Rhamnolipids as a Tool for Eradication of Trichosporon cutaneum Biofilm
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34827725
PubMed Central
PMC8615845
DOI
10.3390/biom11111727
PII: biom11111727
Knihovny.cz E-zdroje
- Klíčová slova
- Trichosporon cutaneum, biofilm, eradication, flow-chamber, rhamnolipids,
- MeSH
- biofilmy * účinky léků růst a vývoj MeSH
- glykolipidy * farmakologie chemie MeSH
- Pseudomonas aeruginosa * účinky léků fyziologie MeSH
- Trichosporon * účinky léků MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykolipidy * MeSH
- rhamnolipid MeSH Prohlížeč
Microbial biofilms formed by pathogenic and antibiotic-resistant microorganisms represent a serious threat for public health in medicine and many industrial branches. Biofilms are involved in many persistent and chronic infections, the biofouling of water and food contamination. Therefore, current research is involved in the development of new treatment strategies. Biofilm is a complex system, and thus all aspects of the measurement and monitoring of its growth and eradication in various conditions, including static and dynamic flow, are issues of great importance. The antibiofilm character of rhamnolipid mixtures produced by four Pseudomonas aeruginosa strains was studied under different conditions. For this purpose, the biofilm of opportunistic pathogen Trichosporon cutaneum was used and treated under static conditions (microscope glass coverslip in a Petri dish) and under dynamic conditions (a single-channel flow cell). The results show that the biological activity of rhamnolipids depends both on their properties and on the conditions of the biofilm formation. Therefore, this aspect must be taken into account when planning the experimental or application design.
Zobrazit více v PubMed
Soberón-Chávez G., Lépine F., Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2005;68:718–725. doi: 10.1007/s00253-005-0150-3. PubMed DOI
Banat I.M., De Rienzo M.A.D., Quinn G.A. Microbial biofilms: Biosurfactants as antibiofilm agents. Appl. Microbiol. Biotechnol. 2014;98:9915–9929. doi: 10.1007/s00253-014-6169-6. PubMed DOI
Chrzanowski Ł., Ławniczak Ł., Czaczyk K. Why do microorganisms produce rhamnolipids? World J. Microbiol. Biotechnol. 2012;28:401–419. doi: 10.1007/s11274-011-0854-8. PubMed DOI PMC
Banat I.M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M.G., Fracchia L., Smyth T.J., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI
Matatkova O., Gharwalova L., Zimola M., Rezanka T., Masak J., Kolouchova I. Using odd-alkanes as a carbon source to increase the content of nutritionally important fatty acids in Candida krusei, Trichosporon cutaneum, and Yarrowia lipolytica. Int. J. Anal. Chem. 2017;2017:9. doi: 10.1155/2017/8195329. PubMed DOI PMC
Shunmugaperumal T. Biofilm eradication and prevention: A pharmaceutical approach to medical device infections. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2010.
Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 2017;11:53. doi: 10.2174/1874285801711010053. PubMed DOI PMC
Ramage G., Rajendran R., Sherry L., Williams C. Fungal biofilm resistance. Int. J. Microbiol. 2012;2012:14. doi: 10.1155/2012/528521. PubMed DOI PMC
Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI
Busscher H.J., van der Mei H.C. Microbial adhesion in flow displacement systems. Clin. Microbiol. Rev. 2006;19:127–141. doi: 10.1128/CMR.19.1.127-141.2006. PubMed DOI PMC
Wagner K., Friedrich S., Stang C., Bley T., Schilling N., Bieda M., Lasagni A., Boschke E. Initial phases of microbial biofilm formation on opaque, innovative anti-adhesive surfaces using a modular microfluidic system. Eng. Life Sci. 2014;14:76–84. doi: 10.1002/elsc.201200035. DOI
Colombo A.L., Padovan A.C.B., Chaves G.M. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin. Microbiol. Rev. 2011;24:682–700. doi: 10.1128/CMR.00003-11. PubMed DOI PMC
Hošková M., Ježdík R., Schreiberová O., Chudoba J., Šír M., Čejková A., Masák J., Jirků V., Řezanka T. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J. Biotechnol. 2015;193:45–51. doi: 10.1016/j.jbiotec.2014.11.014. PubMed DOI
Dubois M., Gilles K.A., Hamilton J.K., Rebers P.t., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI
Feng W., Swift S., Singhal N. Effects of surfactants on cell surface tension parameters and hydrophobicity of Pseudomonas putida 852 and Rhodococcus erythropolis 3586. Colloids Surf. B: Biointerfaces. 2013;105:43–50. doi: 10.1016/j.colsurfb.2012.12.034. PubMed DOI
