Growth, Characterization, and Application of Vertically Aligned Carbon Nanotubes Using the RF-Magnetron Sputtering Method

. 2023 Jun 13 ; 8 (23) : 20949-20958. [epub] 20230531

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37332802

The aim of this work is to synthesize and characterize a nanostructured material with improved parameters suitable as a chemiresistive gas sensor sensitive to propylene glycol vapor (PGV). Thus, we demonstrate a simple and cost-effective technology to grow vertically aligned carbon nanotubes (CNTs) and fabricate a PGV sensor based on Fe2O3:ZnO/CNT material using the radio frequency magnetron sputtering method. The presence of vertically aligned carbon nanotubes on the Si(100) substrate was confirmed by scanning electron microscopy and Fourier transform infrared (FTIR), Raman, and energy-dispersive X-ray spectroscopies. The uniform distribution of elements in both CNTs and Fe2O3:ZnO materials was revealed by e-mapped images. The hexagonal shape of the ZnO material in the Fe2O3:ZnO structure and the interplanar spacing in the crystals were clearly visible by transmission electron microscopy images. The gas-sensing behavior of the Fe2O3:ZnO/CNT sensor toward PGV was investigated in the temperature range of 25-300 °C with and without ultraviolet (UV) irradiation. The sensor showed clear and repeatable response/recovery characteristics in the PGV range of 1.5-140 ppm, sufficient linearity of response/concentration dependence, and high selectivity both at 200 and 250 °C without UV radiation. This is a basis for concluding that the synthesized Fe2O3:ZnO/CNT structure is the best candidate for use in PGV sensors, which will allow its further successful application in real-life sensor systems.

Zobrazit více v PubMed

Xu X.; Huang S.; Hu Y.; Lu J.; Yang Z. Continuous synthesis of carbon nanotubes using a metal-free catalyst by CVD. Mater. Chem. Phys. 2012, 133, 95–102. 10.1016/j.matchemphys.2011.12.059. DOI

Xiao Z.; Wang X.; Meng J.; Wang H.; Zhao Y.; Mai L. Advances and perspectives on one-dimensional nanostructure electrode materials for potassium-ion batteries. Mater. Today 2022, 56, 114–134. 10.1016/j.mattod.2022.05.009. DOI

Soni S. K.; Thomas B.; Kar V. R. A Comprehensive Review on CNTs and CNT-Reinforced Composites: Syntheses, Characteristics and Applications. Mater. Today Commun. 2020, 25, 101546.10.1016/j.mtcomm.2020.101546. DOI

Kholghi Eshkalak S.; Chinnappan A.; Jayathilaka W. A. D. M.; Khatibzadeh M.; Kowsari E.; Ramakrishna S. A review on inkjet printing of CNT composites for smart applications. Appl. Mater. Today 2017, 9, 372–386. 10.1016/j.apmt.2017.09.003. DOI

Gupta S.; Pramanik S.; Smita; Das S. K.; Saha S. Dynamic analysis of wave propagation and buckling phenomena in carbon nanotubes (CNTs). Wave Motion 2021, 104, 102730.10.1016/j.wavemoti.2021.102730. DOI

Kuramochi H.; Manago T.; Koltsov D.; Takenaka M.; Iitake M.; Akinaga H. Advantages of CNT–MFM probes in observation of domain walls of soft magnetic materials. Surf. Sci. 2007, 601, 5289–5293. 10.1016/j.susc.2007.04.222. DOI

Niu M.; Zhao Y.; Sui C.; Sang Y.; Hao W.; Li J.; He X.; Wang C. Mechanical properties of twisted CNT fibers: A molecular dynamic study. Mater. Today Commun. 2023, 34, 105378.10.1016/j.mtcomm.2023.105378. DOI

Meng A.; Hong X.; Zhang Y.; Liu W.; Zhang Z.; Sheng L.; Li Z. A free-standing flexible sensor MnO2–Co/rGO-CNT for effective electrochemical hydrogen peroxide sensing and real-time cancer biomarker assaying. Ceram. Int. 2023, 49, 2440–2450. 10.1016/j.ceramint.2022.09.217. DOI

