Exploring the antimicrobial potential of chitosan nanoparticles: synthesis, characterization and impact on Pseudomonas aeruginosa virulence factors
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38868829
PubMed Central
PMC11166115
DOI
10.1039/d4na00064a
PII: d4na00064a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The escalating antibiotic resistance observed in bacteria poses a significant threat to society, with the global prevalence of resistant strains of Pseudomonas aeruginosa on the rise. Addressing this challenge necessitates exploring strategies that would complement existing antimicrobial agents, e.g. by substances mitigating bacterial virulence without eliciting selective pressure for resistance emergence. In this respect, free-form chitosan has demonstrated promising efficacy, prompting our investigation into reinforcing its effects through nanoparticle formulations. Our study focuses on the preparation of chitosan nanoparticles under suitable conditions while emphasizing the challenges associated with stability that can affect biological activity. These challenges are mitigated by introducing quaternized chitosan, which ensures colloidal stability in the culture media. Our approach led to the production of trimethylchitosan nanoparticles with a median size of 103 nm, circularity of 0.967, and a charge of 14.9 ± 3.1 mV, stable within a one-month period in a water stock solution, showing promising attributes for further valorization. Furthermore, the study delves into the antimicrobial activity of trimethylchitosan nanoparticles on Pseudomonas aeruginosa and confirms the benefits of both nanoformulation and modification of chitosan, as our prepared nanoparticles inhibit 50% of the bacterial population at concentration ≥160 mg L-1 within tested strains. Additionally, we identified a concentration of 5 mg L-1 that no longer impedes bacterial growth, allowing reliable verification of the effect of the prepared nanoparticles on Pseudomonas aeruginosa virulence factors, including motility, protease activity, hemolytic activity, rhamnolipids, pyocyanin, and biofilm production. Although trimethylchitosan nanoparticles exhibit promise as an effective antibiofilm agent (reducing biofilm development by 50% at concentrations ranging from 80 to 160 mg L-1) their impact on virulence manifestation is likely not directly associated with quorum sensing. Instead, it can probably be attributed to non-specific interactions with the bacterial surface. This exploration provides valuable insights into the potential of quaternized chitosan nanoparticles in addressing Pseudomonas aeruginosa infections and underscores the multifaceted nature of their antimicrobial effects.
Zobrazit více v PubMed
Frigaard J. Jensen J. L. Galtung H. K. Hiorth M. Front. Pharmacol. 2022;13:880377. doi: 10.3389/fphar.2022.880377. PubMed DOI PMC
Pelgrift R. Y. Friedman A. J. Adv. Drug Delivery Rev. 2013;65:1803–1815. doi: 10.1016/j.addr.2013.07.011. PubMed DOI
Mohammed M. A. Syeda J. T. M. Wasan K. M. Wasan E. K. Pharmaceutics. 2017;9(4):53. doi: 10.3390/pharmaceutics9040053. PubMed DOI PMC
Garg U. Chauhan S. Nagaich U. Jain N. Adv. Pharm. Bull. 2019;9:195–204. doi: 10.15171/apb.2019.023. PubMed DOI PMC
Namasivayam S. K. R. Pandian U. K. Samrat K. Arvind Bharani R. S. John A. Kavisri M. Kadaikunnan S. Thiruvengadam M. Moovendhan M. Int. J. Biol. Macromol. 2024;259:129264. doi: 10.1016/j.ijbiomac.2024.129264. PubMed DOI
