Using Odd-Alkanes as a Carbon Source to Increase the Content of Nutritionally Important Fatty Acids in Candida krusei, Trichosporon cutaneum, and Yarrowia lipolytica
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
29129976
PubMed Central
PMC5654280
DOI
10.1155/2017/8195329
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We investigated the possibility of utilizing unusual carbon sources by three yeast strains: Candida krusei DBM 2136, Trichosporon cutaneum CCY 30-5-10, and Yarrowia lipolytica CCY 30-26-36. These strains are characterized by high biomass yield, ability to accumulate high amounts of lipids, and their potential as producers of dietetically important fatty acids. The aim of this work was the production of nutritionally important fatty acids by utilization of n-alkanes with an odd number of carbon atoms, alone and in combination with glucose and subsequent analysis of microbial lipids accumulation and fatty acid profile. All three yeast strains were able to grow and produce high amounts of the fatty acids of interest. Yarrowia lipolytica was found as the most suitable strain for the growth on n-alkanes (n-pentadecane and n-heptadecane) as the only source of carbon. The addition of biosurfactants rhamnolipids into the cultivation increased the ratio of heptadecenoic acid (up to 17.9% of total FAs in Y. lipolytica CCY 30-26-36, 14.9% in T. cutaneum CCY 30-5-10, and 17.5% in C. krusei DBM 2136) and the total biomass yield. The results show that, by manipulation of the initial cultivation conditions, the ratio of important fatty acids may be increased.
Zobrazit více v PubMed
Papanikolaou S., Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology. 2011;113(8):1031–1051. doi: 10.1002/ejlt.201100014. DOI
Papanikolaou S., Aggelis G. Lipids of oleaginous yeasts. Part II: technology and potential applications. European Journal of Lipid Science and Technology. 2011;113(8):1052–1073. doi: 10.1002/ejlt.201100015. DOI
Kolouchova I., Schreiberova O., Sigler K., Masak J., Rezanka T. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. Fems Yeast Research. 2015;15(7) doi: 10.1093/femsyr/fov076. PubMed DOI
Řezanka T., Matoulková D., Kolouchová I., Masák J., Viden I., Sigler K. Extraction of brewer’s yeasts using different methods of cell disruption for practical biodiesel production. Folia Microbiologica. 2015;60(3):225–234. doi: 10.1007/s12223-014-0360-0. PubMed DOI
Beier A., Hahn V., Bornscheuer U. T., Schauer F. Metabolism of alkenes and ketones by Candida maltosa and related yeasts. AMB Express. 2014;4(1, article no. 75):1–8. doi: 10.1186/s13568-014-0075-2. PubMed DOI PMC
Labinger J. A., Bercaw J. E. Understanding and exploiting C-H bond activation. Nature. 2002;417(6888):507–514. doi: 10.1038/417507a. PubMed DOI
Chrzanowski Ł., Bielicka-Daszkiewicz K., Owsianiak M., Aurich A., Kaczorek E., Olszanowski A. Phenol and n-alkanes (C12 and C16) utilization: Influence on yeast cell surface hydrophobicity. World Journal of Microbiology and Biotechnology. 2008;24(9):1943–1949. doi: 10.1007/s11274-008-9704-8. DOI
Whang L.-M., Liu P.-W. G., Ma C.-C., Cheng S.-S. Application of rhamnolipid and surfactin for enhanced diesel biodegradation—effects of pH and ammonium addition. Journal of Hazardous Materials. 2009;164(2-3):1045–1050. doi: 10.1016/j.jhazmat.2008.09.006. PubMed DOI
Gargouri B., Mhiri N., Karray F., Aloui F., Sayadi S. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater. BioMed Research International. 2015;2015 doi: 10.1155/2015/929424.929424 PubMed DOI PMC
Hassanshahian M., Tebyanian H., Cappello S. Isolation and characterization of two crude oil-degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Marine Pollution Bulletin. 2012;64(7):1386–1391. doi: 10.1016/j.marpolbul.2012.04.020. PubMed DOI
Fickers P., Benetti P.-H., Waché Y., et al. Hydrophobic substrate utilisation by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Research. 2005;5(6-7):527–543. doi: 10.1016/j.femsyr.2004.09.004. PubMed DOI
Schauer F. Zur Physiologie des Kohlenwasserstoffabbaus in Candida maltosa. Habilitation, Greifswald, 1989.
