Rhamnolipids as a Tool for Eradication of Trichosporon cutaneum Biofilm

. 2021 Nov 19 ; 11 (11) : . [epub] 20211119

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34827725

Microbial biofilms formed by pathogenic and antibiotic-resistant microorganisms represent a serious threat for public health in medicine and many industrial branches. Biofilms are involved in many persistent and chronic infections, the biofouling of water and food contamination. Therefore, current research is involved in the development of new treatment strategies. Biofilm is a complex system, and thus all aspects of the measurement and monitoring of its growth and eradication in various conditions, including static and dynamic flow, are issues of great importance. The antibiofilm character of rhamnolipid mixtures produced by four Pseudomonas aeruginosa strains was studied under different conditions. For this purpose, the biofilm of opportunistic pathogen Trichosporon cutaneum was used and treated under static conditions (microscope glass coverslip in a Petri dish) and under dynamic conditions (a single-channel flow cell). The results show that the biological activity of rhamnolipids depends both on their properties and on the conditions of the biofilm formation. Therefore, this aspect must be taken into account when planning the experimental or application design.

Zobrazit více v PubMed

Soberón-Chávez G., Lépine F., Déziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 2005;68:718–725. doi: 10.1007/s00253-005-0150-3. PubMed DOI

Banat I.M., De Rienzo M.A.D., Quinn G.A. Microbial biofilms: Biosurfactants as antibiofilm agents. Appl. Microbiol. Biotechnol. 2014;98:9915–9929. doi: 10.1007/s00253-014-6169-6. PubMed DOI

Chrzanowski Ł., Ławniczak Ł., Czaczyk K. Why do microorganisms produce rhamnolipids? World J. Microbiol. Biotechnol. 2012;28:401–419. doi: 10.1007/s11274-011-0854-8. PubMed DOI PMC

Banat I.M., Franzetti A., Gandolfi I., Bestetti G., Martinotti M.G., Fracchia L., Smyth T.J., Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI

Matatkova O., Gharwalova L., Zimola M., Rezanka T., Masak J., Kolouchova I. Using odd-alkanes as a carbon source to increase the content of nutritionally important fatty acids in Candida krusei, Trichosporon cutaneum, and Yarrowia lipolytica. Int. J. Anal. Chem. 2017;2017:9. doi: 10.1155/2017/8195329. PubMed DOI PMC

Shunmugaperumal T. Biofilm eradication and prevention: A pharmaceutical approach to medical device infections. John Wiley & Sons Inc.; Hoboken, NJ, USA: 2010.

Singh S., Singh S.K., Chowdhury I., Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol. J. 2017;11:53. doi: 10.2174/1874285801711010053. PubMed DOI PMC

Ramage G., Rajendran R., Sherry L., Williams C. Fungal biofilm resistance. Int. J. Microbiol. 2012;2012:14. doi: 10.1155/2012/528521. PubMed DOI PMC

Azeredo J., Azevedo N.F., Briandet R., Cerca N., Coenye T., Costa A.R., Desvaux M., Di Bonaventura G., Hébraud M., Jaglic Z. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017;43:313–351. doi: 10.1080/1040841X.2016.1208146. PubMed DOI

Busscher H.J., van der Mei H.C. Microbial adhesion in flow displacement systems. Clin. Microbiol. Rev. 2006;19:127–141. doi: 10.1128/CMR.19.1.127-141.2006. PubMed DOI PMC

Wagner K., Friedrich S., Stang C., Bley T., Schilling N., Bieda M., Lasagni A., Boschke E. Initial phases of microbial biofilm formation on opaque, innovative anti-adhesive surfaces using a modular microfluidic system. Eng. Life Sci. 2014;14:76–84. doi: 10.1002/elsc.201200035. DOI

Colombo A.L., Padovan A.C.B., Chaves G.M. Current knowledge of Trichosporon spp. and Trichosporonosis. Clin. Microbiol. Rev. 2011;24:682–700. doi: 10.1128/CMR.00003-11. PubMed DOI PMC

Hošková M., Ježdík R., Schreiberová O., Chudoba J., Šír M., Čejková A., Masák J., Jirků V., Řezanka T. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J. Biotechnol. 2015;193:45–51. doi: 10.1016/j.jbiotec.2014.11.014. PubMed DOI

Dubois M., Gilles K.A., Hamilton J.K., Rebers P.t., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. DOI

Feng W., Swift S., Singhal N. Effects of surfactants on cell surface tension parameters and hydrophobicity of Pseudomonas putida 852 and Rhodococcus erythropolis 3586. Colloids Surf. B: Biointerfaces. 2013;105:43–50. doi: 10.1016/j.colsurfb.2012.12.034. PubMed DOI

Schreiberová O., Hedbávná P., Čejková A., Jirků V., Masák J. Effect of surfactants on the biofilm of Rhodococcus erythropolis, a potent degrader of aromatic pollutants. New Biotechnol. 2012;30:62–68. doi: 10.1016/j.nbt.2012.04.005. PubMed DOI

Mulligan C.N. Environmental applications for biosurfactants. Environ. Pollut. 2005;133:183–198. doi: 10.1016/j.envpol.2004.06.009. PubMed DOI

Nitschke M., Costa S.G., Contiero J. Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process. Biochem. 2011;46:621–630. doi: 10.1016/j.procbio.2010.12.012. DOI

