Production of Palmitoleic and Linoleic Acid in Oleaginous and Nonoleaginous Yeast Biomass
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
27022398
PubMed Central
PMC4789058
DOI
10.1155/2016/7583684
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
We investigated the possibility of utilizing both oleaginous yeast species accumulating large amounts of lipids (Yarrowia lipolytica, Rhodotorula glutinis, Trichosporon cutaneum, and Candida sp.) and traditional biotechnological nonoleaginous ones (Kluyveromyces polysporus, Torulaspora delbrueckii, and Saccharomyces cerevisiae) as potential producers of dietetically important major fatty acids. The main objective was to examine the cultivation conditions that would induce a high ratio of dietary fatty acids and biomass. Though genus-dependent, the type of nitrogen source had a higher influence on biomass yield than the C/N ratio. The nitrogen source leading to the highest lipid accumulation was potassium nitrate, followed by ammonium sulfate, which is an ideal nitrogen source supporting, in both oleaginous and nonoleaginous species, sufficient biomass growth with concomitantly increased lipid accumulation. All yeast strains displayed high (70-90%) content of unsaturated fatty acids in total cell lipids. The content of dietary fatty acids of interest, namely, palmitoleic acid and linoleic acid, reached in Kluyveromyces and Trichosporon strains over 50% of total fatty acids and the highest yield, over 280 mg per g of dry cell weight of these fatty acids, was observed in Trichosporon with ammonium sulfate as nitrogen source at C/N ratio 70.
See more in PubMed
Atabani A. E., Silitonga A. S., Badruddin I. A., Mahlia T. M. I., Masjuki H. H., Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renewable and Sustainable Energy Reviews. 2012;16(4):2070–2093. doi: 10.1016/j.rser.2012.01.003. DOI
Ageitos J. M., Vallejo J. A., Veiga-Crespo P., Villa T. G. Oily yeasts as oleaginous cell factories. Applied Microbiology and Biotechnology. 2011;90(4):1219–1227. doi: 10.1007/s00253-011-3200-z. PubMed DOI
Rupčić J., Blagović B., Marić V. Cell lipids of the Candida lipolytica yeast grown on methanol. Journal of Chromatography A. 1996;755(1):75–80. doi: 10.1016/s0021-9673(96)00579-1. PubMed DOI
Xue F. Y., Zhang X., Luo H., Tan T. W. A new method for preparing raw material for biodiesel production. Process Biochemistry. 2006;41(7):1699–1702. doi: 10.1016/j.procbio.2006.03.002. DOI
Angerbauer C., Siebenhofer M., Mittelbach M., Guebitz G. M. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresource Technology. 2008;99(8):3051–3056. doi: 10.1016/j.biortech.2007.06.045. PubMed DOI
Ratledge C. Resources conservation by novel biological processes I. Grow fats from wastes. Chemical Society Reviews. 1979;8:283–296.
