Growth, Characterization, and Application of Vertically Aligned Carbon Nanotubes Using the RF-Magnetron Sputtering Method
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37332802
PubMed Central
PMC10268627
DOI
10.1021/acsomega.3c01705
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The aim of this work is to synthesize and characterize a nanostructured material with improved parameters suitable as a chemiresistive gas sensor sensitive to propylene glycol vapor (PGV). Thus, we demonstrate a simple and cost-effective technology to grow vertically aligned carbon nanotubes (CNTs) and fabricate a PGV sensor based on Fe2O3:ZnO/CNT material using the radio frequency magnetron sputtering method. The presence of vertically aligned carbon nanotubes on the Si(100) substrate was confirmed by scanning electron microscopy and Fourier transform infrared (FTIR), Raman, and energy-dispersive X-ray spectroscopies. The uniform distribution of elements in both CNTs and Fe2O3:ZnO materials was revealed by e-mapped images. The hexagonal shape of the ZnO material in the Fe2O3:ZnO structure and the interplanar spacing in the crystals were clearly visible by transmission electron microscopy images. The gas-sensing behavior of the Fe2O3:ZnO/CNT sensor toward PGV was investigated in the temperature range of 25-300 °C with and without ultraviolet (UV) irradiation. The sensor showed clear and repeatable response/recovery characteristics in the PGV range of 1.5-140 ppm, sufficient linearity of response/concentration dependence, and high selectivity both at 200 and 250 °C without UV radiation. This is a basis for concluding that the synthesized Fe2O3:ZnO/CNT structure is the best candidate for use in PGV sensors, which will allow its further successful application in real-life sensor systems.
Zobrazit více v PubMed
Xu X.; Huang S.; Hu Y.; Lu J.; Yang Z. Continuous synthesis of carbon nanotubes using a metal-free catalyst by CVD. Mater. Chem. Phys. 2012, 133, 95–102. 10.1016/j.matchemphys.2011.12.059. DOI
Xiao Z.; Wang X.; Meng J.; Wang H.; Zhao Y.; Mai L. Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Mater. Today 2022, 56, 114–134. 10.1016/j.mattod.2022.05.009. DOI
Soni S. K.; Thomas B.; Kar V. R. A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications. Mater. Today Commun. 2020, 25, 101546.10.1016/j.mtcomm.2020.101546. DOI
Kholghi Eshkalak S.; Chinnappan A.; Jayathilaka W. A. D. M.; Khatibzadeh M.; Kowsari E.; Ramakrishna S. A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 2017, 9, 372–386. 10.1016/j.apmt.2017.09.003. DOI
Gupta S.; Pramanik S.; Smita; Das S. K.; Saha S. Dynamic analysis of wave propagation and buckling phenomena in carbon nanotubes (CNTs). Wave Motion 2021, 104, 102730.10.1016/j.wavemoti.2021.102730. DOI
Kuramochi H.; Manago T.; Koltsov D.; Takenaka M.; Iitake M.; Akinaga H. Advantages of CNT–MFM probes in observation of domain walls of soft magnetic materials. Surf. Sci. 2007, 601, 5289–5293. 10.1016/j.susc.2007.04.222. DOI
Niu M.; Zhao Y.; Sui C.; Sang Y.; Hao W.; Li J.; He X.; Wang C. Mechanical properties of twisted CNT fibers: A molecular dynamic study. Mater. Today Commun. 2023, 34, 105378.10.1016/j.mtcomm.2023.105378. DOI
Meng A.; Hong X.; Zhang Y.; Liu W.; Zhang Z.; Sheng L.; Li Z. A free-standing flexible sensor MnO2–Co/rGO-CNT for effective electrochemical hydrogen peroxide sensing and real-time cancer biomarker assaying. Ceram. Int. 2023, 49, 2440–2450. 10.1016/j.ceramint.2022.09.217. DOI
Loghin F. C.; Falco A.; Moreno-Cruz F.; Lugli P.; Morales D. P.; Salmerón J. F.; Rivadeneyra A. Facile manufacturing of sub-mm thick CNT-based RC filters. Mater. Lett. 2021, 297, 129939.10.1016/j.matlet.2021.129939. DOI
