Production and Characterization of Rhamnolipids Produced by Pseudomonas aeruginosa DBM 3774: Response Surface Methodology Approach
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
35888990
PubMed Central
PMC9321515
DOI
10.3390/microorganisms10071272
PII: microorganisms10071272
Knihovny.cz E-zdroje
- Klíčová slova
- Pseudomonas aeruginosa, biosurfactants, fractional factorial design,
- Publikační typ
- časopisecké články MeSH
Rhamnolipids are extensively studied biosurfactants due to their potential in many industrial applications, eco-friendly production and properties. However, their availability for broader application is severely limited by their production costs, therefore the optimization of efficacy of their cultivation gains significance as well as the information regarding the physio-chemical properties of rhamnolipids resulting from various cultivation strategies. In this work, the bioprocess design focused on optimization of the rhamnolipid yield of Pseudomonas aeruginosa DBM 3774 utilizing the response surface methodology (RSM). Six carbon sources were investigated for their effect on the rhamnolipid production. The RSM prediction improved the total rhamnolipid yield from 2.2 to 13.5 g/L and the rhamnolipid productivity from 11.6 to 45.3 mg/L/h. A significant effect of the carbon source type, concentration and the C/N ratio on the composition of the rhamnolipid congeners has been demonstrated for cultivation of P. aeruginosa DBM 3774 in batch cultivation. Especially, changes in presence of saturated fatty acid in the rhamnolipid congeners, ranging from 18.8% of unsaturated fatty acids (carbon source glycerol; 40 g/L) to 0% (sodium citrate 20 g/L) were observed. This demonstrates possibilities of model based systems as basis in cultivation of industrially important compounds like biosurfactants rhamnolipids and the importance of detailed study of interconnection between cultivation conditions and rhamnolipid mixture composition and properties.
Zobrazit více v PubMed
Banat I.M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M.G., Fracchia L., Smyth T.J., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI
Banat I.M., Makkar R.S., Cameotra S.S. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 2000;53:495–508. doi: 10.1007/s002530051648. PubMed DOI
Savla N., Pandit S., Khanna N., Mathuriya A.S., Jung S.P. Microbially powered electrochemical systems coupled with membrane-based technology for sustainable desalination and efficient wastewater treatment. J. Korean Soc. Environ. Eng. 2020;42:360–380. doi: 10.4491/KSEE.2020.42.7.360. DOI
Koo B., Jung S.P. Improvement of air cathode performance in microbial fuel cells by using catalysts made by binding metal-organic framework and activated carbon through ultrasonication and solution precipitation. Chem. Eng. J. 2021;424:130388. doi: 10.1016/j.cej.2021.130388. DOI
Lepine F., Deziel E., Milot S., Villemur R. Liquid chromatographic/mass spectrometric detection of the 3-(3-hydroxyalkanoyloxy)alkanoic acid precursors of rhamnolipids in Pseudomonas aeruginosa cultures. J. Mass Spectrom. 2002;37:41–46. doi: 10.1002/jms.244. PubMed DOI
Maier R.M., Soberon-Chavez G. Pseudomonas aeruginosa rhamnolipids: Biosynthesis and potential applications. Appl. Microbiol. Biot. 2000;54:625–633. doi: 10.1007/s002530000443. PubMed DOI
Wittgens A., Kovacic F., Müller M.M., Gerlitzki M., Santiago-Schübel B., Hofmann D., Tiso T., Blank L.M., Henkel M., Hausmann R. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Appl. Microbiol. Biot. 2017;101:2865–2878. doi: 10.1007/s00253-016-8041-3. PubMed DOI PMC