da Rosa P. D., Mattanna P., Carboni D., Amorim L., Richards N., Valente P. Candida zeylanoides as a new yeast model for lipid metabolism studies: effect of nitrogen sources on fatty acid accumulation. Folia Microbiologica. 2014;59(6):477–484. doi: 10.1007/s12223-014-0325-3. PubMed DOI
Papanikolaou S., Aggelis G. Yarrowia lipolytica: A model microorganism used for the production of tailor-made lipids. European Journal of Lipid Science and Technology. 2010;112(6):639–654. doi: 10.1002/ejlt.200900197. DOI
Řezanka T., Sigler K. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progress in Lipid Research. 2009;48(3-4):206–238. doi: 10.1016/j.plipres.2009.03.003. PubMed DOI
Jenkins B. J., Seyssel K., Chiu S., et al. Odd Chain Fatty Acids; New Insights of the Relationship between the Gut Microbiota, Dietary Intake, Biosynthesis and Glucose Intolerance. Scientific Reports. 2017;7 doi: 10.1038/srep44845.44845 PubMed DOI PMC
Degwert J., Jacob J., Steckel F. Use of cis-9-heptadecenoic acid for treating psoriasis and allergies. US patent, US5708028A, 1998.
Avis T. J., Boulanger R. R., Bélanger R. R. Synthesis and biological characterization of (Z)-9-heptadecenoic and (Z)-6-methyl-9-heptadecenoic acids: Fatty acids with antibiotic activity produced by Pseudozyma flocculosa. Journal of Chemical Ecology. 2000;26(4):987–1000. doi: 10.1023/A:1005464326573. DOI
Avis T. J., Bélanger R. R. Specificity and mode of action of the antifungal fatty acid cis-9-heptadecenoic acid produced by Pseudozyma flocculosa. Applied and Environmental Microbiology. 2001;67(2):956–960. doi: 10.1128/AEM.67.2.956-960.2001. PubMed DOI PMC
Griel A. E., Cao Y., Bagshaw D. D., Cifelli A. M., Holub B., Kris-Etherton P. M. A Macadamia nut-rich diet reduces total and LDL-cholesterol in mildly hypercholesterolemic men and women. Journal of Nutrition. 2008;138(4):761–767. PubMed
Alves S. P., Marcelino C., Portugal P. V., Bessa R. J. B. Short communication: The nature of heptadecenoic acid in ruminant fats. Journal of Dairy Science. 2006;89(1):170–173. doi: 10.3168/jds.S0022-0302(06)72081-1. PubMed DOI
Dowd M. K., Johansen S. L., Cantarella L., Reilly P. J. Low molecular weight organic composition of ethanol stillage from sugarcane molasses, citrus waste, and sweet whey. Journal of Agricultural and Food Chemistry. 1994;42(2):283–288. doi: 10.1021/jf00038a011. DOI
Dowd M. K. Identification of the unsaturated heptadecyl fatty acids in the seed oils of thespesia populnea and gossypium hirsutum. JAOCS, Journal of the American Oil Chemists' Society. 2012;89(9):1599–1609. doi: 10.1007/s11746-012-2071-5. DOI
Pedneault K., Angers P., Gosselin A., Tweddell R. J. Fatty acid profiles of polar and neutral lipids of ten species of higher basidiomycetes indigenous to eastern Canada. Mycological Research. 2008;112(12):1428–1434. doi: 10.1016/j.mycres.2008.06.026. PubMed DOI
Kolouchová I., Matatkova O., Sigler K., Masák J., Řezanka T. Production of palmitoleic and linoleic acid in oleaginous and nonoleaginous yeast biomass. International Journal of Analytical Chemistry. 2016;2016 doi: 10.1155/2016/7583684.7583684 PubMed DOI PMC
Ramírez-Verduzco L. F., Rodríguez-Rodríguez J. E., Jaramillo-Jacob A. D. R. Predicting cetane number, kinematic viscosity, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel. 2012;91(1):102–111. doi: 10.1016/j.fuel.2011.06.070. DOI
Dunlap K. R., Perry J. J. Effect of substrate on the fatty acid composition of hydrocabon-utilizing microorganisms. Journal of Bacteriology. 1967;94(6):1919–1923. PubMed PMC
Bauchart D., Aurousseau B. Preparation of heptadecenoic acid from Candida tropicallis yeast. Journal of the American Oil Chemists' Society. 1980;57(3):121–124. doi: 10.1007/BF02678820. DOI
Muthusamy K., Gopalakrishnan S., Ravi T. K., Sivachidambaram P. Biosurfactants: Properties, commercial production and application. Current Science. 2008;94(6):736–747.