Karthick Raja Namasivayam S. Pattukumar V. Samrat K. Kumar J. A. Arvind Bharani R. S. Alothman A. A. Osman S. M. Tran V. A. Rajasimman M. Chemosphere. 2022;308:135950. doi: 10.1016/j.chemosphere.2022.135950. PubMed DOI
Karthick Raja Namasivayam S. Arvind Bharani R. S. Karunamoorthy K. Int. J. Biol. Macromol. 2018;120:921–944. doi: 10.1016/j.ijbiomac.2018.08.130. PubMed DOI
Raja Namasivayam S. K. Venkatachalam G. Arvind Bharani R. S. Sustainable Chem. Pharm. 2020;17:100300. doi: 10.1016/j.scp.2020.100300. DOI
Verlee A. Mincke S. Stevens C. V. Carbohydr. Polym. 2017;164:268–283. doi: 10.1016/j.carbpol.2017.02.001. PubMed DOI
Fattah R. Fathy F. Mohamed T. A. H. Elsayed M. S. AIMS Microbiol. 2021;7:415–430. PubMed PMC
Ikono R. Mardliyati E. Agustin I. T. Ulfi M. M. F. Andrianto D. Hasanah U. Bachtiar B. M. Mardianingsih N. Bachtiar E. W. Maulana N. N. Biomed. Phys. Eng. Express. 2018;4:045026. doi: 10.1088/2057-1976/aac9f8. DOI
Horcajada J. P. Montero M. Oliver A. Sorlí L. Luque S. Gómez-Zorrilla S. Benito N. Grau S. Clin. Microbiol. Rev. 2019;32(4):e00031. doi: 10.1128/CMR.00031-19. PubMed DOI PMC
Piewngam P. Chiou J. Chatterjee P. Otto M. Expert Rev. Anti-Infect. Ther. 2020;18:499–510. doi: 10.1080/14787210.2020.1750951. PubMed DOI PMC
Muslim S. N. Kadmy I. Ali A. N. M. Salman B. K. Ahmad M. Khazaal S. S. Hussein N. H. Muslim S. N. Int. J. Biol. Macromol. 2018;107:52–58. doi: 10.1016/j.ijbiomac.2017.08.146. PubMed DOI
Whiteley M. Diggle S. P. Greenberg E. P. Nature. 2017;551:313–320. doi: 10.1038/nature24624. PubMed DOI PMC
Tommonaro G., Quorum Sensing: Molecular Mechanism and Biotechnological Application, Academic Press, 2019
O'Toole G. A. Kolter R. Mol. Microbiol. 1998;30:295–304. doi: 10.1046/j.1365-2958.1998.01062.x. PubMed DOI
Rivera Aguayo P. Bruna Larenas T. Alarcón Godoy C. Cayupe Rivas B. González-Casanova J. Rojas-Gómez D. Caro Fuentes N. Antibiotics. 2020;9(9):551. doi: 10.3390/antibiotics9090551. PubMed DOI PMC
Ahmed T. A. Aljaeid B. M. Drug Des., Dev. Ther. 2016;10:483–507. doi: 10.2147/DDDT.S99651. PubMed DOI PMC
Calvo P. Remuñán-López C. Vila-Jato J. L. Alonso M. J. J. Appl. Polym. Sci. 1997;63:125–132. doi: 10.1002/(SICI)1097-4628(19970103)63:1<125::AID-APP13>3.0.CO;2-4. DOI
Songsurang K. Praphairaksit N. Siraleartmukul K. Muangsin N. Arch. Pharmacal Res. 2011;34:583–592. doi: 10.1007/s12272-011-0408-5. PubMed DOI
Lin Y.-H. Sonaje K. Lin K. M. Juang J.-H. Mi F.-L. Yang H.-W. Sung H.-W. J. Controlled Release. 2008;132:141–149. doi: 10.1016/j.jconrel.2008.08.020. PubMed DOI
Di Santo M. C. D' Antoni C. L. Domínguez Rubio A. P. Alaimo A. Pérez O. E. Biomed. Pharmacother. 2021;142:111970. doi: 10.1016/j.biopha.2021.111970. PubMed DOI
Liu H. Gao C. Polym. Adv. Technol. 2009;20:613–619. doi: 10.1002/pat.1306. DOI
Vaezifar S. Razavi S. Golozar M. A. Karbasi S. Morshed M. Kamali M. J. Cluster Sci. 2013;24:891–903. doi: 10.1007/s10876-013-0583-2. DOI
Koukaras E. N. Papadimitriou S. A. Bikiaris D. N. Froudakis G. E. Mol. Pharm. 2012;9:2856–2862. doi: 10.1021/mp300162j. PubMed DOI
Jonassen H. Kjøniksen A.-L. Hiorth M. Colloid Polym. Sci. 2012;290:919–929. doi: 10.1007/s00396-012-2604-3. DOI
Sreekumar S. Goycoolea F. M. Moerschbacher B. M. Rivera-Rodriguez G. R. Sci. Rep. 2018;8:4695. doi: 10.1038/s41598-018-23064-4. PubMed DOI PMC
Yang H.-C. Hon M.-H. Microchem. J. 2009;92:87–91. doi: 10.1016/j.microc.2009.02.001. DOI
Fan W. Yan W. Xu Z. Ni H. Colloids Surf., B. 2012;90:21–27. doi: 10.1016/j.colsurfb.2011.09.042. PubMed DOI
Sánchez-Clemente R. Igeño M. I. Población A. G. Guijo M. I. Merchán F. Blasco R. Proceedings. 2018;2:1297.