Jirku V., Cejkova A., Schreiberova O., Jezdik R., Masak J. Multicomponent biosurfactants-A “Green Toolbox” extension. Biotechnol. Adv. 2015;33:1272–1276. doi: 10.1016/j.biotechadv.2015.03.005. PubMed DOI
Abalos A., Pinazo A., Infante M.R., Casals M., Garcia F., Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir. 2001;17:1367–1371. doi: 10.1021/la0011735. DOI
Banat I.M., Satpute S.K., Cameotra S.S., Patil R., Nyayanit N.V. Cost effective technologies and renewable substrates for biosurfactants’ production. Front. Microbiol. 2014;5:697. doi: 10.3389/fmicb.2014.00697. PubMed DOI PMC
Hruzova K., Patel A., Masak J., Matatkova O., Rova U., Christakopoulos P., Matsakas L. A novel approach for the production of green biosurfactant from Pseudomonas aeruginosa using renewable forest biomass. Sci. Total Environ. 2020;711:135099. doi: 10.1016/j.scitotenv.2019.135099. PubMed DOI
Desai J.D., Banat I.M. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 1997;61:47–64. PubMed PMC
Muller M.M., Kugler J.H., Henkel M., Gerlitzki M., Hormann B., Pohnlein M., Syldatk C., Hausmann R. Rhamnolipids-Next generation surfactants? J. Biotechnol. 2012;162:366–380. doi: 10.1016/j.jbiotec.2012.05.022. PubMed DOI
Chen S.Y., Lu W.B., Wei Y.H., Chen W.M., Chang J.S. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnol. Prog. 2007;23:661–666. doi: 10.1021/bp0700152. PubMed DOI
El-Housseiny G.S., Aboulwafa M.M., Aboshanab K.A., Hassouna N.A.H. Optimization of rhamnolipid production by P. aeruginosa isolate p6. J. Surfactants Deterg. 2016;19:943–955. doi: 10.1007/s11743-016-1845-4. DOI
Al-Araji L.I.Y., Rahman R.N.Z.R.A., Basri M., Salleh A.B. Optimisation of rhamnolipids produced by Pseudomonas aeruginosa 181 using Response Surface Modeling. Ann. Microbiol. 2007;57:571–575. doi: 10.1007/BF03175357. DOI
Jamal A., Qureshi M.Z., Ali N., Ali M.I., Hameed A. Enhanced production of rhamnolipids by Pseudomonas aeruginosa JQ927360 using response surface methodology. Asian J. Chem. 2014;26:1044–1048. doi: 10.14233/ajchem.2014.15851. DOI
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI
Dobler L., de Carvalho B.R., Alves W.D., Neves B.C., Freire D.M.G., Almeida R.V. Enhanced rhamnolipid production by Pseudomonas aeruginosa overexpressing estA in a simple medium. PLoS ONE. 2017;12:e0183857. doi: 10.1371/journal.pone.0183857. PubMed DOI PMC
Abdel-Mawgoud A.M., Lepine F., Deziel E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010;86:1323–1336. doi: 10.1007/s00253-010-2498-2. PubMed DOI PMC
Hoskova M., Jezdik R., Schreiberova O., Chudoba J., Sir M., Cejkova A., Masak J., Jirku V., Rezanka T. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J. Biotechnol. 2015;193:45–51. doi: 10.1016/j.jbiotec.2014.11.014. PubMed DOI
Kwok D.Y., Neumann A.W. Contact angle interpretation in terms of solid surface tension. Colloids Surf. A. 2000;161:31–48. doi: 10.1016/S0927-7757(99)00323-4. DOI
Maťátková O., Kolouchová I., Lokočová K., Michailidu J., Jaroš P., Kulišová M., Řezanka T., Masák J. Rhamnolipids as a tool for eradication of Trichosporon cutaneum biofilm. Biomolecules. 2021;11:1727. doi: 10.3390/biom11111727. PubMed DOI PMC
Pornsunthorntawee O., Wongpanit P., Chavadej S., Abe M., Rujiravanit R. Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour. Technol. 2008;99:1589–1595. doi: 10.1016/j.biortech.2007.04.020. PubMed DOI
Shin K.H., Kim K.W., Seagren E.A. Combined effects of pH and biosurfactant addition on solubilization and biodegradation of phenanthrene. Appl. Microbiol. Biotechnol. 2004;65:336–343. doi: 10.1007/s00253-004-1561-2. PubMed DOI