Sitepu I. R., Sestric R., Ignatia L., et al. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresource Technology. 2013;144:360–369. doi: 10.1016/j.biortech.2013.06.047. PubMed DOI PMC
Sitepu I. R., Ignatia L., Franz A. K., et al. An improved high-throughput Nile red fluorescence assay for estimating intracellular lipids in a variety of yeast species. Journal of Microbiological Methods. 2012;91(2):321–328. doi: 10.1016/j.mimet.2012.09.001. PubMed DOI PMC
Subramaniam R., Dufreche S., Zappi M., Bajpai R. Microbial lipids from renewable resources: production and characterization. Journal of Industrial Microbiology & Biotechnology. 2010;37(12):1271–1287. doi: 10.1007/s10295-010-0884-5. PubMed DOI
Meng X., Yang J. M., Xu X., Zhang L., Nie Q., Xian M. Biodiesel production from oleaginous microorganisms. Renewable Energy. 2009;34(1):1–5. doi: 10.1016/j.renene.2008.04.014. DOI
Wiebe M. G., Koivuranta K., Penttilä M., Ruohonen L. Lipid production in batch and fed-batch cultures of Rhodosporidium toruloides from 5 and 6 carbon carbohydrates. BMC Biotechnology. 2012;12, article 26 doi: 10.1186/1472-6750-12-26. PubMed DOI PMC
Koutinas A. A., Chatzifragkou A., Kopsahelis N., Papanikolaou S., Kookos I. K. Design and techno-economic evaluation of microbial oil production as a renewable resource for biodiesel and oleochemical production. Fuel. 2014;116:566–577. doi: 10.1016/j.fuel.2013.08.045. DOI
Beopoulos A., Desfougéres T., Sabirova J., Nicaud J.-M. Handbook of Hydrocarbon and Lipid Microbiology. Berlin, Germany: Springer; 2010. Yarrowia lipolytica as a cell factory for oleochemical biotechnology; pp. 3003–3010. DOI
Kaneko H., Hosohara M., Tanaka M., Itoh T. Lipid composition of 30 species of yeast. Lipids. 1976;11(12):837–844. doi: 10.1007/BF02532989. PubMed DOI
Certik M., Megova J., Horenitzky R. Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata . Journal of General and Applied Microbiology. 1999;45(6):289–293. doi: 10.2323/jgam.45.289. PubMed DOI
Ratledge C. Single cell oils—have they a biotechnological future? Trends in Biotechnology. 1993;11(7):278–284. doi: 10.1016/0167-7799(93)90015-2. PubMed DOI
Kolouchová I., Sigler K., Schreiberová O., Masák J., Řezanka T. New yeast-based approaches in production of palmitoleic acid. Bioresource Technology. 2015;192:726–734. doi: 10.1016/j.biortech.2015.06.048. PubMed DOI
Papanikolaou S., Chevalot I., Komaitis M., Marc I., Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Applied Microbiology and Biotechnology. 2002;58(3):308–312. doi: 10.1007/s00253-001-0897-0. PubMed DOI
Papanikolaou S., Aggelis G. Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. European Journal of Lipid Science and Technology. 2011;113(8):1031–1051. doi: 10.1002/ejlt.201100014. DOI
Papanikolaou S., Aggelis G. Lipids of oleaginous yeasts. Part II: technology and potential applications. European Journal of Lipid Science and Technology. 2011;113(8):1052–1073. doi: 10.1002/ejlt.201100015. DOI
Kolouchova I., Schreiberova O., Sigler K., Masak J., Rezanka T. Biotransformation of volatile fatty acids by oleaginous and non-oleaginous yeast species. Fems Yeast Research. 2015;15(7) doi: 10.1093/femsyr/fov076. PubMed DOI
Papanikolaou S., Galiotou-Panayotou M., Fakas S., Komaitis M., Aggelis G. Lipid production by oleaginous Mucorales cultivated on renewable carbon sources. European Journal of Lipid Science and Technology. 2007;109(11):1060–1070. doi: 10.1002/ejlt.200700169. DOI
Fakas S., Galiotou-Panayotou M., Papanikolaou S., Komaitis M., Aggelis G. Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata . Enzyme and Microbial Technology. 2007;40(5):1321–1327. doi: 10.1016/j.enzmictec.2006.10.005. DOI
Huang C., Chen X.-F., Xiong L., Chen X.-D., Ma L.-L., Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances. 2013;31(2):129–139. doi: 10.1016/j.biotechadv.2012.08.010. PubMed DOI
Wang Q., Guo F.-J., Rong Y.-J., Chi Z.-M. Lipid production from hydrolysate of cassava starch by Rhodosporidium toruloides 21167 for biodiesel making. Renewable Energy. 2012;46:164–168. doi: 10.1016/j.renene.2012.03.002. DOI
Yu X. C., Zheng Y. B., Dorgan K. M., Chen S. L. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresource Technology. 2011;102(10):6134–6140. doi: 10.1016/j.biortech.2011.02.081. PubMed DOI
Zhan J. M., Lin H., Shen Q., Zhou Q. F., Zhao Y. H. Potential utilization of waste sweetpotato vines hydrolysate as a new source for single cell oils production by Trichosporon fermentans . Bioresource Technology. 2013;135:622–629. doi: 10.1016/j.biortech.2012.08.068. PubMed DOI
Trappe T. A., White F., Lambert C. P., Hellerstein M., Evans W. J. Influence of ibuprofen and acetaminophen on skeletal muscle protein synthesis following eccentric exercise. The FASEB Journal. 2001;15:p. A791.