Son W.; Lee D. W.; Kim Y. K.; Chun S.; Lee J. M.; Choi J. H.; Shim W. S.; Suh D.; Lim S. K.; Choi C. PdO-Nanoparticle-Embedded Carbon Nanotube Yarns for Wearable Hydrogen Gas Sensing Platforms with Fast and Sensitive Responses. ACS Sens. 2023, 8, 94–102. 10.1021/acssensors.2c01743. PubMed DOI
Ingtipi K.; Choudhury B. J.; Moholkar V. S. Ultrasound assisted lignin-decorated MWCNT doped flexible PVA–Chitosan composite hydrogel. Mater. Today Commun. 2023, 35, 105676.10.1016/j.mtcomm.2023.105676. DOI
Liu X.; Fan L.; Wang Y.; Zhang W.; Ai H.; Wang Z.; Zhang D.; Jia H.; Wang C. Nanofiber-based Sm0.5Sr0.5Co0.2Fe0.8O3-δ/N-MWCNT composites as an efficient bifunctional electrocatalyst towards OER/ORR. Int. J. Hydrogen Energy 2023, 48, 15555–15565. Article ASAP10.1016/j.ijhydene.2023.01.095. DOI
Jia Y.; Zhang Y.; Zhang X.; Cheng J.; Xie Y.; Zhang Y.; Yin X.; Song F.; Cui H. Novel CdS/PANI/MWCNTs photocatalysts for photocatalytic degradation of xanthate in wastewater. Sep. Purif. Technol. 2023, 309, 123022.10.1016/j.seppur.2022.123022. DOI
Momin Z. H.; Ahmad A. T. A.; Malkhede D. D.; Koduru J. R. Synthesis of thin-film composite of MWCNTs-polythiophene-Ru/Pd at liquid-liquid interface for supercapacitor application. Inorg. Chem. Commun. 2023, 149, 110434.10.1016/j.inoche.2023.110434. DOI
Gayathri V.; Praveen E.; Jayakumar K.; Karazhanov S.; Mohan R. C. Graphene quantum dots assisted CuCo2S4/MWCNT nanoflakes as superior bifunctional electrocatalysts for dye-sensitized solar cell and supercapacitor applications. Colloids surf., A 2023, 662, 130948.10.1016/j.colsurfa.2023.130948. DOI
Zhang K.; Qin R.; Chen S.; Liu X.; Liu Y. Customizing defect location in MWCNTs/Fe3O4 composites by direct fluorination for enhancing microwave absorption performance. Appl. Surf. Sci. 2023, 612, 155860.10.1016/j.apsusc.2022.155860. DOI
Yadav M. D.; Patwardhan A. W.; Joshi J. B.; Dasgupta K. Selective synthesis of metallic and semi-conducting single-walled carbon nanotube by floating catalyst chemical vapour deposition. Diamond Relat. Mater. 2019, 97, 107432.10.1016/j.diamond.2019.05.017. DOI
Chen S.-Z.; Xie F.; Ning F.; Liu Y.-Y.; Zhou W.-X.; Yu J.-F.; Chen K.-Q. Breaking surface states causes transformation from metallic to semi-conducting behavior in carbon foam nanowires. Carbon 2017, 111, 867–877. 10.1016/j.carbon.2016.10.085. DOI
Wang Y.; Liu Y.; Yang H.; Liu Y.; Wu K.-H.; Yang G. Ionic liquid derived Fe, N, B co-doped bamboo-like carbon nanotubes as an efficient oxygen reduction catalyst. J. Colloid Interface Sci. 2020, 579, 637–644. 10.1016/j.jcis.2020.06.076. PubMed DOI
Giannakopoulou T.; Pilatos G.; Todorova N.; Boukos N.; Vaimakis T.; Karatasios I.; Trapalis C. Effect of processing temperature on growing bamboo-like carbon nanotubes by chemical vapor deposition. Mater. Today Chem. 2021, 19, 100388.10.1016/j.mtchem.2020.100388. DOI
Borowiak-Palen E.; Rümmeli M. H. Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes. Superlattices Microstruct. 2009, 46, 374–378. 10.1016/j.spmi.2008.10.029. DOI
Brown B.; Parker C. B.; Stoner B. R.; Glass J. T. Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 2011, 49, 266–274. 10.1016/j.carbon.2010.09.018. DOI
Lee K.-Y.; Ikuno T.; Tsuji K.; Ohkura S.; Honda S.; Katayama M.; Oura K.; Hirao T. Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 2003, 21, 1437.10.1116/1.1593638. DOI
Homayoonnia S.; Phani A.; Kim S. MOF/MWCNT–Nanocomposite Manipulates High Selectivity to Gas via Different Adsorption Sites with Varying Electron Affinity: A Study in Methane Detection in Parts-per-Billion. ACS Sens. 2022, 7, 3846–3856. 10.1021/acssensors.2c01796. PubMed DOI