Loghin F. C.; Falco A.; Moreno-Cruz F.; Lugli P.; Morales D. P.; Salmerón J. F.; Rivadeneyra A. Facile manufacturing of sub-mm thick CNT-based RC filters. Mater. Lett. 2021, 297, 129939.10.1016/j.matlet.2021.129939. DOI

Son W.; Lee D. W.; Kim Y. K.; Chun S.; Lee J. M.; Choi J. H.; Shim W. S.; Suh D.; Lim S. K.; Choi C. PdO-Nanoparticle-Embedded Carbon Nanotube Yarns for Wearable Hydrogen Gas Sensing Platforms with Fast and Sensitive Responses. ACS Sens. 2023, 8, 94–102. 10.1021/acssensors.2c01743. PubMed DOI

Ingtipi K.; Choudhury B. J.; Moholkar V. S. Ultrasound assisted lignin-decorated MWCNT doped flexible PVA–Chitosan composite hydrogel. Mater. Today Commun. 2023, 35, 105676.10.1016/j.mtcomm.2023.105676. DOI

Liu X.; Fan L.; Wang Y.; Zhang W.; Ai H.; Wang Z.; Zhang D.; Jia H.; Wang C. Nanofiber-based Sm0.5Sr0.5Co0.2Fe0.8O3-δ/N-MWCNT composites as an efficient bifunctional electrocatalyst towards OER/ORR. Int. J. Hydrogen Energy 2023, 48, 15555–15565. Article ASAP10.1016/j.ijhydene.2023.01.095. DOI

Jia Y.; Zhang Y.; Zhang X.; Cheng J.; Xie Y.; Zhang Y.; Yin X.; Song F.; Cui H. Novel CdS/PANI/MWCNTs photocatalysts for photocatalytic degradation of xanthate in wastewater. Sep. Purif. Technol. 2023, 309, 123022.10.1016/j.seppur.2022.123022. DOI

Momin Z. H.; Ahmad A. T. A.; Malkhede D. D.; Koduru J. R. Synthesis of thin-film composite of MWCNTs-polythiophene-Ru/Pd at liquid-liquid interface for supercapacitor application. Inorg. Chem. Commun. 2023, 149, 110434.10.1016/j.inoche.2023.110434. DOI

Gayathri V.; Praveen E.; Jayakumar K.; Karazhanov S.; Mohan R. C. Graphene quantum dots assisted CuCo2S4/MWCNT nanoflakes as superior bifunctional electrocatalysts for dye-sensitized solar cell and supercapacitor applications. Colloids surf., A 2023, 662, 130948.10.1016/j.colsurfa.2023.130948. DOI

Zhang K.; Qin R.; Chen S.; Liu X.; Liu Y. Customizing defect location in MWCNTs/Fe3O4 composites by direct fluorination for enhancing microwave absorption performance. Appl. Surf. Sci. 2023, 612, 155860.10.1016/j.apsusc.2022.155860. DOI

Yadav M. D.; Patwardhan A. W.; Joshi J. B.; Dasgupta K. Selective synthesis of metallic and semi-conducting single-walled carbon nanotube by floating catalyst chemical vapour deposition. Diamond Relat. Mater. 2019, 97, 107432.10.1016/j.diamond.2019.05.017. DOI

Chen S.-Z.; Xie F.; Ning F.; Liu Y.-Y.; Zhou W.-X.; Yu J.-F.; Chen K.-Q. Breaking surface states causes transformation from metallic to semi-conducting behavior in carbon foam nanowires. Carbon 2017, 111, 867–877. 10.1016/j.carbon.2016.10.085. DOI

Wang Y.; Liu Y.; Yang H.; Liu Y.; Wu K.-H.; Yang G. Ionic liquid derived Fe, N, B co-doped bamboo-like carbon nanotubes as an efficient oxygen reduction catalyst. J. Colloid Interface Sci. 2020, 579, 637–644. 10.1016/j.jcis.2020.06.076. PubMed DOI

