Exploring the antimicrobial potential of chitosan nanoparticles: synthesis, characterization and impact on Pseudomonas aeruginosa virulence factors

. 2024 Jun 11 ; 6 (12) : 3093-3105. [epub] 20240422

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38868829

The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L-1 within tested strains. Additionally, we identified a concentration of 5 mg L-1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L-1) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects.

Zobrazit více v PubMed

Frigaard J. Jensen J. L. Galtung H. K. Hiorth M. Front. Pharmacol. 2022;13:880377. doi: 10.3389/fphar.2022.880377. PubMed DOI PMC

Pelgrift R. Y. Friedman A. J. Adv. Drug Delivery Rev. 2013;65:1803–1815. doi: 10.1016/j.addr.2013.07.011. PubMed DOI

Mohammed M. A. Syeda J. T. M. Wasan K. M. Wasan E. K. Pharmaceutics. 2017;9(4):53. doi: 10.3390/pharmaceutics9040053. PubMed DOI PMC

Garg U. Chauhan S. Nagaich U. Jain N. Adv. Pharm. Bull. 2019;9:195–204. doi: 10.15171/apb.2019.023. PubMed DOI PMC

Namasivayam S. K. R. Pandian U. K. Samrat K. Arvind Bharani R. S. John A. Kavisri M. Kadaikunnan S. Thiruvengadam M. Moovendhan M. Int. J. Biol. Macromol. 2024;259:129264. doi: 10.1016/j.ijbiomac.2024.129264. PubMed DOI

Karthick Raja Namasivayam S. Pattukumar V. Samrat K. Kumar J. A. Arvind Bharani R. S. Alothman A. A. Osman S. M. Tran V. A. Rajasimman M. Chemosphere. 2022;308:135950. doi: 10.1016/j.chemosphere.2022.135950. PubMed DOI

Karthick Raja Namasivayam S. Arvind Bharani R. S. Karunamoorthy K. Int. J. Biol. Macromol. 2018;120:921–944. doi: 10.1016/j.ijbiomac.2018.08.130. PubMed DOI

Raja Namasivayam S. K. Venkatachalam G. Arvind Bharani R. S. Sustainable Chem. Pharm. 2020;17:100300. doi: 10.1016/j.scp.2020.100300. DOI

Verlee A. Mincke S. Stevens C. V. Carbohydr. Polym. 2017;164:268–283. doi: 10.1016/j.carbpol.2017.02.001. PubMed DOI

Fattah R. Fathy F. Mohamed T. A. H. Elsayed M. S. AIMS Microbiol. 2021;7:415–430. PubMed PMC

Ikono R. Mardliyati E. Agustin I. T. Ulfi M. M. F. Andrianto D. Hasanah U. Bachtiar B. M. Mardianingsih N. Bachtiar E. W. Maulana N. N. Biomed. Phys. Eng. Express. 2018;4:045026. doi: 10.1088/2057-1976/aac9f8. DOI

Horcajada J. P. Montero M. Oliver A. Sorlí L. Luque S. Gómez-Zorrilla S. Benito N. Grau S. Clin. Microbiol. Rev. 2019;32(4):e00031. doi: 10.1128/CMR.00031-19. PubMed DOI PMC

Piewngam P. Chiou J. Chatterjee P. Otto M. Expert Rev. Anti-Infect. Ther. 2020;18:499–510. doi: 10.1080/14787210.2020.1750951. PubMed DOI PMC

Muslim S. N. Kadmy I. Ali A. N. M. Salman B. K. Ahmad M. Khazaal S. S. Hussein N. H. Muslim S. N. Int. J. Biol. Macromol. 2018;107:52–58. doi: 10.1016/j.ijbiomac.2017.08.146. PubMed DOI

Whiteley M. Diggle S. P. Greenberg E. P. Nature. 2017;551:313–320. doi: 10.1038/nature24624. PubMed DOI PMC