Ozturk K. Arslan F. B. Tavukcuoglu E. Esendagli G. Calis S. Int. J. Pharm. 2020;578:119119. doi: 10.1016/j.ijpharm.2020.119119. PubMed DOI
Thanou M. Verhoef J. C. Junginger H. E. Adv. Drug Delivery Rev. 2001;52:117–126. doi: 10.1016/S0169-409X(01)00231-9. PubMed DOI
Cho J. Heuzey M.-C. Bégin A. Carreau P. J. J. Food Eng. 2006;74:500–515. doi: 10.1016/j.jfoodeng.2005.01.047. DOI
Tsaih M. L. Chen R. H. Int. J. Biol. Macromol. 1997;20:233–240. doi: 10.1016/S0141-8130(97)01165-3. PubMed DOI
Sawtarie N. Cai Y. Lapitsky Y. Colloids Surf., B. 2017;157:110–117. doi: 10.1016/j.colsurfb.2017.05.055. PubMed DOI
Bhattacharjee S. J. Controlled Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI
Kiang T. Wen J. Lim H. W. Leong K. W. Biomaterials. 2004;25:5293–5301. doi: 10.1016/j.biomaterials.2003.12.036. PubMed DOI
Geçer A. Yıldız N. Çalımlı A. Turan B. Macromol. Res. 2010;18:986–991. doi: 10.1007/s13233-010-1004-0. DOI
Sayın B. Somavarapu S. Li X. W. Thanou M. Sesardic D. Alpar H. O. Şenel S. Int. J. Pharm. 2008;363:139–148. doi: 10.1016/j.ijpharm.2008.06.029. PubMed DOI
Banik B. L. Fattahi P. Brown J. L. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2016;8:271–299. PubMed
Rauscher H. Sokull-Klüttgen B. Stamm H. Nanotoxicology. 2013;7:1195–1197. doi: 10.3109/17435390.2012.724724. PubMed DOI
Müsken M. Di Fiore S. Römling U. Häussler S. Nat. Protoc. 2010;5:1460–1469. doi: 10.1038/nprot.2010.110. PubMed DOI
López-León T. Carvalho E. L. S. Seijo B. Ortega-Vinuesa J. L. Bastos-González D. J. Colloid Interface Sci. 2005;283:344–351. doi: 10.1016/j.jcis.2004.08.186. PubMed DOI
Tré-Hardy M. Vanderbist F. Traore H. Devleeschouwer M. J. Int. J. Antimicrob. Agents. 2008;31:329–336. doi: 10.1016/j.ijantimicag.2007.12.005. PubMed DOI
Lee J. Zhang L. Protein Cell. 2015;6:26–41. doi: 10.1007/s13238-014-0100-x. PubMed DOI PMC
Boudouaia N. Benine M. L. Fettal N. Abbouni B. Bengharez Z. Waste Biomass Valorization. 2023;15:1267–1279. doi: 10.1007/s12649-023-02220-6. DOI
Hu Y. Du Y. Yang J. Tang Y. Li J. Wang X. Polymer. 2007;48:3098–3106. doi: 10.1016/j.polymer.2007.03.063. DOI
Tin S. Sakharkar K. R. Lim C. S. Sakharkar M. K. Int. J. Biol. Sci. 2009;5:153–160. doi: 10.7150/ijbs.5.153. PubMed DOI PMC
Liu Y. Jiang Y. Zhu J. Huang J. Zhang H. Carbohydr. Polym. 2019;206:412–419. doi: 10.1016/j.carbpol.2018.11.015. PubMed DOI
Rathinam S. Ólafsdóttir S. Jónsdóttir S. Hjálmarsdóttir M. Á. Másson M. Int. J. Biol. Macromol. 2020;160:548–557. doi: 10.1016/j.ijbiomac.2020.05.109. PubMed DOI
Maisetta G. Piras A. M. Motta V. Braccini S. Mazzantini D. Chiellini F. Zambito Y. Esin S. Batoni G. Microorganisms. 2021;9(5):912. doi: 10.3390/microorganisms9050912. PubMed DOI PMC
Melake N. A. Mahmoud H. A. Al-Semary M. T. Afr. J. Microbiol. Res. 2012;6:5387–5398.
Salis A. Fanti M. Medda L. Nairi V. Cugia F. Piludu M. Sogos V. Monduzzi M. ACS Biomater. Sci. Eng. 2016;2:741–751. doi: 10.1021/acsbiomaterials.5b00502. PubMed DOI
Martins D. B. Nasário F. D. Silva-Gonçalves L. C. de Oliveira Tiera V. A. Arcisio-Miranda M. Tiera M. J. dos Santos Cabrera M. P. Carbohydr. Polym. 2018;181:1213–1223. doi: 10.1016/j.carbpol.2017.12.011. PubMed DOI
Chen F. Zhang Z.-R. Yuan F. Qin X. Wang M. Huang Y. Int. J. Pharm. 2008;349:226–233. doi: 10.1016/j.ijpharm.2007.07.035. PubMed DOI
Kean T. Roth S. Thanou M. J. Controlled Release. 2005;103:643–653. doi: 10.1016/j.jconrel.2005.01.001. PubMed DOI
Hickey J. W. Santos J. L. Williford J. M. Mao H. Q. J. Controlled Release. 2015;219:536–547. doi: 10.1016/j.jconrel.2015.10.006. PubMed DOI PMC
Dilnawaz F. Acharya S. Kanungo A. Polym. Bull. 2024;81:1071–1095. doi: 10.1007/s00289-023-04755-z. PubMed DOI PMC
Chandrasekaran M. Kim K. D. Chun S. C. Processes. 2020;8(9):1173. doi: 10.3390/pr8091173. DOI
Yan D. Li Y. Liu Y. Li N. Zhang X. Yan C. Molecules. 2021;26(23):7136. doi: 10.3390/molecules26237136. PubMed DOI PMC
Piras A. M. Esin S. Benedetti A. Maisetta G. Fabiano A. Zambito Y. Batoni G. Int. J. Mol. Sci. 2019;20:6297. doi: 10.3390/ijms20246297. PubMed DOI PMC
Khan F. Manivasagan P. Pham D. T. N. Oh J. Kim S.-K. Kim Y.-M. Microb. Pathog. 2019;128:363–373. doi: 10.1016/j.micpath.2019.01.033. PubMed DOI
Rivera Aguayo P. Bruna Larenas T. Alarcón Godoy C. Cayupe Rivas B. González-Casanova J. Rojas-Gómez D. Caro Fuentes N. Antibiotics. 2020;9:551. doi: 10.3390/antibiotics9090551. PubMed DOI PMC
Rubini D. Banu S. F. Subramani P. Hari B. N. V. Gowrishankar S. Pandian S. K. Wilson A. Nithyanand P. Pathog. Dis. 2019;77:ftz009. PubMed
Badawy M. S. E. M. Riad O. K. M. Taher F. A. Zaki S. A. Int. J. Biol. Macromol. 2020;149:1109–1117. doi: 10.1016/j.ijbiomac.2020.02.019. PubMed DOI
Thaya R. Vaseeharan B. Sivakamavalli J. Iswarya A. Govindarajan M. Alharbi N. S. Kadaikunnan S. Al-anbr M. N. Khaled J. M. Benelli G. Microb. Pathog. 2018;114:17–24. doi: 10.1016/j.micpath.2017.11.011. PubMed DOI
Ha D.-G., Kuchma S. L. and O'Toole G. A., Pseudomonas Methods and Protocols, 2014, 59–65 PubMed PMC
Bouteiller M. Dupont C. Bourigault Y. Latour X. Barbey C. Konto-Ghiorghi Y. Merieau A. Int. J. Mol. Sci. 2021;22(7):3337. doi: 10.3390/ijms22073337. PubMed DOI PMC
Zhu S. Schniederberend M. Zhitnitsky D. Jain R. Galán J. E. Kazmierczak B. I. Liu J. J. Bacteriol. 2019;201(13):e00117. doi: 10.1128/JB.00117-19. PubMed DOI PMC
Wu W., Jin Y., Bai F. and Jin S., in Molecular Medical Microbiology, ed. Y.-W. Tang, M. Sussman, D. Liu, I. Poxton and J. Schwartzman, Academic Press, Boston, 2nd edn, 2015, pp. 753–767, 10.1016/B978-0-12-397169-2.00041-X DOI