Banat I., Franzetti A., Gandolfi I., Bestetti G., Martinotti M., Fracchia L., Smyth T., Marchant R. Microorganism in environmental management: Microbes and environment. Appl. Microbiol. Biotechnol. 2010;87:427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI

Sim L., Ward O., Li Z. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J. Ind. Microbiol. Biotechnol. 1997;19:232–238. doi: 10.1038/sj.jim.2900450. PubMed DOI

De Araujo L.V., Guimarães C.R., da Silva Marquita R.L., Santiago V.M., de Souza M.P., Nitschke M., Freire D.M.G. Rhamnolipid and surfactin: Anti-adhesion/antibiofilm and antimicrobial effects. Food Control. 2016;63:171–178. doi: 10.1016/j.foodcont.2015.11.036. DOI

Dusane D.H., Dam S., Nancharaiah Y.V., Kumar A.R., Venugopalan V.P., Zinjarde S.S. Disruption of Yarrowia lipolytica biofilms by rhamnolipid biosurfactant. Aquat. Biosyst. 2012;8:1–7. doi: 10.1186/2046-9063-8-17. PubMed DOI PMC

E Silva S., Carvalho J., Aires C., Nitschke M. Disruption of Staphylococcus aureus biofilms using rhamnolipid biosurfactants. J. Dairy Sci. 2017;100:7864–7873. doi: 10.3168/jds.2017-13012. PubMed DOI

Maťátková O., Kolouchová I., Kvasničková E., Ježdík R., Masák J., Čejková A. Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum. Chem. Pap. 2017;71:1471–1480. doi: 10.1007/s11696-017-0141-8. DOI

Abdel-Mawgoud A.M., Lépine F., Déziel E. Rhamnolipids: Diversity of structures, microbial origins and roles. Appl. Microbiol. Biotechnol. 2010;86:1323–1336. doi: 10.1007/s00253-010-2498-2. PubMed DOI PMC

Davey M.E., Caiazza N.C., O’Toole G.A. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J. Bacteriol. 2003;185:1027–1036. doi: 10.1128/JB.185.3.1027-1036.2003. PubMed DOI PMC

Nitschke M., Costa S.G., Contiero J. Rhamnolipid surfactants: An update on the general aspects of these remarkable biomolecules. Biotechnol. Prog. 2005;21:1593–1600. doi: 10.1021/bp050239p. PubMed DOI

Rodrigues L., Van Der Mei H., Banat I.M., Teixeira J., Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunol. Med. Microbiol. 2006;46:107–112. doi: 10.1111/j.1574-695X.2005.00006.x. PubMed DOI

Kaczorek E. Effect of External Addition of Rhamnolipids Biosurfactant on the Modification of Gram Positive and Gram Negative Bacteria Cell Surfaces during Biodegradation of Hydrocarbon Fuel Contamination. Pol. J. Environ. Stud. 2012;21:901–909.

Rooney A.P., Price N.P., Ray K.J., Kuo T.-M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiol. Lett. 2009;295:82–87. doi: 10.1111/j.1574-6968.2009.01581.x. PubMed DOI

Guo Y.-P., Hu Y.-Y., Gu R.R., Lin H. Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146. J. Colloid Interface Sci. 2009;331:356–363. doi: 10.1016/j.jcis.2008.11.039. PubMed DOI

Abdel-Mawgoud A.M., Aboulwafa M.M., Hassouna N.A.-H. Characterization of rhamnolipid produced by Pseudomonas aeruginosa isolate Bs20. Appl. Biochem. Biotechnol. 2009;157:329–345. doi: 10.1007/s12010-008-8285-1. PubMed DOI

Raya A., Sodagari M., Pinzon N.M., He X., Newby B.-m.Z., Ju L.-K. Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glass flow chambers. Environ. Sci. Pollut. Res. 2010;17:1529–1538. doi: 10.1007/s11356-010-0339-6. PubMed DOI

Singh N., Pemmaraju S.C., Pruthi P.A., Cameotra S.S., Pruthi V. Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Appl. Biochem. Biotechnol. 2013;169:2374–2391. doi: 10.1007/s12010-013-0149-7. PubMed DOI

Kim L.H., Jung Y., Yu H.-W., Chae K.-J., Kim I.S. Physicochemical interactions between rhamnolipids and Pseudomonas aeruginosa biofilm layers. Environ. Sci. Technol. 2015;49:3718–3726. doi: 10.1021/es505803c. PubMed DOI

Rodrigues L., Banat I.M., Van der Mei H., Teixeira J., Oliveira R. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J. Appl. Microbiol. 2006;100:470–480. doi: 10.1111/j.1365-2672.2005.02826.x. PubMed DOI

Do Valle Gomes M.Z., Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control. 2012;25:441–447. doi: 10.1016/j.foodcont.2011.11.025. DOI

Heydorn A., Nielsen A.T., Hentzer M., Sternberg C., Givskov M., Ersbøll B.K., Molin S. Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology. 2000;146:2395–2407. doi: 10.1099/00221287-146-10-2395. PubMed DOI

De Freitas Ferreira J., Vieira E.A., Nitschke M. The antibacterial activity of rhamnolipid biosurfactant is pH dependent. Food Res. Int. 2019;116:737–744. doi: 10.1016/j.foodres.2018.09.005. PubMed DOI

Chrzanowski Ł., Kaczorek E., Olszanowski A. Relation between Candida maltosa hydrophobicity and hydrocarbon biodegradation. World J. Microbiol. Biotechnol. 2005;21:1273–1277. doi: 10.1007/s11274-005-2107-1. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace