generator, deposition time of catalysts, and a type of catalyst metals were modified to reveal the impact of these changes on the CNT's growth. The obtained nanostructures were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) as well as energy-dispersive X-ray (EDX) and Raman spectroscopies. The best results were obtained when the deposition conditions were as follows: argon-assisted plasma, generator power 120 W, catalyst sputtering duration 20 s, and nickel serving as a catalyst. A flexible propylene glycol vapor (PGV) and hydrogen peroxide vapor (HPV) sensors based on RF-sputtered CNTs combined with the Fe2O3:ZnO material were fabricated, and its DC and AC gas-sensing properties were studied. Impedance spectroscopy was used to evaluate an equivalent electrical circuit of the sensor. Temperature modulation led to the effective use of the same nanostructured film for PGV and HPV detection at 150 and 50 °C, respectively. At 50 °C temperature, the sensor response ranged from 3 to 27 values in the HPV concentrations of 0.5-25 ppm, respectively, demonstrating short response/recovery times, high response repeatability, and temporal stability.
Zobrazit více v PubMed
Chen J., Wei S., Xie H.. A Brief Introduction of Carbon Nanotubes: History, Synthesis, and Properties. J. Phys.: Conf. Ser. 2021;1948:012184. doi: 10.1088/1742-6596/1948/1/012184. DOI
Iijima S., Ichihashi T.. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993;363:603–605. doi: 10.1038/363603a0. DOI
Iijima S.. Helical microtubules of graphitic carbon. Nature. 1991;354:56–58. doi: 10.1038/354056a0. DOI
Yahyazadeh A., Nanda S., Dalai A. K.. Carbon Nanotubes: A Review of Synthesis Methods and Applications. Reactions. 2024;5(3):429–451. doi: 10.3390/reactions5030022. DOI
Jia, X. ; Wei, F. . Advances in Production and Applications of Carbon Nanotubes. In Single-Walled Carbon Nanotubes, 1st ed.; Springer: Cham, 2019; pp 269–305. PubMed
Dolafi Rezaee M., Dahal B., Watt J., Abrar M., Hodges D. R., Li W.. Structural, Electrical, and Optical Properties of Single-Walled Carbon Nanotubes Synthesized through Floating Catalyst Chemical Vapor Deposition. Nanomaterials. 2024;14(11):965. doi: 10.3390/nano14110965. PubMed DOI PMC
Han T., Nag A., Mukhopadhyay S. C., Xu Y.. Carbon Nanotubes and Its Gas-Sensing Applications: A Review. Sens. Actuators, A. 2019;291:107–143. doi: 10.1016/j.sna.2019.03.053. DOI
Cho T. H., Su W. S., Leung T. C., Ren W., Chan C. T.. Electronic and Optical Properties of Single-Walled Carbon Nanotubes under a Uniform Transverse Electric Field: A First-Principles Study. Phys. Rev. B. 2009;79:235123. doi: 10.1103/PhysRevB.79.235123. DOI
Singh Y. T., Patra P. K., Hieu N. N., Rai D. P.. Study of Electronic and Mechanical Properties of Single Walled Carbon Nanotube (SWCNT) via Substitutional Boron Doping in Zigzag and Armchair Pattern. Surf. Interfaces. 2022;29:101815. doi: 10.1016/j.surfin.2022.101815. DOI