Kühn M. J. Talà L. Inclan Y. F. Patino R. Pierrat X. Vos I. Al-Mayyah Z. Macmillan H. Negrete J. Engel J. N. Persat A. Proc. Natl. Acad. Sci. U. S. A. 2021;118:e2101759118. doi: 10.1073/pnas.2101759118. PubMed DOI PMC
Tremblay J. Déziel E. BMC Genomics. 2010;11:587. doi: 10.1186/1471-2164-11-587. PubMed DOI PMC
Yang A. Tang W. S. Si T. Tang J. X. Biophys. J. 2017;112:1462–1471. doi: 10.1016/j.bpj.2017.02.019. PubMed DOI PMC
Overhage J. Lewenza S. Marr A. K. Hancock R. E. J. Bacteriol. 2007;189:2164–2169. doi: 10.1128/JB.01623-06. PubMed DOI PMC
Caiazza N. C. Shanks R. M. Q. O'Toole G. A. J. Bacteriol. 2005;187:7351–7361. doi: 10.1128/JB.187.21.7351-7361.2005. PubMed DOI PMC
Murray T. S. Kazmierczak B. I. J. Bacteriol. 2008;190:2700–2708. doi: 10.1128/JB.01620-07. PubMed DOI PMC
Köhler T. Curty Lasta K. Barja F. van Delden C. Pechère J.-C. J. Bacteriol. 2000;182:5990–5996. doi: 10.1128/JB.182.21.5990-5996.2000. PubMed DOI PMC
Bleves S. Viarre V. Salacha R. Michel G. P. F. Filloux A. Voulhoux R. Int. J. Med. Microbiol. 2010;300:534–543. doi: 10.1016/j.ijmm.2010.08.005. PubMed DOI
Llanos A. Achard P. Bousquet J. Lozano C. Zalacain M. Sable C. Revillet H. Murris M. Mittaine M. Lemonnier M. Everett M. Sci. Rep. 2023;13:14208. doi: 10.1038/s41598-023-41333-9. PubMed DOI PMC
Mateu-Borrás M. Zamorano L. González-Alsina A. Sánchez-Diener I. Doménech-Sánchez A. Oliver A. Albertí S. Front. Cell. Infect. Microbiol. 2022;11:816356. doi: 10.3389/fcimb.2021.816356. PubMed DOI PMC
Bastaert F. Kheir S. Saint-Criq V. Villeret B. Dang P. M. El-Benna J. Sirard J. C. Voulhoux R. Sallenave J. M. Front. Immunol. 2018;9:1675. doi: 10.3389/fimmu.2018.01675. PubMed DOI PMC
Diggle S. P. Griffin A. S. Campbell G. S. West S. A. Nature. 2007;450:411–414. doi: 10.1038/nature06279. PubMed DOI
Wang Y. Gao L. Rao X. Wang J. Yu H. Jiang J. Zhou W. Wang J. Xiao Y. Li M. Zhang Y. Zhang K. Shen L. Hua Z. Sci. Rep. 2018;8:13344. doi: 10.1038/s41598-018-30813-y. PubMed DOI PMC
Everett M. J. Davies D. T. Drug Discovery Today. 2021;26:2108–2123. doi: 10.1016/j.drudis.2021.02.026. PubMed DOI
Berka R. M. Vasil M. L. J. Bacteriol. 1982;152:239–245. doi: 10.1128/jb.152.1.239-245.1982. PubMed DOI PMC
Montes L. R. Ibarguren M. Goñi F. M. Stonehouse M. Vasil M. L. Alonso A. Biochim. Biophys. Acta. 2007;1768:2365–2372. doi: 10.1016/j.bbamem.2007.04.024. PubMed DOI
Berk R. S. Brown D. Coutinho I. Meyers D. Infect. Immun. 1987;55:1728–1730. doi: 10.1128/iai.55.7.1728-1730.1987. PubMed DOI PMC