Cunnane S. C., Anderson M. J. Pure linoleate deficiency in the rat: influence on growth, accumulation of n-6 polyunsaturates, and [1-14C]linoleate oxidation. Journal of Lipid Research. 1997;38(4):805–812. PubMed
Řezanka T., Matoulková D., Kolouchová I., Masák J., Sigler K. Brewer's yeast as a new source of palmitoleic acid—analysis of triacylglycerols by LC-MS. Journal of the American Oil Chemists' Society. 2013;90(9):1327–1342. doi: 10.1007/s11746-013-2271-7. DOI
Zhu L. Y., Zong M. H., Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresource Technology. 2008;99(16):7881–7885. doi: 10.1016/j.biortech.2008.02.033. PubMed DOI
Papanikolaou S., Aggelis G. Selective uptake of fatty acids by the yeast Yarrowia lipolytica . European Journal of Lipid Science and Technology. 2003;105(11):651–655. doi: 10.1002/ejlt.200300858. DOI
Zhang J., Fang X., Zhu X.-L., et al. Microbial lipid production by the oleaginous yeast Cryptococcus curvatus O3 grown in fed-batch culture. Biomass and Bioenergy. 2011;35(5):1906–1911. doi: 10.1016/j.biombioe.2011.01.024. DOI
Bligh E. G., Dyer W. J. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology. 1959;37(8):911–917. doi: 10.1139/o59-099. PubMed DOI
Tchakouteu S. S., Chatzifragkou A., Kalantzi O., Koutinas A. A., Aggelis G., Papanikolaou S. Oleaginous yeast Cryptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. European Journal of Lipid Science and Technology. 2015;117(5):657–672. doi: 10.1002/ejlt.201400347. DOI
Reggiori F., Klionsky D. J. Autophagy in the eukaryotic cell. Eukaryotic Cell. 2002;1(1):11–21. doi: 10.1128/EC.01.1.11-21.2002. PubMed DOI PMC
Klionsky D. J., Emr S. D. Autophagy as a regulated pathway of cellular degradation. Science. 2000;290(5497):1717–1721. doi: 10.1126/science.290.5497.1717. PubMed DOI PMC
Levine B., Klionsky D. J. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Developmental Cell. 2004;6(4):463–477. doi: 10.1016/s1534-5807(04)00099-1. PubMed DOI
Li D., Song J.-Z., Li H., et al. Storage lipid synthesis is necessary for autophagy induced by nitrogen starvation. FEBS Letters. 2015;589(2):269–276. doi: 10.1016/j.febslet.2014.11.050. PubMed DOI
Boyle N. R., Page M. D., Liu B. S., et al. Three acyltransferases and nitrogen-responsive regulator are implicated in nitrogen starvation-induced triacylglycerol accumulation in Chlamydomonas . The Journal of Biological Chemistry. 2012;287(19):15811–15825. doi: 10.1074/jbc.m111.334052. PubMed DOI PMC
Chen X.-F., Huang C., Yang X.-Y., Xiong L., Chen X.-D., Ma L.-L. Evaluating the effect of medium composition and fermentation condition on the microbial oil production by Trichosporon cutaneum on corncob acid hydrolysate. Bioresource Technology. 2013;143:18–24. doi: 10.1016/j.biortech.2013.05.102. PubMed DOI
Liu J.-X., Yue Q.-Y., Gao B.-Y., Wang Y., Li Q., Zhang P.-D. Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi . Water Science and Technology. 2013;67(8):1802–1808. doi: 10.2166/wst.2013.059. PubMed DOI
Razavi S. H., Mousavi S. M., Yeganeh H. M., Marc I. Fatty acid and carotenoid production by Sporobolomyces ruberrimus when using technical glycerol and ammonium sulfate. Journal of Microbiology and Biotechnology. 2007;17(10):1591–1597. PubMed