Tommonaro G., Quorum Sensing: Molecular Mechanism and Biotechnological Application, Academic Press, 2019

O'Toole G. A. Kolter R. Mol. Microbiol. 1998;30:295–304. doi: 10.1046/j.1365-2958.1998.01062.x. PubMed DOI

Rivera Aguayo P. Bruna Larenas T. Alarcón Godoy C. Cayupe Rivas B. González-Casanova J. Rojas-Gómez D. Caro Fuentes N. Antibiotics. 2020;9(9):551. doi: 10.3390/antibiotics9090551. PubMed DOI PMC

Ahmed T. A. Aljaeid B. M. Drug Des., Dev. Ther. 2016;10:483–507. doi: 10.2147/DDDT.S99651. PubMed DOI PMC

Calvo P. Remuñán-López C. Vila-Jato J. L. Alonso M. J. J. Appl. Polym. Sci. 1997;63:125–132. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4. DOI

Songsurang K. Praphairaksit N. Siraleartmukul K. Muangsin N. Arch. Pharmacal Res. 2011;34:583–592. doi: 10.1007/s12272-011-0408-5. PubMed DOI

Lin Y.-H. Sonaje K. Lin K. M. Juang J.-H. Mi F.-L. Yang H.-W. Sung H.-W. J. Controlled Release. 2008;132:141–149. doi: 10.1016/j.jconrel.2008.08.020. PubMed DOI

Di Santo M. C. D' Antoni C. L. Domínguez Rubio A. P. Alaimo A. Pérez O. E. Biomed. Pharmacother. 2021;142:111970. doi: 10.1016/j.biopha.2021.111970. PubMed DOI

Liu H. Gao C. Polym. Adv. Technol. 2009;20:613–619. doi: 10.1002/pat.1306. DOI

Vaezifar S. Razavi S. Golozar M. A. Karbasi S. Morshed M. Kamali M. J. Cluster Sci. 2013;24:891–903. doi: 10.1007/s10876-013-0583-2. DOI

Koukaras E. N. Papadimitriou S. A. Bikiaris D. N. Froudakis G. E. Mol. Pharm. 2012;9:2856–2862. doi: 10.1021/mp300162j. PubMed DOI

Jonassen H. Kjøniksen A.-L. Hiorth M. Colloid Polym. Sci. 2012;290:919–929. doi: 10.1007/s00396-012-2604-3. DOI

Sreekumar S. Goycoolea F. M. Moerschbacher B. M. Rivera-Rodriguez G. R. Sci. Rep. 2018;8:4695. doi: 10.1038/s41598-018-23064-4. PubMed DOI PMC

Yang H.-C. Hon M.-H. Microchem. J. 2009;92:87–91. doi: 10.1016/j.microc.2009.02.001. DOI

Fan W. Yan W. Xu Z. Ni H. Colloids Surf., B. 2012;90:21–27. doi: 10.1016/j.colsurfb.2011.09.042. PubMed DOI

Sánchez-Clemente R. Igeño M. I. Población A. G. Guijo M. I. Merchán F. Blasco R. Proceedings. 2018;2:1297.

Ozturk K. Arslan F. B. Tavukcuoglu E. Esendagli G. Calis S. Int. J. Pharm. 2020;578:119119. doi: 10.1016/j.ijpharm.2020.119119. PubMed DOI

Thanou M. Verhoef J. C. Junginger H. E. Adv. Drug Delivery Rev. 2001;52:117–126. doi: 10.1016/S0169-409X(01)00231-9. PubMed DOI

Cho J. Heuzey M.-C. Bégin A. Carreau P. J. J. Food Eng. 2006;74:500–515. doi: 10.1016/j.jfoodeng.2005.01.047. DOI

Tsaih M. L. Chen R. H. Int. J. Biol. Macromol. 1997;20:233–240. doi: 10.1016/S0141-8130(97)01165-3. PubMed DOI

Sawtarie N. Cai Y. Lapitsky Y. Colloids Surf., B. 2017;157:110–117. doi: 10.1016/j.colsurfb.2017.05.055. PubMed DOI