Schreiberová O., Hedbávná P., Čejková A., Jirků V., Masák J. Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants. New Biotechnol. 2012;30:62–68. doi: 10.1016/j.nbt.2012.04.005. PubMed DOI
Mulligan C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005;133:183–198. doi: 10.1016/j.envpol.2004.06.009. PubMed DOI
Nitschke M., Costa S.G., Contiero J. Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process. Biochem. 2011;46:621–630. doi: 10.1016/j.procbio.2010.12.012. DOI
Banat I., Franzetti A., Gandolfi I., Bestetti G., Martinotti M., Fracchia L., Smyth T., Marchant R. Microorganism in environmental management: Microbes and environment. Appl. Microbiol. Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI
Sim L., Ward O., Li Z. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol. 1997;19:232–238. doi: 10.1038/sj.jim.2900450. PubMed DOI
De Araujo L.V., Guimarães C.R., da Silva Marquita R.L., Santiago V.M., de Souza M.P., Nitschke M., Freire D.M.G. Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 2016;63:171–178. doi: 10.1016/j.foodcont.2015.11.036. DOI
Dusane D.H., Dam S., Nancharaiah Y.V., Kumar A.R., Venugopalan V.P., Zinjarde S.S. Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat. Biosyst. 2012;8:1–7. doi: 10.1186/2046-9063-8-17. PubMed DOI PMC
E Silva S., Carvalho J., Aires C., Nitschke M. Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. J. Dairy Sci. 2017;100:7864–7873. doi: 10.3168/jds.2017-13012. PubMed DOI
Maťátková O., Kolouchová I., Kvasničková E., Ježdík R., Masák J., Čejková A. Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. Chem. Pap. 2017;71:1471–1480. doi: 10.1007/s11696-017-0141-8. DOI
Abdel-Mawgoud A.M., Lépine F., Déziel E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010;86:1323–1336. doi: 10.1007/s00253-010-2498-2. PubMed DOI PMC
Davey M.E., Caiazza N.C., O’Toole G.A. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2003;185:1027–1036. doi: 10.1128/JB.185.3.1027-1036.2003. PubMed DOI PMC
Nitschke M., Costa S.G., Contiero J. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnol. Prog. 2005;21:1593–1600. doi: 10.1021/bp050239p. PubMed DOI
Rodrigues L., Van Der Mei H., Banat I.M., Teixeira J., Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol. Med. Microbiol. 2006;46:107–112. doi: 10.1111/j.1574-695X.2005.00006.x. PubMed DOI
Kaczorek E. Effect of External Addition of Rhamnolipids Biosurfactant on the Modification of Gram Positive and Gram Negative Bacteria Cell Surfaces during Biodegradation of Hydrocarbon Fuel Contamination. Pol. J. Environ. Stud. 2012;21:901–909.
Rooney A.P., Price N.P., Ray K.J., Kuo T.-M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol. Lett. 2009;295:82–87. doi: 10.1111/j.1574-6968.2009.01581.x. PubMed DOI
Guo Y.-P., Hu Y.-Y., Gu R.R., Lin H. Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. J. Colloid Interface Sci. 2009;331:356–363. doi: 10.1016/j.jcis.2008.11.039. PubMed DOI
Abdel-Mawgoud A.M., Aboulwafa M.M., Hassouna N.A.-H. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl. Biochem. Biotechnol. 2009;157:329–345. doi: 10.1007/s12010-008-8285-1. PubMed DOI
Raya A., Sodagari M., Pinzon N.M., He X., Newby B.-m.Z., Ju L.-K. Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers. Environ. Sci. Pollut. Res. 2010;17:1529–1538. doi: 10.1007/s11356-010-0339-6. PubMed DOI
Singh N., Pemmaraju S.C., Pruthi P.A., Cameotra S.S., Pruthi V. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl. Biochem. Biotechnol. 2013;169:2374–2391. doi: 10.1007/s12010-013-0149-7. PubMed DOI
Kim L.H., Jung Y., Yu H.-W., Chae K.-J., Kim I.S. Physicochemical interactions between rhamnolipids and Pseudomonas aeruginosa biofilm layers. Environ. Sci. Technol. 2015;49:3718–3726. doi: 10.1021/es505803c. PubMed DOI
Rodrigues L., Banat I.M., Van der Mei H., Teixeira J., Oliveira R. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J. Appl. Microbiol. 2006;100:470–480. doi: 10.1111/j.1365-2672.2005.02826.x. PubMed DOI
Do Valle Gomes M.Z., Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control. 2012;25:441–447. doi: 10.1016/j.foodcont.2011.11.025. DOI
Heydorn A., Nielsen A.T., Hentzer M., Sternberg C., Givskov M., Ersbøll B.K., Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000;146:2395–2407. doi: 10.1099/00221287-146-10-2395. PubMed DOI
De Freitas Ferreira J., Vieira E.A., Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res. Int. 2019;116:737–744. doi: 10.1016/j.foodres.2018.09.005. PubMed DOI
Chrzanowski Ł., Kaczorek E., Olszanowski A. Relation between Candida maltosa hydrophobicity and hydrocarbon biodegradation. World J. Microbiol. Biotechnol. 2005;21:1273–1277. doi: 10.1007/s11274-005-2107-1. DOI