Dey P., Maiti M. K. Molecular characterization of a novel isolate of Candida tropicalis for enhanced lipid production. Journal of Applied Microbiology. 2013;114(5):1357–1368. doi: 10.1111/jam.12133. PubMed DOI
Yousuf A. Biodiesel from lignocellulosic biomass—prospects and challenges. Waste Management. 2012;32(11):2061–2067. doi: 10.1016/j.wasman.2012.03.008. PubMed DOI
Ykema A., Verbree E. C., van Verseveld H. W., Smit H. Mathematical modelling of lipid production by oleaginous yeasts in continuous cultures. Journal of Microbiology. 1986;52(6):491–506. doi: 10.1007/BF00423410. PubMed DOI
Braunwald T., Schwemmlein L., Graeff-Honninger S., et al. Effect of different C/N ratios on carotenoid and lipid production by Rhodotorula glutinis . Applied Microbiology and Biotechnology. 2013;97(14):6581–6588. doi: 10.1007/s00253-013-5005-8. PubMed DOI
Karanth N. G., Sattur A. P. Mathematical modeling of production of microbial lipids. Part II. Kinetics of lipid accumulation. Bioprocess Engineering. 1991;6(6):241–248. doi: 10.1007/bf00369553. DOI
Galafassi S., Cucchetti D., Pizza F., Franzosi G., Bianchi D., Compagno C. Lipid production for second generation biodiesel by the oleaginous yeast Rhodotorula graminis . Bioresource Technology. 2012;111:398–403. doi: 10.1016/j.biortech.2012.02.004. PubMed DOI
Jadhav V. V., Salunkhe D. S., Bhadekar R. K. Effect of alterations in conventional medium on lipid accumulation and fatty acid content in oleaginous yeasts. International Journal of Pharma and Bio Sciences. 2012;3(4):757–769.
Turcotte G., Kosaric N. The effect of C/N ratio on lipid production by Rhodosporidium toruloides ATCC 10788. Biotechnology Letters. 1989;11(9):637–642. doi: 10.1007/bf01025273. DOI
Granger L.-M., Perlot P., Goma G., Pareilleux A. Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis . Applied Microbiology and Biotechnology. 1993;38(6):784–789. doi: 10.1007/bf00167145. DOI
Saenge C., Cheirsilp B., Suksaroge T. T., Bourtoom T. Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnology and Bioprocess Engineering. 2011;16(1):23–33. doi: 10.1007/s12257-010-0083-2. DOI
Johnson V., Singh M., Saini V. S., Sista V. R., Yadav N. K. Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30. World Journal of Microbiology & Biotechnology. 1992;8(4):382–384. doi: 10.1007/bf01198749. PubMed DOI
Evans C. T., Ratledge C. Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS-14. Journal of General Microbiology. 1984;130(7):1705–1710.
da Rosa P. D., Mattanna P., Carboni D., Amorim L., Richards N., Valente P. Candida zeylanoides as a new yeast model for lipid metabolism studies: effect of nitrogen sources on fatty acid accumulation. Folia Microbiologica. 2014;59(6):477–484. doi: 10.1007/s12223-014-0325-3. PubMed DOI
Papanikolaou S., Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology. 2002;82(1):43–49. doi: 10.1016/S0960-8524(01)00149-3. PubMed DOI
Li Q., Du W., Liu D. H. Perspectives of microbial oils for biodiesel production. Applied Microbiology and Biotechnology. 2008;80(5):749–756. doi: 10.1007/s00253-008-1625-9. PubMed DOI
Schwalbach M. S., Keating D. H., Tremaine M., et al. Complex physiology and compound stress responses during fermentation of alkali-pretreated corn stover hydrolysate by an Escherichia coli ethanologen. Applied and Environmental Microbiology. 2012;78(9):3442–3457. doi: 10.1128/aem.07329-11. PubMed DOI PMC