Bhattacharjee S. J. Controlled Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI

Kiang T. Wen J. Lim H. W. Leong K. W. Biomaterials. 2004;25:5293–5301. doi: 10.1016/j.biomaterials.2003.12.036. PubMed DOI

Geçer A. Yıldız N. Çalımlı A. Turan B. Macromol. Res. 2010;18:986–991. doi: 10.1007/s13233-010-1004-0. DOI

Sayın B. Somavarapu S. Li X. W. Thanou M. Sesardic D. Alpar H. O. Şenel S. Int. J. Pharm. 2008;363:139–148. doi: 10.1016/j.ijpharm.2008.06.029. PubMed DOI

Banik B. L. Fattahi P. Brown J. L. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2016;8:271–299. PubMed

Rauscher H. Sokull-Klüttgen B. Stamm H. Nanotoxicology. 2013;7:1195–1197. doi: 10.3109/17435390.2012.724724. PubMed DOI

Müsken M. Di Fiore S. Römling U. Häussler S. Nat. Protoc. 2010;5:1460–1469. doi: 10.1038/nprot.2010.110. PubMed DOI

López-León T. Carvalho E. L. S. Seijo B. Ortega-Vinuesa J. L. Bastos-González D. J. Colloid Interface Sci. 2005;283:344–351. doi: 10.1016/j.jcis.2004.08.186. PubMed DOI

Tré-Hardy M. Vanderbist F. Traore H. Devleeschouwer M. J. Int. J. Antimicrob. Agents. 2008;31:329–336. doi: 10.1016/j.ijantimicag.2007.12.005. PubMed DOI

Lee J. Zhang L. Protein Cell. 2015;6:26–41. doi: 10.1007/s13238-014-0100-x. PubMed DOI PMC

Boudouaia N. Benine M. L. Fettal N. Abbouni B. Bengharez Z. Waste Biomass Valorization. 2023;15:1267–1279. doi: 10.1007/s12649-023-02220-6. DOI

Hu Y. Du Y. Yang J. Tang Y. Li J. Wang X. Polymer. 2007;48:3098–3106. doi: 10.1016/j.polymer.2007.03.063. DOI

Tin S. Sakharkar K. R. Lim C. S. Sakharkar M. K. Int. J. Biol. Sci. 2009;5:153–160. doi: 10.7150/ijbs.5.153. PubMed DOI PMC

Liu Y. Jiang Y. Zhu J. Huang J. Zhang H. Carbohydr. Polym. 2019;206:412–419. doi: 10.1016/j.carbpol.2018.11.015. PubMed DOI

Rathinam S. Ólafsdóttir S. Jónsdóttir S. Hjálmarsdóttir M. Á. Másson M. Int. J. Biol. Macromol. 2020;160:548–557. doi: 10.1016/j.ijbiomac.2020.05.109. PubMed DOI

Maisetta G. Piras A. M. Motta V. Braccini S. Mazzantini D. Chiellini F. Zambito Y. Esin S. Batoni G. Microorganisms. 2021;9(5):912. doi: 10.3390/microorganisms9050912. PubMed DOI PMC

Melake N. A. Mahmoud H. A. Al-Semary M. T. Afr. J. Microbiol. Res. 2012;6:5387–5398.

Salis A. Fanti M. Medda L. Nairi V. Cugia F. Piludu M. Sogos V. Monduzzi M. ACS Biomater. Sci. Eng. 2016;2:741–751. doi: 10.1021/acsbiomaterials.5b00502. PubMed DOI

Martins D. B. Nasário F. D. Silva-Gonçalves L. C. de Oliveira Tiera V. A. Arcisio-Miranda M. Tiera M. J. dos Santos Cabrera M. P. Carbohydr. Polym. 2018;181:1213–1223. doi: 10.1016/j.carbpol.2017.12.011. PubMed DOI