Kaya T., Aslim B., Kariptaş E. Production of biosurfactant by Pseudomonas spp. isolated from industrial waste in Turkey. Turkish Journal of Biology. 2014;38(3):307–317. doi: 10.3906/biy-1303-18. DOI
Shekhar S., Sundaramanickam A., Balasubramanian T. Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology. 2015;45(14):1522–1554. doi: 10.1080/10643389.2014.955631. DOI
Ron E. Z., Rosenberg E. Natural roles of biosurfactants. Environmental Microbiology. 2001;3(4):229–236. doi: 10.1046/j.1462-2920.2001.00190.x. PubMed DOI
Gautam K., Tyagi V. Microbial surfactants: a review. Journal of Oleo Science. 2006;55(4):155–166. doi: 10.5650/jos.55.155. DOI
Mukherjee S., Das P., Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnology. 2006;24(11):509–515. doi: 10.1016/j.tibtech.2006.09.005. PubMed DOI
Banat I. M., Franzetti A., Gandolfi I., et al. Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology. 2010;87(2):427–444. doi: 10.1007/s00253-010-2589-0. PubMed DOI
Csutak O., Corbu V., Stoica I., Ionescu R., Vassu T. Biotechnological Applications of Yarrowia lipolytica CMGB32. Agriculture and Agricultural Science Procedia. 2015;6:545–553. doi: 10.1016/j.aaspro.2015.08.083. DOI
Gonçalves F. A. G., Colen G., Takahashi J. A. Yarrowia lipolytica and its multiple applications in the biotechnological industry. The Scientific World Journal. 2014;2014 doi: 10.1155/2014/476207.476207 PubMed DOI PMC
Mulligan C. N. Environmental applications for biosurfactants. Environmental Pollution. 2005;133(2):183–198. doi: 10.1016/j.envpol.2004.06.009. PubMed DOI
Mulligan C. N. Recent advances in the environmental applications of biosurfactants. Current Opinion in Colloid and Interface Science. 2009;14(5):372–378. doi: 10.1016/j.cocis.2009.06.005. DOI
Amaral P. F., Coelho M. A. Z., Marrucho I. M., Coutinho J. A. Biosurfactants. New York, NY, USA: Springer; 2010. Biosurfactants from yeasts: characteristics, production and application; pp. 236–249. PubMed DOI
Van Beilen J. B., Funhoff E. G. Alkane hydroxylases involved in microbial alkane degradation. Applied Microbiology and Biotechnology. 2007;74(1):13–21. doi: 10.1007/s00253-006-0748-0. PubMed DOI
Campos-Takaki G. M., Sarubbo L. A., Albuquerque C. D. C. Environmentally friendly biosurfactants produced by yeasts. Advances in Experimental Medicine and Biology. 2010;672:250–260. doi: 10.1007/978-1-4419-5979-9_19. PubMed DOI
Amaral P. F. F., da Silva J. M., Lehocky M., et al. Production and characterization of a bioemulsifier from Yarrowia lipolytica. Process Biochemistry. 2006;41(8):1894–1898. doi: 10.1016/j.procbio.2006.03.029. DOI
Rahman K. S. M., Rahman T. J., Kourkoutas Y., Petsas I., Marchant R., Banat I. M. Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technology. 2003;90(2):159–168. doi: 10.1016/S0960-8524(03)00114-7. PubMed DOI
Zhang Y., Miller R. M. Effect of rhamnolipid (biosurfactant) structure on solubilization and biodegradation of n-alkanes. Applied and Environmental Microbiology. 1995;61(6):2247–2251. PubMed PMC
Białas W., Marecik R., Szulc A., et al. Effect of exogenously added rhamnolipids on citric acid production yield. African Journal of Biotechnology. 2013;12(21)
Hošková M., Ježdík R., Schreiberová O., et al. Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. Journal of Biotechnology. 2015;193:45–51. doi: 10.1016/j.jbiotec.2014.11.014. PubMed DOI
Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 1959;37(8):911–917. doi: 10.1139/o59-099. PubMed DOI