Maheswaran R., Shanmugavel B. P.. A Critical Review of the Role of Carbon Nanotubes in the Progress of Next-Generation Electronic Applications. J. Electron. Mater. 2022;51:2786–2800. doi: 10.1007/s11664-022-09516-8. PubMed DOI PMC
Seekaew Y., Wisitsoraat A., Phokharatkul D., Wongchoosuk C.. Room Temperature Toluene Gas Sensor Based on TiO2 Nanoparticles Decorated 3D Graphene-Carbon Nanotube Nanostructures. Sens. Actuators, B. 2019;279:69–78. doi: 10.1016/j.snb.2018.09.095. DOI
Jeon J.-Y., Kang B.-C., Byun Y. T., Ha T.-J.. High-Performance Gas Sensors Based on Single-Wall Carbon Nanotube Random Networks for the Detection of Nitric Oxide down to the Ppb-Level. Nanoscale. 2019;11:1587–1594. doi: 10.1039/C8NR07393G. PubMed DOI
Hasanzadeh M., Ansari R., Hassanzades-Aghdam M. K.. Evaluation of effective properties of piezoelectric hybrid composites containing carbon nanotubes. Mech. Mater. 2019;129:63–79. doi: 10.1016/j.mechmat.2018.11.003. DOI
Allaoui A., Bai S., Cheng H. M., Bai J. B.. Mechanical and electrical properties of a MWNT/epoxy composite. Compos. Sci. Technol. 2002;62(15):1993–1998. doi: 10.1016/S0266-3538(02)00129-X. DOI
Anzar N., Hasan R., Tyagi M., Yadav N., Narang J.. Carbon Nanotube – A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sens. Int. 2020;1:100003. doi: 10.1016/j.sintl.2020.100003. DOI
Rahman G., Najaf Z., Mehmood A., Bilal S., Shah A. H. A., Mian S. A., Ali G.. An Overview of the Recent Progress in the Synthesis and Applications of Carbon Nanotubes. C. 2019;5(1):3. doi: 10.3390/c5010003. DOI
See C. H., Harris A. T.. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind. Eng. Chem. Res. 2007;46(4):997–1012. doi: 10.1021/ie060955b. DOI
Chrzanowska J., Hoffman J., Małolepszy A., Mazurkiewicz M., Kowalewski T. A., Szymanski Z., Stobinski L.. Synthesis of carbon nanotubes by the laser ablation method: Effect of laser wavelength. Phys. Status Solidi B. 2015;252(8):1860–1867. doi: 10.1002/pssb.201451614. DOI
Chen C.-M., Dai Y.-M., Huang J. G., Jehng J.-M.. Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon. 2006;44(9):1808–1820. doi: 10.1016/j.carbon.2005.12.043. DOI
Brukh R., Mitra S.. Mechanism of carbon nanotube growth by CVD. Chem. Phys. Lett. 2006;424(1–3):126–132. doi: 10.1016/j.cplett.2006.04.028. DOI
Gakis G. P., Termine S., Trompeta A.-F. A., Aviziotis I. G., Charitidis C. A.. Unraveling the mechanisms of carbon nanotube growth by chemical vapor deposition. Chem. Eng. J. 2022;445:136807. doi: 10.1016/j.cej.2022.136807. DOI
Hayashi N., Honda S.-i., Tsuji K., Lee K.-Y., Ikuno T., Fujimoto K., Ohkura S., Katayama M., Oura K., Hirao T.. Highly aligned carbon nanotube arrays fabricated by bias sputtering. Appl. Surf. Sci. 2003;212–213:393–396. doi: 10.1016/S0169-4332(03)00121-1. DOI
Lee K.-Y., Ikuno T., Tsuji K., Ohkura S., Honda S.-i., Katayama M., Oura K., Hirao T.. Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering. J. Vac. Sci. Technol. B. 2003;21:1437–1441. doi: 10.1116/1.1593638. DOI