Chen F. Zhang Z.-R. Yuan F. Qin X. Wang M. Huang Y. Int. J. Pharm. 2008;349:226–233. doi: 10.1016/j.ijpharm.2007.07.035. PubMed DOI

Kean T. Roth S. Thanou M. J. Controlled Release. 2005;103:643–653. doi: 10.1016/j.jconrel.2005.01.001. PubMed DOI

Hickey J. W. Santos J. L. Williford J. M. Mao H. Q. J. Controlled Release. 2015;219:536–547. doi: 10.1016/j.jconrel.2015.10.006. PubMed DOI PMC

Dilnawaz F. Acharya S. Kanungo A. Polym. Bull. 2024;81:1071–1095. doi: 10.1007/s00289-023-04755-z. PubMed DOI PMC

Chandrasekaran M. Kim K. D. Chun S. C. Processes. 2020;8(9):1173. doi: 10.3390/pr8091173. DOI

Yan D. Li Y. Liu Y. Li N. Zhang X. Yan C. Molecules. 2021;26(23):7136. doi: 10.3390/molecules26237136. PubMed DOI PMC

Piras A. M. Esin S. Benedetti A. Maisetta G. Fabiano A. Zambito Y. Batoni G. Int. J. Mol. Sci. 2019;20:6297. doi: 10.3390/ijms20246297. PubMed DOI PMC

Khan F. Manivasagan P. Pham D. T. N. Oh J. Kim S.-K. Kim Y.-M. Microb. Pathog. 2019;128:363–373. doi: 10.1016/j.micpath.2019.01.033. PubMed DOI

Rivera Aguayo P. Bruna Larenas T. Alarcón Godoy C. Cayupe Rivas B. González-Casanova J. Rojas-Gómez D. Caro Fuentes N. Antibiotics. 2020;9:551. doi: 10.3390/antibiotics9090551. PubMed DOI PMC

Rubini D. Banu S. F. Subramani P. Hari B. N. V. Gowrishankar S. Pandian S. K. Wilson A. Nithyanand P. Pathog. Dis. 2019;77:ftz009. PubMed

Badawy M. S. E. M. Riad O. K. M. Taher F. A. Zaki S. A. Int. J. Biol. Macromol. 2020;149:1109–1117. doi: 10.1016/j.ijbiomac.2020.02.019. PubMed DOI

Thaya R. Vaseeharan B. Sivakamavalli J. Iswarya A. Govindarajan M. Alharbi N. S. Kadaikunnan S. Al-anbr M. N. Khaled J. M. Benelli G. Microb. Pathog. 2018;114:17–24. doi: 10.1016/j.micpath.2017.11.011. PubMed DOI

Ha D.-G., Kuchma S. L. and O'Toole G. A., Pseudomonas Methods and Protocols, 2014, 59–65 PubMed PMC

Bouteiller M. Dupont C. Bourigault Y. Latour X. Barbey C. Konto-Ghiorghi Y. Merieau A. Int. J. Mol. Sci. 2021;22(7):3337. doi: 10.3390/ijms22073337. PubMed DOI PMC

Zhu S. Schniederberend M. Zhitnitsky D. Jain R. Galán J. E. Kazmierczak B. I. Liu J. J. Bacteriol. 2019;201(13):e00117. doi: 10.1128/JB.00117-19. PubMed DOI PMC

Wu W., Jin Y., Bai F. and Jin S., in Molecular Medical Microbiology, ed. Y.-W. Tang, M. Sussman, D. Liu, I. Poxton and J. Schwartzman, Academic Press, Boston, 2nd edn, 2015, pp. 753–767, 10.1016/B978-0-12-397169-2.00041-X DOI

Kühn M. J. Talà L. Inclan Y. F. Patino R. Pierrat X. Vos I. Al-Mayyah Z. Macmillan H. Negrete J. Engel J. N. Persat A. Proc. Natl. Acad. Sci. U. S. A. 2021;118:e2101759118. doi: 10.1073/pnas.2101759118. PubMed DOI PMC