Alheshibri M.; Elsayed K.; Haladu S. A.; Magami S. M.; Al Baroot A.; Ercan I.; Ercan F.; Manda A. A.; Çevik E.; Kayed T. S.; Alsanea A. A.; Alotaibi A. M.; Al-Otaibi A. L. Synthesis of Ag nanoparticles-decorated on CNTs/TiO2 nanocomposite as efficient photocatalysts via nanosecond pulsed laser ablation. Opt. Laser Technol. 2022, 155, 108443.10.1016/j.optlastec.2022.108443. DOI
Soni G.; Jain K.; Soni P.; Jangir R. K.; Vijay Y. K. Synthesis of multiwall carbon nanotubes in presence of magnetic field using underwater arc discharge system. Mater. Today Proc. 2020, 30, 225–228. 10.1016/j.matpr.2020.06.256. DOI
Poli A.; Dagher G.; Santos A. F.; Baldoni-Andrey P.; Jacob M.; Batiot-Dupeyrat C.; Teychené B. Impact of C-CVD synthesis conditions on the hydraulic and electronic properties of SiC/CNTs nanocomposite microfiltration membranes. Diamond Relat. Mater. 2021, 120, 108611.10.1016/j.diamond.2021.108611. DOI
Lin J.; Yang Y.; Zhang H.; LI F.; Huang G.; Wu C. Preparation of CNT–Co@TiB2 by catalytic CVD: Effects of synthesis temperature and growth time. Diamond Relat. Mater. 2020, 106, 107830.10.1016/j.diamond.2020.107830. DOI
Lin J.; Yang Y.; Zhang H.; LI F. Effect of source gases on CVD synthesis of CNTs@TiB2 composite powders using Ni/Y2O3 as the catalyst. Ceram. Int. 2020, 46, 10704–10709. 10.1016/j.ceramint.2020.01.077. DOI
Cai X.; Cong H.; Liu C. Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 2012, 50, 2726–2730. 10.1016/j.carbon.2012.02.031. DOI
Pasha M. A.; Poursalehi R.; Vesaghi M. A.; Shafiekhani A. The effect of temperature on the TCVD growth of CNTs from LPG over Pd nanoparticles prepared by laser ablation. Phys. B 2010, 405, 3468–3474. 10.1016/j.physb.2010.05.025. DOI
Scalese S.; Scuderi V.; Simone F.; Pennisi A.; Privitera V. Ex situ and in situ catalyst deposition for CNT synthesis by RF-magnetron sputtering. Phys. E 2008, 40, 2243–2246. 10.1016/j.physe.2007.09.153. DOI
Scalese S.; Scuderi V.; Simone F.; Pennisi A.; Compagnini G.; Bongiorno C.; Privitera V. Carbon aligned nanocolumns by RF-Magnetron sputtering: The influence of the growth parameters. Phys. E 2007, 37, 231–235. 10.1016/j.physe.2006.06.009. DOI
Agoons D. D.; Agoons B. B.; Emmanuel K. E.; Matawalle F. A.; Cunningham J. M. Association between electronic cigarette use and fragility fractures among US adults. Am. J. Med. Open 2021, 1–6, 100002.10.1016/j.ajmo.2021.100002. PubMed DOI PMC
Jackson G.; Roberts R. T.; Wainwright T. Mechanism of Beer Foam Stabilization by Propylene Glycol Alginate. J. Inst. Brew. 1980, 86, 34–37. 10.1002/j.2050-0416.1980.tb03953.x. DOI
Adamyan Z.; Sayunts A.; Aroutiounian V.; Khachaturyan E.; Vrnata M.; Fitl P.; Vlček J. Nanocomposite sensors of propylene glycol, dimethylformamide and formaldehyde vapors. J. Sens. Sens. Syst. 2018, 7, 31–41. 10.5194/jsss-7-31-2018. DOI
Okolie J. A. Insights on production mechanism and industrial applications of renewable propylene glycol. iScience 2022, 25, 104903.10.1016/j.isci.2022.104903. PubMed DOI PMC
Jiménez R. X.; Young A. F.; Fernandes H. L. S. Propylene glycol from glycerol: Process evaluation and break-even price determination. Renewable Energy 2020, 158, 181–191. 10.1016/j.renene.2020.05.126. DOI
Aleksanyan M. S.; Sayunts A. G.; Shahkhatuni G. H.; Simonyan Z. G.; Aroutiounian V. M.; Shahnazaryan G. E. Flexible sensor based on multi-walled carbon nanotube-SnO2 nanocomposite material for hydrogen detection. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2022, 13, 035003.10.1088/2043-6262/ac8671. DOI