Scalese S., Scuderi V., Simone F., Pennisi A., Compagnini G., Privitera V.. Growth of aligned CNx nanocolumns on silicon by RF-magnetron sputtering. Carbon. 2006;44:3123–3126. doi: 10.1016/j.carbon.2006.07.022. DOI
Sério S.. Advanced Nanostructured Coatings Deposited by Magnetron Sputtering: Innovations, Applications, and Future Prospects. Coatings. 2024;14(8):1041. doi: 10.3390/coatings14081041. DOI
Scalese S., Scuderi V., Simone F., Pennisi A., Privitera V.. Ex situ and in situ catalyst deposition for CNT synthesis by RF-magnetron sputtering. Phys. E. 2008;40(7):2243–2246. doi: 10.1016/j.physe.2007.09.153. DOI
Scalese S., Scuderi V., Simone F., Pennisi A., Compagnini G., Bongiorno C., Privitera V.. Carbon aligned nanocolumns by RF-Magnetron sputtering: The influence of the growth parameters. Phys. E. 2007;37(1–2):231–235. doi: 10.1016/j.physe.2006.06.009. DOI
Agoons D. D., Agoons B. B., Emmanuel K. E., Matawalle F. A., Cunningham J. M.. Association between electronic cigarette use and fragility fractures among US adults. Am. J. Med. Open. 2021;1–6:100002. doi: 10.1016/j.ajmo.2021.100002. PubMed DOI PMC
Okolie J. A.. Insights on production mechanism and industrial applications of renewable propylene glycol. iScience. 2022;25(9):104903. doi: 10.1016/j.isci.2022.104903. PubMed DOI PMC
Jackson G., Roberts R. T., Wainwright T.. Mechanism of beer foam stabilization by propylene glycol alginate. J. Inst. Brew. 1980;86(1):34–37. doi: 10.1002/j.2050-0416.1980.tb03953.x. DOI
Giaretta J. E., Duan H., Oveissi F., Farajikhah S., Dehghani F., Naficy S.. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS Appl. Mater. Interfaces. 2022;14(18):20491–20505. doi: 10.1021/acsami.1c24727. PubMed DOI PMC
Totaro M., Casini B., Profeti S., Tuvo B., Priitera G., Baggiani A.. Role of Hydrogen Peroxide Vapor (HPV) for the Disinfection of Hospital Surfaces Contaminated by Multiresistant Bacteria. Pathogens. 2020;9(5):408. doi: 10.3390/pathogens9050408. PubMed DOI PMC
Schleiss M. B., Holz O., Behnke M., Richter K., Magnussen H., Jörres R. A.. The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. Eur. Respir. J. 2000;16(6):1115–1118. doi: 10.1034/j.1399-3003.2000.16f16.x. PubMed DOI
Young S.-J., Chu Y.-L.. Hydrothermal Synthesis and Improved CH3OH-Sensing Performance of ZnO Nanorods with Adsorbed Au NPs. IEEE Trans. Electron Devices. 2021;68(4):1886–1891. doi: 10.1109/TED.2021.3060354. DOI
Young S.-J., Chu Y.-L.. Platinum Nanoparticle-Decorated ZnO Nanorods Improved the Performance of Methanol Gas Sensor. J. Electrochem. Soc. 2020;167(14):147508. doi: 10.1149/1945-7111/abc4be. DOI
Chu Y.-L., Young S.-J., Ji L.-W., Chu T.-T., Lam K.-T., Hsiao Y.-J., Tang I.-T., Kuo T.-H.. Characteristics of Gas Sensors Based on Co-Doped ZnO Nanorod Arrays. J. Electrochem. Soc. 2020;167:117503. doi: 10.1149/1945-7111/aba00d. DOI
Tsai Y.-T., Chang S.-J., Ji L.-W., Hsiao Y.-J., Tang I.-T., Lu H.-Y., Chu Y.-L.. High Sensitivity of NO Gas Sensors Based on Novel Ag-Doped ZnO Nanoflowers Enhanced with a UV Light-Emitting Diode. ACS Omega. 2018;3(10):13798–13807. doi: 10.1021/acsomega.8b01882. PubMed DOI PMC