Tremblay J. Déziel E. BMC Genomics. 2010;11:587. doi: 10.1186/1471-2164-11-587. PubMed DOI PMC

Yang A. Tang W. S. Si T. Tang J. X. Biophys. J. 2017;112:1462–1471. doi: 10.1016/j.bpj.2017.02.019. PubMed DOI PMC

Overhage J. Lewenza S. Marr A. K. Hancock R. E. J. Bacteriol. 2007;189:2164–2169. doi: 10.1128/JB.01623-06. PubMed DOI PMC

Caiazza N. C. Shanks R. M. Q. O'Toole G. A. J. Bacteriol. 2005;187:7351–7361. doi: 10.1128/JB.187.21.7351-7361.2005. PubMed DOI PMC

Murray T. S. Kazmierczak B. I. J. Bacteriol. 2008;190:2700–2708. doi: 10.1128/JB.01620-07. PubMed DOI PMC

Köhler T. Curty Lasta K. Barja F. van Delden C. Pechère J.-C. J. Bacteriol. 2000;182:5990–5996. doi: 10.1128/JB.182.21.5990-5996.2000. PubMed DOI PMC

Bleves S. Viarre V. Salacha R. Michel G. P. F. Filloux A. Voulhoux R. Int. J. Med. Microbiol. 2010;300:534–543. doi: 10.1016/j.ijmm.2010.08.005. PubMed DOI

Llanos A. Achard P. Bousquet J. Lozano C. Zalacain M. Sable C. Revillet H. Murris M. Mittaine M. Lemonnier M. Everett M. Sci. Rep. 2023;13:14208. doi: 10.1038/s41598-023-41333-9. PubMed DOI PMC

Mateu-Borrás M. Zamorano L. González-Alsina A. Sánchez-Diener I. Doménech-Sánchez A. Oliver A. Albertí S. Front. Cell. Infect. Microbiol. 2022;11:816356. doi: 10.3389/fcimb.2021.816356. PubMed DOI PMC

Bastaert F. Kheir S. Saint-Criq V. Villeret B. Dang P. M. El-Benna J. Sirard J. C. Voulhoux R. Sallenave J. M. Front. Immunol. 2018;9:1675. doi: 10.3389/fimmu.2018.01675. PubMed DOI PMC

Diggle S. P. Griffin A. S. Campbell G. S. West S. A. Nature. 2007;450:411–414. doi: 10.1038/nature06279. PubMed DOI

Wang Y. Gao L. Rao X. Wang J. Yu H. Jiang J. Zhou W. Wang J. Xiao Y. Li M. Zhang Y. Zhang K. Shen L. Hua Z. Sci. Rep. 2018;8:13344. doi: 10.1038/s41598-018-30813-y. PubMed DOI PMC

Everett M. J. Davies D. T. Drug Discovery Today. 2021;26:2108–2123. doi: 10.1016/j.drudis.2021.02.026. PubMed DOI

Berka R. M. Vasil M. L. J. Bacteriol. 1982;152:239–245. doi: 10.1128/jb.152.1.239-245.1982. PubMed DOI PMC

Montes L. R. Ibarguren M. Goñi F. M. Stonehouse M. Vasil M. L. Alonso A. Biochim. Biophys. Acta. 2007;1768:2365–2372. doi: 10.1016/j.bbamem.2007.04.024. PubMed DOI

Berk R. S. Brown D. Coutinho I. Meyers D. Infect. Immun. 1987;55:1728–1730. doi: 10.1128/iai.55.7.1728-1730.1987. PubMed DOI PMC

Coutinho I. R. Berk R. S. Mammen E. Thromb. Res. 1988;51:495–505. doi: 10.1016/0049-3848(88)90115-6. PubMed DOI

Wargo M. J. Gross M. J. Rajamani S. Allard J. L. Lundblad L. K. Allen G. B. Vasil M. L. Leclair L. W. Hogan D. A. Am. J. Respir. Crit. Care Med. 2011;184:345–354. doi: 10.1164/rccm.201103-0374OC. PubMed DOI PMC