Vančura A., Řezanka T., Maršlálek J., Melzoch K., Basařová G., Křišťan V. Metabolism of L-threonine and fatty acids and tylosin biosynthesis in Streptomyces fradiae. FEMS Microbiology Letters. 1988;49(3):411–415. doi: 10.1016/0378-1097(88)90334-5. DOI
Dembitsky V. M., Rezanka T., Bychek I. A., Shustov M. V. Identification of fatty acids from Cladonia lichens. Phytochemistry. 1991;30(12):4015–4018. doi: 10.1016/0031-9422(91)83455-T. DOI
Mishina M., Yanagawa S., Tanaka A., Fukui S. Effects of chain-length of alkane substrate on fatty acid composition and biosynthetic pathway in some candida yeasts. Agricultural and Biological Chemistry. 1973;37(4):863–870. doi: 10.1080/00021369.1973.10860762. doi: 10.1271/bbb1961.37.863. DOI
Blasig R., Mauersberger S., Riege P., et al. Degradation of long-chain n-alkanes by the yeast Candida maltosa - II. Oxidation of n-alkanes and intermediates using microsomal membrane fractions. Applied Microbiology and Biotechnology. 1988;28(6):589–597. doi: 10.1007/BF00250418. DOI
Garcia Ojeda J. L. Oxidation of long-chain n-alkanes by mutants of a thermophilic alkane-degrading bacterium: Thermus sp. ATN1. Dissertation, Technische Universität Hamburg, 2014.
Wentzel A., Ellingsen T. E., Kotlar H.-K., Zotchev S. B., Throne-Holst M. Bacterial metabolism of long-chain n-alkanes. Applied Microbiology and Biotechnology. 2007;76(6):1209–1221. doi: 10.1007/s00253-007-1119-1. PubMed DOI
Rufino R. D., de Luna J. M., de Campos Takaki G. M., Sarubbo L. A. Characterization and properties of the biosurfactant produced by Candida lipolytica UCP 0988. Electronic Journal of Biotechnology. 2014;17(1):34–38. doi: 10.1016/j.ejbt.2013.12.006. DOI
Saharan B., Sahu R., Sharma D. A review on biosurfactants: fermentation, current developments and perspectives. Genetic Engineering and Biotechnology Journal. 2011;2011(1):1–14.
Peng W.-F., Huang C., Chen X.-F., et al. Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis. Renewable Energy. 2013;55:31–34. doi: 10.1016/j.renene.2012.12.017. DOI
Fontanille P., Kumar V., Christophe G., Nouaille R., Larroche C. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica. Bioresource Technology. 2012;114:443–449. doi: 10.1016/j.biortech.2012.02.091. PubMed DOI
Fei Q., Chang H. N., Shang L., Choi J.-D., Kim N., Kang J. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresource Technology. 2011;102(3):2695–2701. doi: 10.1016/j.biortech.2010.10.141. PubMed DOI
Liang Y., Cui Y., Trushenski J., Blackburn J. W. Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresource Technology. 2010;101(19):7581–7586. doi: 10.1016/j.biortech.2010.04.061. PubMed DOI
Christophe G., Deo J. L., Kumar V., Nouaille R., Fontanille P., Larroche C. Production of oils from acetic acid by the oleaginous yeast Cryptococcus curvatus. Applied Biochemistry and Biotechnology. 2012;167(5):1270–1279. doi: 10.1007/s12010-011-9507-5. PubMed DOI
Aloklah B., Alhajali A., Yaziji S. Identification of some yeasts by fatty acid profiles. Polish Journal of Microbiology. 2014;63(4):467–472. PubMed
Řezanka T., Kolouchová I., Sigler K. Precursor directed biosynthesis of odd-numbered fatty acids by different yeasts. Folia Microbiologica. 2015;60(5):457–464. doi: 10.1007/s12223-015-0388-9. PubMed DOI
Kolouchová I., Sigler K., Schreiberová O., Masák J., Řezanka T. New yeast-based approaches in production of palmitoleic acid. Bioresource Technology. 2015;192:726–734. doi: 10.1016/j.biortech.2015.06.048. PubMed DOI
Sitepu I. R., Sestric R., Ignatia L., et al. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technology. 2013;144:360–369. doi: 10.1016/j.biortech.2013.06.047. PubMed DOI PMC