Chu Y.-L., Young S.-J., Huang Y.-R., Arya S., Chu T.-T.. Highly Sensitive Ethanol Gas Sensors of Au Nanoparticle-Adsorbed ZnO Nanorod Arrays via a Photochemical Deposition Treatment. ACS Appl. Electron. Mater. 2025;7(6):2327–2338. doi: 10.1021/acsaelm.4c02091. DOI
Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kasparyan H., Kopecký D.. Growth, characterization, and application of vertically aligned carbon nanotubes using the RF-magnetron sputtering method. ACS Omega. 2023;8(23):20949–20958. doi: 10.1021/acsomega.3c01705. PubMed DOI PMC
Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Aroutiounian V., Khachatryan E.. Detection of hydrogen peroxide vapor using flexible gas sensor based on SnO2 nanoparticles decorated with multi-walled carbon nanotubes. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2023;14:025001. doi: 10.1088/2043-6262/accc7d. DOI
Luo K., Peng H., Zhang B., Chen L., Zhang P., Peng Z., Fu X.. Advances in carbon nanotube-based gas sensors: Exploring the path to the future. Coord. Chem. Rev. 2024;518:216049. doi: 10.1016/j.ccr.2024.216049. DOI
Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kananov D., Michalcová A., Koláčný L., Kopecký D.. Flexible gas sensor based on the RF-grown Fe2O3:ZnO/CNTs material for propylene glycol vapor detection. ACS Appl. Electron. Mater. 2024;6(9):6893–6904. doi: 10.1021/acsaelm.4c01269. DOI
Kukovitsky E. F., L’vov S. G., Sainov N. A.. VLS-growth of carbon nanotubes from the vapor. Chem. Phys. Lett. 2000;317(1–2):65–70. doi: 10.1016/S0009-2614(99)01299-3. DOI
Davoudzadeh, N. PECVD, NASA/TM-2017-219455; University of Illinois, Urbana-Champaign: Urbana, United States, 2015. https://www.researchgate.net/publication/274376265_PECVD.
Liu Q., Shi X., Jiang Q., Li R., Zhong S., Zhang R.. Growth mechanism and kinetics of vertically aligned carbon nanotube arrays. EcoMat. 2021;3(4):e12118. doi: 10.1002/eom2.12118. DOI
Murawala A. P., Loh T. A. J., Chua D. H. C.. Synthesis of MoS2 Nano-Petal Forest Supported on Carbon Nanotubes for Enhanced Field Emission Performance. J. Appl. Phys. 2014;116:114305. doi: 10.1063/1.4895834. DOI
Pan Z. W., Dai Z. R., Wang Z. L.. Nanobelts of Semiconducting Oxides. Science. 2001;291(5510):1947–1949. doi: 10.1126/science.1058120. PubMed DOI
Yan B., Zheng Z., Zhang J., Gong H., Shen Z., Huang W., Yu T.. Orientation Controllable Growth of MoO3 Nanoflakes: Micro-Raman, Field Emission, and Birefringence Properties. J. Phys. Chem. C. 2009;113(47):20259–20263. doi: 10.1021/jp907602w. DOI
Abdisaidov I. J., Gulomjanova S. G., Khudaykulov I. K., Ashurov K. B.. The low-temperature growth of carbon nanotubes using nickel catalyst. East Eur. J. Phys. 2024;(3):355–358. doi: 10.26565/2312-4334-2024-3-41. DOI
Raji, K. ; Sobhan, C. B. . Growth Mechanisms in Carbon Nanotube Formation. In Handbook of Carbon Nanotubes, 1st ed.; Springer: Cham, 2022; pp 557–586.