Giannakopoulou T.; Pilatos G.; Todorova N.; Boukos N.; Vaimakis T.; Karatasios I.; Trapalis C. Effect of processing temperature on growing bamboo-like carbon nanotubes by chemical vapor deposition. Mater. Today Chem. 2021, 19, 100388.10.1016/j.mtchem.2020.100388. DOI

Borowiak-Palen E.; Rümmeli M. H. Activated Cu catalysts for alcohol CVD synthesized non-magnetic bamboo-like carbon nanotubes and branched bamboo-like carbon nanotubes. Superlattices Microstruct. 2009, 46, 374–378. 10.1016/j.spmi.2008.10.029. DOI

Brown B.; Parker C. B.; Stoner B. R.; Glass J. T. Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 2011, 49, 266–274. 10.1016/j.carbon.2010.09.018. DOI

Lee K.-Y.; Ikuno T.; Tsuji K.; Ohkura S.; Honda S.; Katayama M.; Oura K.; Hirao T. Synthesis of aligned bamboo-like carbon nanotubes using radio frequency magnetron sputtering. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.--Process., Meas., Phenom. 2003, 21, 1437.10.1116/1.1593638. DOI

Homayoonnia S.; Phani A.; Kim S. MOF/MWCNT–Nanocomposite Manipulates High Selectivity to Gas via Different Adsorption Sites with Varying Electron Affinity: A Study in Methane Detection in Parts-per-Billion. ACS Sens. 2022, 7, 3846–3856. 10.1021/acssensors.2c01796. PubMed DOI

Alheshibri M.; Elsayed K.; Haladu S. A.; Magami S. M.; Al Baroot A.; Ercan I.; Ercan F.; Manda A. A.; Çevik E.; Kayed T. S.; Alsanea A. A.; Alotaibi A. M.; Al-Otaibi A. L. Synthesis of Ag nanoparticles-decorated on CNTs/TiO2 nanocomposite as efficient photocatalysts via nanosecond pulsed laser ablation. Opt. Laser Technol. 2022, 155, 108443.10.1016/j.optlastec.2022.108443. DOI

Soni G.; Jain K.; Soni P.; Jangir R. K.; Vijay Y. K. Synthesis of multiwall carbon nanotubes in presence of magnetic field using underwater arc discharge system. Mater. Today Proc. 2020, 30, 225–228. 10.1016/j.matpr.2020.06.256. DOI

Poli A.; Dagher G.; Santos A. F.; Baldoni-Andrey P.; Jacob M.; Batiot-Dupeyrat C.; Teychené B. Impact of C-CVD synthesis conditions on the hydraulic and electronic properties of SiC/CNTs nanocomposite microfiltration membranes. Diamond Relat. Mater. 2021, 120, 108611.10.1016/j.diamond.2021.108611. DOI

Lin J.; Yang Y.; Zhang H.; LI F.; Huang G.; Wu C. Preparation of CNT–Co@TiB2 by catalytic CVD: Effects of synthesis temperature and growth time. Diamond Relat. Mater. 2020, 106, 107830.10.1016/j.diamond.2020.107830. DOI

Lin J.; Yang Y.; Zhang H.; LI F. Effect of source gases on CVD synthesis of CNTs@TiB2 composite powders using Ni/Y2O3 as the catalyst. Ceram. Int. 2020, 46, 10704–10709. 10.1016/j.ceramint.2020.01.077. DOI

Cai X.; Cong H.; Liu C. Synthesis of vertically-aligned carbon nanotubes without a catalyst by hydrogen arc discharge. Carbon 2012, 50, 2726–2730. 10.1016/j.carbon.2012.02.031. DOI

Pasha M. A.; Poursalehi R.; Vesaghi M. A.; Shafiekhani A. The effect of temperature on the TCVD growth of CNTs from LPG over Pd nanoparticles prepared by laser ablation. Phys. B 2010, 405, 3468–3474. 10.1016/j.physb.2010.05.025. DOI