Aleksanyan M. S.; Sayunts A. G.; Shahkhatuni G. H.; Simonyan Z. G.; Aroutiounian V. M.; Shahnazaryan G. E. Flexible SnO2⟨Co⟩/MWCNT Sensor for Detection Low Concentrations of Hydrogen Peroxide Vapors. J. Contemp. Phys. 2022, 57, 133–139. 10.3103/S1068337222020050. DOI
Aroutiounian V. M.; Arakelyan V. M.; Khachaturyan E. A.; Shahnazaryan G. E.; Aleksanyan M. S.; Forro L.; Magrez A.; Hernadi K.; Nemeth Z. Manufacturing and investigations of i-butane sensor made of SnO2/multiwall-carbon-nanotube nanocomposite. Sens. Actuators, B 2012, 173, 890–896. 10.1016/j.snb.2012.04.039. DOI
Leghrib R.; Felten A.; Pireaux J. J.; Llobet E. Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Films 2011, 520, 966–970. 10.1016/j.tsf.2011.04.186. DOI
Feng B.; Feng Y.; Li Y.; Su Y.; Deng Y.; Wei J. Synthesis of Mesoporous Ag2O/SnO2 Nanospheres for Selective Sensing of Formaldehyde at a Low Working Temperature. ACS Sens. 2022, 7, 3963–3972. 10.1021/acssensors.2c02232. PubMed DOI
Lim Y. D.; Avramchuck A. V.; Grapov D.; Tan C. W.; Tay B. K.; Aditya S.; Labunov V. Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst. ACS Omega 2017, 2, 6063–6071. 10.1021/acsomega.7b00858. PubMed DOI PMC
Allaedini G.; Tasirin S. M.; Aminayi P.; Yaakob Z.; MeowTalib M. Z. Carbon Nanotubes via Different Catalysts and the Important Factors That Affect Their Production: A Review on Catalyst Preferences. Int. J. Nano Dimens. 2016, 7, 186–200. 10.7508/IJND.2016.03.002. DOI
Moisala A.; Nasibulin A. G.; Kauppinen E. I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J. Phys.: Condens. Matter 2003, 15, S3011–S3035. 10.1088/0953-8984/15/42/003. DOI
Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Kasparyan H.; Kopecký D. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials 2022, 13, 120.10.3390/nano13010120. PubMed DOI PMC
Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Shahnazaryan G.; Aroutiounian V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245.10.3390/chemosensors10070245. DOI
Melvin G. J. H.; Ni Q.-Q.; Suzuki Y.; Natsuki T. Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J. Mater. Sci. 2014, 49, 5199–5207. 10.1007/s10853-014-8229-9. DOI
Kim K. H.; Lee D. J.; Cho K. M.; Kim S. J.; Park J.-K.; Jung H.-T. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles. Sci. Rep. 2015, 5, 9014.10.1038/srep09014. PubMed DOI PMC
Lehman J. H.; Terrones M.; Mansfield E.; Hurst K. E.; Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49, 2581–2602. 10.1016/j.carbon.2011.03.028. DOI
Fayazfar H.; Afshar A.; Dolati A. Controlled Growth of Well-Aligned Carbon Nanotubes, Electrochemical Modification and Electrodeposition of Multiple Shapes of Gold Nanostructures. Mater. Sci. Appl. 2013, 04, 667–678. 10.4236/msa.2013.411083. DOI
Acharyya S.; Nag S.; Kimbahune S.; Ghose A.; Pal A.; Guha P. K. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor. ACS Sens. 2021, 6, 2218–2224. 10.1021/acssensors.1c00115. PubMed DOI
Jian Y.; Hu W.; Zhao Z.; Cheng P.; Haick H.; Yao M.; Wu W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nano-Micro Lett. 2020, 12, 71.10.1007/s40820-020-0407-5. PubMed DOI PMC
Wetchakun K.; Samerjai T.; Tamaekong N.; Liewhiran C.; Siriwong C.; Kruefu V.; Wisitsoraat A.; Tuantranont A.; Phanichphant S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators, B 2011, 160, 580–591. 10.1016/j.snb.2011.08.032. DOI
Septiani N. L. W.; Yuliarto B. Review—The Development of Gas Sensor Based on Carbon Nanotubes. J. Electrochem. Soc. 2016, 163, B97–B106. 10.1149/2.0591603jes. DOI
Tasaltin C.; Basarir F. Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuators, B 2014, 194, 173–179. 10.1016/j.snb.2013.12.063. DOI