Li J., Croiset E., Ricardez-Sandoval L.. Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study. Appl. Surf. Sci. 2014;317:923–928. doi: 10.1016/j.apsusc.2014.09.008. DOI
Atthipalli G., Epur R., Kumta P. N., Yang M., Lee J.-K., Gray J. L.. Nickel catalyst-assisted vertical growth of dense carbon nanotube forests on bulk copper. J. Phys. Chem. C. 2011;115(9):3534–3538. doi: 10.1021/jp108624n. DOI
Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S.. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324(5932):1312–1314. doi: 10.1126/science.1171245. PubMed DOI
Matthews K. D., Lemaitre M. G., Kim T., Chen H., Shim M., Zuo J.-M.. Growth modes of carbon nanotubes on metal substrates. J. Appl. Phys. 2006;100:044309. doi: 10.1063/1.2219000. DOI
Homma Y., Kobayashi Y., Ogino T., Takagi D., Ito R., Jung Y. J., Ajayan P. M.. Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition. J. Phys. Chem. B. 2003;107(44):12161–12164. doi: 10.1021/jp0353845. DOI
Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kananov D., Khachaturyan E., Kopecký D.. Acetone vapors detection using a MWCNTs/SnO2 nanocomposite material. ACS Appl. Electron. Mater. 2024;6(6):4090–4098. doi: 10.1021/acsaelm.4c00167. DOI
Shahnazaryan G. E., Shahkhatuni G. A., Aleksanyan M. S., Simonyan Z. G., Aroutiounian V. M., Sayunts A. G.. Investigations of the impedance characteristics of a nanostructured ZnO⟨La⟩ sensor for hydrogen peroxide vapors. J. Contemp. Phys. (Arm. Acad. Sci.) 2022;57:254–262. doi: 10.1134/S106833722203015X. DOI
Azira A. A., Suriani A. B., Rusop M.. Carbon Nanotubes Formation from Fe/Ni/Mg by Camphor Oil Decomposition. J. Ceram. Soc. Jpn. 2011;119(1386):125–128. doi: 10.2109/jcersj2.119.125. DOI
Ivanova M. V., Lamprecht C., Loureiro M. J., Huzil J. T., Foldvari M.. Pharmaceutical Characterization of Solid and Dispersed Carbon Nanotubes as Nanoexcipients. Int. J. Nanomed. 2012;7:403–415. doi: 10.2147/IJN.S27442. PubMed DOI PMC
Hellgren N., Johansson M. P., Broitman E., Hultman L., Sundgren J.-E.. Role of Nitrogen in the Formation of Hard and Elastic CNx Thin Films by Reactive Magnetron Sputtering. Phys. Rev. B. 1999;59:5162. doi: 10.1103/PhysRevB.59.5162. DOI
Sjöström H., Stafström S., Boman M., Sundgren J.-E.. Superhard and Elastic Carbon Nitride Thin Films Having Fullerenelike Microstructure. Phys. Rev. Lett. 1995;75:1336. doi: 10.1103/PhysRevLett.75.1336. PubMed DOI
Lin N., Hellgren N., Johansson M. P., Hultman L., Erlandsson R., Sundgren J.-E.. In Situ Scanning Tunneling Microscopic and Spectroscopic Investigation of Magnetron-Sputtered C and CN Thin Films. Phys. Rev. B. 2000;61:4898. doi: 10.1103/PhysRevB.61.4898. DOI
Nasim M. N. E. A. A., Chun D.-M.. Substrate-dependent deposition behavior of graphite particles dry-sprayed at room temperature using a nano-particle deposition system. Surf. Coat. Technol. 2017;309:172–178. doi: 10.1016/j.surfcoat.2016.11.062. DOI
Emmerlich J., Mráz S., Snyders R., Jiang K., Schneider J. M.. The physical reason for the apparently low deposition rate during high-power pulsed magnetron sputtering. Vacuum. 2008;82(8):867–870. doi: 10.1016/j.vacuum.2007.10.011. DOI
Aleksanyan M. S., Arakelyan V. M., Aroutiounian V. M., Shahnazaryan G. E.. Investigation of gas sensor based on In2O3:Ga2O3 film. J. Contemp. Phys. (Arm. Acad. Sci.) 2011;46:86–92. doi: 10.3103/S1068337211020071. DOI
Baig N., Kammakakam I., Falath W.. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater. Adv. 2021;2:1821–1871. doi: 10.1039/D0MA00807A. DOI
Zhang M., Li J.. Carbon nanotube in different shapes. Mater. Today. 2009;12(6):12–18. doi: 10.1016/S1369-7021(09)70176-2. DOI
Mierczynski P., Dubkov S., Vasilev K., Maniecki T., Kitsyuk E., Yeritsyan G., Szynkowska M. I., Trifonov A., Gavrilov S., Gromov D.. Unidirectional and bi-directional growth of carbon nanotubes on the catalytic Co–Zr–N-(O) material. J. Mater. Res. Technol. 2021;12:512–520. doi: 10.1016/j.jmrt.2021.03.015. DOI
Kumar, M. Carbon Nanotube Synthesis and Growth Mechanism. In Carbon Nanotubes - Synthesis, Characterization, Applications, 1st ed.; IntechOpen, 2011.