Scalese S.; Scuderi V.; Simone F.; Pennisi A.; Privitera V. Ex situ and in situ catalyst deposition for CNT synthesis by RF-magnetron sputtering. Phys. E 2008, 40, 2243–2246. 10.1016/j.physe.2007.09.153. DOI

Scalese S.; Scuderi V.; Simone F.; Pennisi A.; Compagnini G.; Bongiorno C.; Privitera V. Carbon aligned nanocolumns by RF-Magnetron sputtering: The influence of the growth parameters. Phys. E 2007, 37, 231–235. 10.1016/j.physe.2006.06.009. DOI

Agoons D. D.; Agoons B. B.; Emmanuel K. E.; Matawalle F. A.; Cunningham J. M. Association between electronic cigarette use and fragility fractures among US adults. Am. J. Med. Open 2021, 1–6, 100002.10.1016/j.ajmo.2021.100002. PubMed DOI PMC

Jackson G.; Roberts R. T.; Wainwright T. Mechanism of Beer Foam Stabilization by Propylene Glycol Alginate. J. Inst. Brew. 1980, 86, 34–37. 10.1002/j.2050-0416.1980.tb03953.x. DOI

Adamyan Z.; Sayunts A.; Aroutiounian V.; Khachaturyan E.; Vrnata M.; Fitl P.; Vlček J. Nanocomposite sensors of propylene glycol, dimethylformamide and formaldehyde vapors. J. Sens. Sens. Syst. 2018, 7, 31–41. 10.5194/jsss-7-31-2018. DOI

Okolie J. A. Insights on production mechanism and industrial applications of renewable propylene glycol. iScience 2022, 25, 104903.10.1016/j.isci.2022.104903. PubMed DOI PMC

Jiménez R. X.; Young A. F.; Fernandes H. L. S. Propylene glycol from glycerol: Process evaluation and break-even price determination. Renewable Energy 2020, 158, 181–191. 10.1016/j.renene.2020.05.126. DOI

Aleksanyan M. S.; Sayunts A. G.; Shahkhatuni G. H.; Simonyan Z. G.; Aroutiounian V. M.; Shahnazaryan G. E. Flexible sensor based on multi-walled carbon nanotube-SnO2 nanocomposite material for hydrogen detection. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2022, 13, 035003.10.1088/2043-6262/ac8671. DOI

Aleksanyan M. S.; Sayunts A. G.; Shahkhatuni G. H.; Simonyan Z. G.; Aroutiounian V. M.; Shahnazaryan G. E. Flexible SnO2⟨Co⟩/MWCNT Sensor for Detection Low Concentrations of Hydrogen Peroxide Vapors. J. Contemp. Phys. 2022, 57, 133–139. 10.3103/S1068337222020050. DOI

Aroutiounian V. M.; Arakelyan V. M.; Khachaturyan E. A.; Shahnazaryan G. E.; Aleksanyan M. S.; Forro L.; Magrez A.; Hernadi K.; Nemeth Z. Manufacturing and investigations of i-butane sensor made of SnO2/multiwall-carbon-nanotube nanocomposite. Sens. Actuators, B 2012, 173, 890–896. 10.1016/j.snb.2012.04.039. DOI

Leghrib R.; Felten A.; Pireaux J. J.; Llobet E. Gas sensors based on doped-CNT/SnO2 composites for NO2 detection at room temperature. Thin Solid Films 2011, 520, 966–970. 10.1016/j.tsf.2011.04.186. DOI

Feng B.; Feng Y.; Li Y.; Su Y.; Deng Y.; Wei J. Synthesis of Mesoporous Ag2O/SnO2 Nanospheres for Selective Sensing of Formaldehyde at a Low Working Temperature. ACS Sens. 2022, 7, 3963–3972. 10.1021/acssensors.2c02232. PubMed DOI