Hall S. McDermott C. Anoopkumar-Dukie S. McFarland A. J. Forbes A. Perkins A. V. Davey A. K. Chess-Williams R. Kiefel M. J. Arora D. Grant G. D. Toxins. 2016;8(8):236. doi: 10.3390/toxins8080236. PubMed DOI PMC

Cornelis P. Dingemans J. Front. Cell. Infect. Microbiol. 2013;3:75. PubMed PMC

Bullen J. Rev. Infect. Dis. 1981;3:1127–1138. doi: 10.1093/clinids/3.6.1127. PubMed DOI

Boks N. P. Norde W. van der Mei H. C. Busscher H. J. Microbiology. 2008;154:3122–3133. doi: 10.1099/mic.0.2008/018622-0. PubMed DOI

Yang S. Cheng X. Jin Z. Xia A. Ni L. Zhang R. Jin F. Appl. Environ. Microbiol. 2018;84:e00700–e00718. PubMed PMC

Das T. Kutty S. K. Kumar N. Manefield M. PLoS One. 2013;8:e58299. doi: 10.1371/journal.pone.0058299. PubMed DOI PMC

Lo Y.-L. Chen C.-L. Shen L. Chen Y.-C. Wang Y.-H. Lee C.-C. Wang L.-C. Chuang C.-H. Janapatla R. P. Chiu C.-H. Chang H.-Y. Res. Microbiol. 2018;169:135–144. doi: 10.1016/j.resmic.2018.02.001. PubMed DOI

BLOTT S. J. PYE K. Sedimentology. 2008;55:31–63. doi: 10.1111/j.1365-3091.2007.00892.x. DOI

Miškovská A. Rabochová M. Michailidu J. Masák J. Čejková A. Lorinčík J. Maťátková O. PLoS One. 2022;17:e0272844. doi: 10.1371/journal.pone.0272844. PubMed DOI PMC

Michailidu J. Maťátková O. Kolouchová I. Masák J. Čejková A. Plants. 2022;11(3):443. doi: 10.3390/plants11030443. PubMed DOI PMC

Kulišová M. Maťátková O. Brányik T. Zelenka J. Drábová L. Kolouchová I. J. J. Microbiol. Methods. 2023;205:106676. doi: 10.1016/j.mimet.2023.106676. PubMed DOI

Saeki E. K. Yamada A. Y. de Araujo L. A. Anversa L. Garcia D. d. O. de Souza R. L. B. Martins H. M. Kobayashi R. K. T. Nakazato G. Front. Cell. Infect. Microbiol. 2021;11:656984. doi: 10.3389/fcimb.2021.656984. PubMed DOI PMC

Maťátková O. Michailidu J. Ježdík R. Jarošová Kolouchová I. Řezanka T. Jirků V. Masák J. Microorganisms. 2022;10:1272. doi: 10.3390/microorganisms10071272. PubMed DOI PMC

Kašparová P. Vaňková E. Paldrychová M. Svobodová A. Hadravová R. Jarošová Kolouchová I. Masák J. Scholtz V. Front. Cell. Infect. Microbiol. 2022;12:993029. doi: 10.3389/fcimb.2022.993029. PubMed DOI PMC

Das M. C. Sandhu P. Gupta P. Rudrapaul P. De U. C. Tribedi P. Akhter Y. Bhattacharjee S. Sci. Rep. 2016;6:23347. doi: 10.1038/srep23347. PubMed DOI PMC

Ziuzina D. Boehm D. Patil S. Cullen P. J. Bourke P. PLoS One. 2015;10:e0138209. doi: 10.1371/journal.pone.0138209. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Preparation and Biological Activity of Lignin-Silver Hybrid Nanoparticles

. 2024 Dec 03 ; 9 (48) : 47765-47787. [epub] 20241120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...