Dubrovskii V. G.. Theory of VLS Growth of Compound Semiconductors. Semicond. Semimetals. 2015;93:1–78. doi: 10.1016/bs.semsem.2015.09.002. DOI
Kukovitsky E. F., L’vov S. G., Sainov N. A., Shustov V. A., Chernozatonskii L. A.. Correlation between metal catalyst particle size and carbon nanotube growth. Chem. Phys. Lett. 2002;355(5–6):497–503. doi: 10.1016/S0009-2614(02)00283-X. DOI
Jourdain V., Bichara C.. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition. Carbon. 2013;58:2–39. doi: 10.1016/j.carbon.2013.02.046. DOI
Rümmeli M. H., Bachmatiuk A., Börrnert F., Schäffel F., Ibrahim I., Cendrowski K., Simha-Martynkova G., Plachá D., Borowiak-Palen E., Cuniberti G., Büchner B.. Synthesis of carbon nanotubes with and without catalyst particles. Nanoscale Res. Lett. 2011;6:303. doi: 10.1186/1556-276X-6-303. PubMed DOI PMC
Kharissova O. V., Kharisov B. I.. Variations of interlayer spacing in carbon nanotubes. RSC Adv. 2014;4(58):30807–30815. doi: 10.1039/C4RA04201H. DOI
Procek M., Stolarczyk A., Pustelny T.. Impact of Temperature and UV Irradiation on Dynamics of NO2 Sensors Based on ZnO Nanostructures. Nanomaterials. 2017;7(10):312. doi: 10.3390/nano7100312. PubMed DOI PMC
Barsoukov, E. ; Macdonald, J. R. . Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd ed.; Wiley, 2005.
Schipani F., Miller D. R., Ponce M. A., Aldao C. M., Akbar S. A., Morris P. A.. Electrical Characterization of Semiconductor Oxide-Based Gas Sensors Using Impedance Spectroscopy: A Review. Rev. Adv. Sci. Eng. 2016;5:86–105. doi: 10.1166/rase.2016.1109. DOI
Shahkhatuni G. H., Aroutiounian V. M., Arakelyan V. M., Aleksanyan M. S., Shahnazaryan G. E.. Investigation of Sensor Made of ZnO:La for Detection of Hydrogen Peroxide Vapours by Impedance Spectroscopy Method. J. Contemp. Phys. (Arm. Acad. Sci.) 2019;54:188–195. doi: 10.3103/S1068337219020117. DOI
Najafi P., Ghaemi A.. Chemiresistor gas sensors: Design, Challenges, and Strategies: A comprehensive review. Chem. Eng. J. 2024;498:154999. doi: 10.1016/j.cej.2024.154999. DOI
Bulemo P. M., Kim D.-H., Shin H., Cho H.-J., Koo W.-T., Choi S.-J., Park C., Ahn J., Güntner A. T., Penner R. M., Kim I.-D.. Selectivity in Chemiresistive Gas Sensors: Strategies and Challenges. Chem. Rev. 2025;125(8):4111–4183. doi: 10.1021/acs.chemrev.4c00592. PubMed DOI PMC
Deng Q., Gao S., Lei T., Ling Y., Zhang L., Xie C.. Temperature & light modulation to enhance the selectivity of Pt-modified zinc oxide gas sensor. Sens. Actuators, B. 2017;247:903–915. doi: 10.1016/j.snb.2017.03.107. DOI