Wu J.Y., Yeh K.L., Lu W.B., Lin C.L., Chang J.S. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresour. Technol. 2008;99:1157–1164. doi: 10.1016/j.biortech.2007.02.026. PubMed DOI
Santos A.S., Sampaio A.P.W., Vasquez G.S., Santa Anna L.M., Pereira N., Freire D.M.G. Evaluation of different carbon and nitrogen sources in production of rhamnolipids by a strain of Pseudomonas aeruginosa. Appl. Biochem. Biotechnol. 2002;98:1025–1035. doi: 10.1385/ABAB:98-100:1-9:1025. PubMed DOI
Sim L., Ward O.P., Li Z.Y. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol. 1997;19:232–238. doi: 10.1038/sj.jim.2900450. PubMed DOI
Nitschke M., Costa S.G.V.A.O., Contiero J. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnol. Prog. 2005;21:1593–1600. doi: 10.1021/bp050239p. PubMed DOI
Deziel E., Lepine F., Milot S., Villemur R. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol-Sgm. 2003;149:2005–2013. doi: 10.1099/mic.0.26154-0. PubMed DOI
Rezanka T., Siristova L., Sigler K. Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles. 2011;15:697–709. doi: 10.1007/s00792-011-0400-5. PubMed DOI
Reis R.S., Pereira A.G., Neves B.C., Freire D.M. Gene regulation of rhamnolipid production in Pseudomonas aeruginosa-a review. Bioresour. Technol. 2011;102:6377–6384. doi: 10.1016/j.biortech.2011.03.074. PubMed DOI
Mata-Sandoval J.C., Karns J., Torrents A. High-performance liquid chromatography method for the characterization of rhamnolipid mixtures produced by Pseudomonas aeruginosa UG2 on corn oil. J. Chromatogr. A. 1999;864:211–220. doi: 10.1016/S0021-9673(99)00979-6. PubMed DOI
Benincasa M., Abalos A., Oliveira I., Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Anton. Leeuw. Int. J. G. 2004;85:1–8. doi: 10.1023/B:ANTO.0000020148.45523.41. PubMed DOI
Haba E., Abalos A., Jauregui O., Espuny M.J., Manresa A. Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J. Surfactants Deterg. 2003;6:155–161. doi: 10.1007/s11743-003-0260-7. DOI
Lovaglio R.B., dos Santos F.J., Jafelicci M., Contiero J. Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids Surf. B Biointerfaces. 2011;85:301–305. doi: 10.1016/j.colsurfb.2011.03.001. PubMed DOI
Moussa T.A.A., Mohamed M.S., Samak N. Production and characterization of di-rhamnolipid produced by Pseudomonas aeruginosa TMN. Braz. J. Chem. Eng. 2014;31:867–880. doi: 10.1590/0104-6632.20140314s00002473. DOI
Rodrigues L.R., Teixeira J.A., van der Mei H.C., Oliveira R. Physicochemical and functional characterization of a biosurfactant produced by Lactococcus lactis 53. Colloids Surf. B Biointerfaces. 2006;49:79–86. doi: 10.1016/j.colsurfb.2006.03.003. PubMed DOI
Bognolo G. Biosurfactants as emulsifying agents for hydrocarbons. Colloid Surface A. 1999;152:41–52. doi: 10.1016/S0927-7757(98)00684-0. DOI
Shin K.H., Kim K.W., Ahn Y. Use of biosurfactant to remediate phenanthrene-contaminated soil by the combined solubilization-biodegradation process. J. Hazard. Mater. 2006;137:1831–1837. doi: 10.1016/j.jhazmat.2006.05.025. PubMed DOI
Liu Y., Zeng G.M., Zhong H., Wang Z.Q., Liu Z.F., Cheng M., Liu G.S., Yang X., Liu S.H. Effect of rhamnolipid solubilization on hexadecane bioavailability: Enhancement or reduction? J. Hazard. Mater. 2017;322:394–401. doi: 10.1016/j.jhazmat.2016.10.025. PubMed DOI
Yin H., Qiang J., Jia Y., Ye J.S., Peng H., Qin H.M., Zhang N., He B.Y. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochem. 2009;44:302–308. doi: 10.1016/j.procbio.2008.11.003. DOI