Coutinho I. R. Berk R. S. Mammen E. Thromb. Res. 1988;51:495–505. doi: 10.1016/0049-3848(88)90115-6. PubMed DOI
Wargo M. J. Gross M. J. Rajamani S. Allard J. L. Lundblad L. K. Allen G. B. Vasil M. L. Leclair L. W. Hogan D. A. Am. J. Respir. Crit. Care Med. 2011;184:345–354. doi: 10.1164/rccm.201103-0374OC. PubMed DOI PMC
Hall S. McDermott C. Anoopkumar-Dukie S. McFarland A. J. Forbes A. Perkins A. V. Davey A. K. Chess-Williams R. Kiefel M. J. Arora D. Grant G. D. Toxins. 2016;8(8):236. doi: 10.3390/toxins8080236. PubMed DOI PMC
Cornelis P. Dingemans J. Front. Cell. Infect. Microbiol. 2013;3:75. PubMed PMC
Bullen J. Rev. Infect. Dis. 1981;3:1127–1138. doi: 10.1093/clinids/3.6.1127. PubMed DOI
Boks N. P. Norde W. van der Mei H. C. Busscher H. J. Microbiology. 2008;154:3122–3133. doi: 10.1099/mic.0.2008/018622-0. PubMed DOI
Yang S. Cheng X. Jin Z. Xia A. Ni L. Zhang R. Jin F. Appl. Environ. Microbiol. 2018;84:e00700–e00718. PubMed PMC
Das T. Kutty S. K. Kumar N. Manefield M. PLoS One. 2013;8:e58299. doi: 10.1371/journal.pone.0058299. PubMed DOI PMC
Lo Y.-L. Chen C.-L. Shen L. Chen Y.-C. Wang Y.-H. Lee C.-C. Wang L.-C. Chuang C.-H. Janapatla R. P. Chiu C.-H. Chang H.-Y. Res. Microbiol. 2018;169:135–144. doi: 10.1016/j.resmic.2018.02.001. PubMed DOI
BLOTT S. J. PYE K. Sedimentology. 2008;55:31–63. doi: 10.1111/j.1365-3091.2007.00892.x. DOI
Miškovská A. Rabochová M. Michailidu J. Masák J. Čejková A. Lorinčík J. Maťátková O. PLoS One. 2022;17:e0272844. doi: 10.1371/journal.pone.0272844. PubMed DOI PMC
Michailidu J. Maťátková O. Kolouchová I. Masák J. Čejková A. Plants. 2022;11(3):443. doi: 10.3390/plants11030443. PubMed DOI PMC
Kulišová M. Maťátková O. Brányik T. Zelenka J. Drábová L. Kolouchová I. J. J. Microbiol. Methods. 2023;205:106676. doi: 10.1016/j.mimet.2023.106676. PubMed DOI
Saeki E. K. Yamada A. Y. de Araujo L. A. Anversa L. Garcia D. d. O. de Souza R. L. B. Martins H. M. Kobayashi R. K. T. Nakazato G. Front. Cell. Infect. Microbiol. 2021;11:656984. doi: 10.3389/fcimb.2021.656984. PubMed DOI PMC
Maťátková O. Michailidu J. Ježdík R. Jarošová Kolouchová I. Řezanka T. Jirků V. Masák J. Microorganisms. 2022;10:1272. doi: 10.3390/microorganisms10071272. PubMed DOI PMC
Kašparová P. Vaňková E. Paldrychová M. Svobodová A. Hadravová R. Jarošová Kolouchová I. Masák J. Scholtz V. Front. Cell. Infect. Microbiol. 2022;12:993029. doi: 10.3389/fcimb.2022.993029. PubMed DOI PMC
Das M. C. Sandhu P. Gupta P. Rudrapaul P. De U. C. Tribedi P. Akhter Y. Bhattacharjee S. Sci. Rep. 2016;6:23347. doi: 10.1038/srep23347. PubMed DOI PMC
Ziuzina D. Boehm D. Patil S. Cullen P. J. Bourke P. PLoS One. 2015;10:e0138209. doi: 10.1371/journal.pone.0138209. PubMed DOI PMC