Sun Q., Wu Z., Duan H., Jia D.. Detection of Triacetone Triperoxide (TATP) Precursors with an Array of Sensors Based on MoS2/RGO Composites. Sensors. 2019;19(6):1281. doi: 10.3390/s19061281. PubMed DOI PMC
Xie X., Gao N., Zhu L., Hunter M., Chen S., Zang L.. PEDOT:PSS/PEDOT Film Chemiresistive Sensors for Hydrogen Peroxide Vapor Detection under Ambient Conditions. Chemosensors. 2023;11(2):124. doi: 10.3390/chemosensors11020124. DOI
Lee J.-S., Jeong D.-W., Byun Y. T.. Porphyrin Nanofiber/Single-Walled Carbon Nanotube Nanocomposite-Based Sensors for Monitoring Hydrogen Peroxide Vapor. Sens. Actuators, B. 2020;306:127518. doi: 10.1016/j.snb.2019.127518. DOI
Lu Y., Meyyappan M., Li J.. Trace Detection of Hydrogen Peroxide Vapor Using a Carbon-Nanotube-Based Chemical Sensor. Small. 2011;7(12):1714–1718. doi: 10.1002/smll.201100406. PubMed DOI
Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kananov D., Kasparyan H., Kopecký D.. MWCNTs/Fe2O3:ZnO Nanocomposite Material for Chemoresistive Sensing of Hydrogen Peroxide Vapors. ACS Appl. Electron. Mater. 2024;6(2):940–949. doi: 10.1021/acsaelm.3c01440. DOI
Lee D.-J., Choi S.-W., Byun Y. T.. Room Temperature Monitoring of Hydrogen Peroxide Vapor Using Platinum Nanoparticles-Decorated Single-Walled Carbon Nanotube Networks. Sens. Actuators, B. 2018;256:744–750. doi: 10.1016/j.snb.2017.10.001. DOI
Aroutiounian V., Arakelyan V., Aleksanyan M., Shahnazaryan G., Kacer P., Picha P., Kovarik J., Pekarek J., Joost B.. Thin-Film SnO2 and ZnO Detectors of Hydrogen Peroxide Vapors. J. Sens. Sens. Syst. 2018;7:281–288. doi: 10.5194/jsss-7-281-2018. DOI
Parthasarathy S., Nandhini V., Jeyaprakash B. G.. Improved Sensing Response of Photo-Activated ZnO Thin Film for Hydrogen Peroxide Detection. J. Colloid Interface Sci. 2016;482:81–88. doi: 10.1016/j.jcis.2016.07.066. PubMed DOI
Ranjan P., Tiwary P., Chakraborty A. K., Mahapatra R., Thakur A. D.. Graphene Oxide Based Free-Standing Films for Humidity and Hydrogen Peroxide Sensing. J. Mater. Sci.: Mater. Electron. 2018;29:15946–15956. doi: 10.1007/s10854-018-9680-1. DOI
Zhai X., Wu Z., Sun Q., Sun J., Chen F., Zhang M., Duan H.. Bioinspired Bacterial Cellulose Carbon Nanofibers/AgO Composite for Sensitive and Selective Detection of H2O2 Vapor at Room Temperature. J. Electron. Mater. 2023;52:5377–5387. doi: 10.1007/s11664-023-10456-0. DOI
Aleksanyan M., Sayunts A., Shahkhatuni G., Simonyan Z., Kasparyan H., Kopecký D.. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials. 2023;13(1):120. doi: 10.3390/nano13010120. PubMed DOI PMC