Lim Y. D.; Avramchuck A. V.; Grapov D.; Tan C. W.; Tay B. K.; Aditya S.; Labunov V. Enhanced Carbon Nanotubes Growth Using Nickel/Ferrocene-Hybridized Catalyst. ACS Omega 2017, 2, 6063–6071. 10.1021/acsomega.7b00858. PubMed DOI PMC

Allaedini G.; Tasirin S. M.; Aminayi P.; Yaakob Z.; MeowTalib M. Z. Carbon Nanotubes via Different Catalysts and the Important Factors That Affect Their Production: A Review on Catalyst Preferences. Int. J. Nano Dimens. 2016, 7, 186–200. 10.7508/IJND.2016.03.002. DOI

Moisala A.; Nasibulin A. G.; Kauppinen E. I. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J. Phys.: Condens. Matter 2003, 15, S3011–S3035. 10.1088/0953-8984/15/42/003. DOI

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Kasparyan H.; Kopecký D. Room Temperature Detection of Hydrogen Peroxide Vapor by Fe2O3:ZnO Nanograins. Nanomaterials 2022, 13, 120.10.3390/nano13010120. PubMed DOI PMC

Aleksanyan M.; Sayunts A.; Shahkhatuni G.; Simonyan Z.; Shahnazaryan G.; Aroutiounian V. Gas Sensor Based on ZnO Nanostructured Film for the Detection of Ethanol Vapor. Chemosensors 2022, 10, 245.10.3390/chemosensors10070245. DOI

Melvin G. J. H.; Ni Q.-Q.; Suzuki Y.; Natsuki T. Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J. Mater. Sci. 2014, 49, 5199–5207. 10.1007/s10853-014-8229-9. DOI

Kim K. H.; Lee D. J.; Cho K. M.; Kim S. J.; Park J.-K.; Jung H.-T. Complete magnesiothermic reduction reaction of vertically aligned mesoporous silica channels to form pure silicon nanoparticles. Sci. Rep. 2015, 5, 9014.10.1038/srep09014. PubMed DOI PMC

Lehman J. H.; Terrones M.; Mansfield E.; Hurst K. E.; Meunier V. Evaluating the characteristics of multiwall carbon nanotubes. Carbon 2011, 49, 2581–2602. 10.1016/j.carbon.2011.03.028. DOI

Fayazfar H.; Afshar A.; Dolati A. Controlled Growth of Well-Aligned Carbon Nanotubes, Electrochemical Modification and Electrodeposition of Multiple Shapes of Gold Nanostructures. Mater. Sci. Appl. 2013, 04, 667–678. 10.4236/msa.2013.411083. DOI

Acharyya S.; Nag S.; Kimbahune S.; Ghose A.; Pal A.; Guha P. K. Selective Discrimination of VOCs Applying Gas Sensing Kinetic Analysis over a Metal Oxide-Based Chemiresistive Gas Sensor. ACS Sens. 2021, 6, 2218–2224. 10.1021/acssensors.1c00115. PubMed DOI

Jian Y.; Hu W.; Zhao Z.; Cheng P.; Haick H.; Yao M.; Wu W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. Nano-Micro Lett. 2020, 12, 71.10.1007/s40820-020-0407-5. PubMed DOI PMC

Wetchakun K.; Samerjai T.; Tamaekong N.; Liewhiran C.; Siriwong C.; Kruefu V.; Wisitsoraat A.; Tuantranont A.; Phanichphant S. Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators, B 2011, 160, 580–591. 10.1016/j.snb.2011.08.032. DOI

Septiani N. L. W.; Yuliarto B. Review—The Development of Gas Sensor Based on Carbon Nanotubes. J. Electrochem. Soc. 2016, 163, B97–B106. 10.1149/2.0591603jes. DOI

Tasaltin C.; Basarir F. Preparation of flexible VOC sensor based on carbon nanotubes and gold nanoparticles. Sens. Actuators, B 2014, 194, 173–179. 10.1016/j.snb.2013.12.063. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...